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Abstract

Abstract—Our analysis shows that there is likely to be minor short term risk or reward for electric utilities
with respect to electric vehicle adoption, but also that significant long term value or risk exists, depending
on how judiciously utilities manage pricing, charging and infrastructure. The margin of difference between
profit and loss lies with the extent to which customer adoption is clustered, whether customers demand
faster charging times, and how utilities are able to insure optimal charging times are met, relative to
existing system utility peak loads. Customer car purchases are likely to cluster geographically within
neighborhoods. Customers appear to want fast charging and convenience, albeit within some price
tolerance. And once established, a robust PEV market may be difficult to keep up with, in terms of
infrastructure additions, if ignored for too long. We share several methodological innovations and results
to address these questions including Bass model market forecasting, consumer choice simulations, mapping
spatial adoption and forecasting, and profitability assessment over various time and location based criteria.
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time and location uncertainties in creating local or

Nomenclature regional constraints on the grid, the requirement of
, ) , ) new electric capacity, the timing of that capacity

PHEV —Plug-in Hybrid Electric Vehicle . . .
PEV _Plug-in Electric Vehicle need, and the spatial clustering of the potential
EV —Electric Vehicle mismatch. The results reveal that several factors
LoadSEER —Load Spatial Electric Expansion and risk contribute to the risk, or value, of electric vehicle

adoption. Further, LoadSEER® analysis suggests
that significant spatial clustering, given customer
segment adoption patterns, is likely to pose
significant risks to certain areas where clustered
adoption exceeds existing T&D infrastructure.

1. Introduction

This paper considers the impact of PEV’s on
long-run  distribution (T&D) infrastructure
planning, focusing on Cincinnati Ohio and
Charlotte North Carolina within the Duke Energy
service territory. Specifically we (a) forecast the
adoption rates of various vehicle types across
specific customer segments, (b) forecast the
future location of these customer segments, 2.1. Initial number of PEVs
including which ones appear to be clustered in
certain regions (e.g., small EV usage within
university areas), (c¢) employ long run
LoadSEER® spatial forecasts of the likely
placement of these future loads, and (d) identify
the penetration threshold rates for various
regions, above which existing T&D capacity is
insufficient. The study considers the impact on

2. Technical Work Preparation

The total number of announced PEVs in
production by 2011 from major automobile
manufacturers in the United States is about
100,000. Since Duke Energy’s residential
population is roughly 3.7% of US population, we
start with the reasonable assumption that about
3,700 PEVs exist in the study area in that year. Of
course, this initial estimate depends on several
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factors, mostly externally driven (e.g., oil prices,
consumer behavior, governmental intervention,
car production goals), but 3,700 cars in 2011 is
not an unreasonable short run forecast with
which to begin to explore the consequences and
trends that might emerge over the long run.

2.2. Penetration and usage forecast

We use commonly accepted Bass model'
forecasting principles such that by changing the
innovation and imitation variables that drive the
Bass Model, we match the initial number of
estimated adopted vehicles to the expected initial
estimate of PEVs in the study area. At the same
time, we modify the adoption rate so that it
resembles adoption of Hybrid vehicles that we
have experienced within these areas in the past
eight years. The resulting model forecasts

PHV as % of new vehicles

Graph 1 - Market penetration using Bass model

PEV Battery Pack (kWh)

2030\

20

Graph 2 — Assumption for an average battery pack

penetration percentage as total number of new
vehicles in the market (Graph 1). Note that
government intervention would increase the
rate of adoption through the innovation
parameter, whereas increased oil prices would
likely increase adoption not only through
innovation (motivating early adopters), but also
through the imitation parameter (as evidenced
via word of mouth communication between
adopters).

Considering the current state of the US
economy as well as the current cost of batteries,
we anticipate that most early PEVs will have

smaller battery packs, but will gradually increase
in size to satisfy the needs of average families for
full EV daily driving without the need for charging
during the day (Graph 2). According to US
Department of Transportation Federal Highway
administration data, there are 0.69 vehicles per
person” which we use to calculate total number of
vehicles in the study area. This is likely a
conservative estimate for cities with limited mass
transit, like Cincinnati and Charlotte, but
nonetheless a reasonable assumption in this case.
Combining penetration of PEVs with average
expected battery packs for each vehicle, as well as
total number of vehicles in the road, yields total
annual energy (GWh) used by PEVs. Note that
this model forecasts Usage of PEVs in the study
area regardless of physical location of these
vehicles; spatial segmentation and scoring will
help us pinpoint the location of this load.

2.3. Segmentation

A series of consumer research methods was
employed to determine the relative appeal of
PEVs, hybrids and alternative transportation
modes to area consumers, including paired
comparison computerized adaptive conjoint
analysis, discrete choice methods, and Chi-Square
Interaction methods. Differences and key drivers
were assessed for both existing purchases (e.g.,
existing hybrids) as well as futuristic vehicles
described as a combination of textual attributes
(e.g., all electric, 90 MPG, 80mph top speed,
charging available only at night). Demographic
and attitudinal information were also collected,
with which demographic segments were developed
consistent with each group’s tendency to prefer
certain types of PEV functionality, charging rates,

Segment 1
House owners or high-end renters with higher than average property prices

Graph 3 — Potential Plug-in Electric Vehicles adopters are tightly clustered within our study area
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convenience, MPG, MPH and other vehicle
characteristics. Not surprisingly, several of these
preference clusters are clumped together,
suggesting that similar vehicle characteristics
appeal to similarly situated consumers (see
Graph 3). This tendency indicates the locational
importance of PEV planning to the extent that
fast charging vehicles are adopted more readily
in certain neighborhoods over others. Ideally,
knowing where PEV adoption is occurring and at
what rate will make infrastructure planning more
efficient and effective.

2.4. Scoring households

To determine the effect of added load in electric
transmission and distribution systems, we
identified which households are more likely to
adopt plug-in electric vehicles using a scoring
system related to their observed choices within
the consumer research in Section C. Note that the
given score is not a probability per se, but more
like the way financial companies score credit
holders. It simply ranks residential customers in
the study area based on their desire to adopt a
PEV. Scoring is done using a non-linear
regression model with segments denoted as
dependent variables and household demographics
and segment identifiers (binary) as independent
variables. The numbers in this model pertain to
residential households where segments are
ranked by likelihood, and we normalize its output
between zero and one, termed a PEV score.

2.5. PEV daily load shape

In order to have a better understanding of the
effect of PEV at the time of system peak
(coincident peak), we need to know the hourly
distribution or load shape associated to daily
usage of PEVs. The Federal Highway
Administration maintains records of both
forecast and historical traffic patternsiii. The
total number of vehicles used daily to “work
away from home” and the travel time to work is
shown in the following histogram for most
"Metropolitan Statistical Areas” (MSAs)iv. The
number of vehicles “back to parked” and “out of
parking” is calculated from the percentage
change in the number of vehicles on the road for
a given hour. In addition, knowing travel time
will let us calculate total number of vehicles that
are parked at each hour (Table 1 and Graph 4).
We used charging characteristics of a Li-ion
battery, in this case, since it is the battery choice
for most PEVs. Furthermore we assumed 110
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. g & P 5 4% 11% 82,749 35,999
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Graph 4 — Percent of vehicles parked and ready to be charged

2.6. Controlled versus Uncontrolled

In an ideal situation we would have charging
stations in any parking place so the vehicles could
be charged any time they are parked. Such a
charging shape is shown in graph 5 as “any time
charging” which is a combination of the percent of
vehicles parked and the Li-lon charging shape.
Because there are none, or few, charging stations
available during the first years of PEV adoption,
most work commuters will not have the chance to
charge their PEVs before coming back home from
work. Federal Highway Administration statistics
shows that less than 3% of people work from
home, 6% use public transit or walk to their work
place, 13% carpool and about 81% use their
private vehicle to drive alone to work". Using
unemployment data we calculated population share
of work commuters who drive to work alone.
Then we moved their charging needs to when they
likely come home from work to generate the
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second curve in graph 5 called “Uncontrolled
Charge at Home)”. Once PEV adoption exceeds
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Graph 5- Afternoon peak due to lack of charging station during work hours
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some market share threshold, afternoon peaks in
such a scenario can quickly increase to be rather
significant compared to current system peaks,
especially for summer afternoon peaking utilities
(see Graph 6).. Such a PEV load shape can be
very costly for utilities both because of high cost
of peak generation as well as its substantial burden
on transmission and distribution systems during
peak hours. It is natural for utilities to desire to
mitigate and “control” this risk by shifting this
load to off-peak use either using time of use
pricing or in-home control devices that allow for
off peak charging or discharging. In its optimal
form utilities would shift most of the evening
charging load to early hours of the next day as
shown in graph 6 “Controlled (off peak charging)”.
However, consumers are likely to also demand
some minimum charge level capability upon return
from work to insure the vehicle is available for
emergency service or some other driving need.

2.7. Spatial PEV load analysis

Interestingly, many consumers appear to have
some interest in being able to charge at home vs.
going to charging stations, as revealed through
consumer research within Duke Energy. By
combining expected energy needs (GWh) from the
Bass model forecasts with either Controlled or
Uncontrolled load shape impacts, we estimate
hourly energy needs using residential scores over a
forecast time horizon. This hourly energy is
distributed between residential customers using
LOADSEER" spatial load forecasting software
and depicted in Graph 7. PEV hourly load per acre
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Graph 7 -KVA impact of PEVSs per acre during afternoon peak hour fore baseline penetration in year 2020 using LOADSEER®™
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density increases are calculated for every hour
for the next twenty years. Graph 8 represents
hourly utility of a 15kW battery pack without
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Graph 8 — Utility view of 15kWh battery pack with flat load shape

taking load shapes into account and assuming
equal load for each hour of day. It shows good
potential earnings if time of day charging can be
managed but on peak charging costs are too high
which signals need for “Time Of Use” price
structure relative to current flat rates. Net Present
Value for a seven year car battery is between
$500 and $900 if Time of Use pricing and
charging / discharging can be managed. Next, we
calculated hourly generation costs by escalating
ECAR average summer market price using
Economy.com’s “Producer price index electricity
power” index to generate future hourly costs, and
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Graph 9 — Controlled versus Uncontrolled margins considering load shapes

then estimate hourly margins using internal Duke
Energy’s residential tariffs, assuming a car
begins its charge in each of 24 five hour charging
patterns.

The outcome of forecasting margins can be
significantly altered depending on whether utilities
adopt a way of mitigating the afternoon peak risk
or not as shown in graph 9.

3. Conclusions and future work

Although electric utilities are likely to see both
risks and rewards related to the future adoption of
electric vehicles, it is clear that the value or risk
inherent in this emerging market lies with the
utilities' abilities to successfully manage localized
distribution issues, Time Of Use (TOU) pricing,
charging venues, and infrastructure management.
Failure to manage these issues may temper or slow
the adoption of electric vehicles. An established
and robust PEV market may be difficult to support
and maintain, if ignored for too long or if
inadequately planned.

Forecasting areas of local clustered adoption,
increased understanding of customer preferences
for higher voltage fast charging options, pricing
hourly usages to shift potential new peak loads and
fully integrating the risks and value into long term
plans appear to lie at the heart of future prudent
planning.

And increased collaboration between utility or
charging providers and vehicle manufacturers will
further enable the shared development of the
infrastructure which is necessary to establish a
scalable platform for electric vehicle adoption.
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