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Abstract

Plug-in Hybrid Electric Vehicles (PHEVs) offer a great opportunity to significantly reduce petroleum
consumption. The potential fuel displacement is influenced by several parameters, including powertrain
configuration, component technology, drive cycle, distance... The objective of this paper is to evaluate the
impact of component assumptions on fuel efficiency using Monte Carlo analysis. When providing
simulation results, researchers agree that a single value cannot be used due to large amount of uncertainties.
In previous papers, we have used triangular distribution, but assuming that all inputs were correlated lead to
improper results. Monte Carlo allows users to properly evaluate uncertainties while taking dependencies
into account. To do so, uncertainties are defined for several inputs, including efficiency, mass and cost. For
each assumption, an uncertainty distribution will be defined to evaluate the fuel efficiency and cost of a

particular vehicle with a determined probability.
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outputs from a set of deterministic inputs. The
purpose of our study is to evaluate the benefits of
PSAT handling stochastic inputs.

1 Introduction

Advanced powertains, including hybrid electric
vehicles (HEVs) and plug-in HEVs (PHEVS),
offer the potential to significantly reduce
petroleum consumption. To evaluate the different
options in a timely manner, the use of simulation
tools has become a necessity. Argonne National
Laboratory, working with automotive
manufacturers, has developed the Powertrain

The initiative of the Risk Analysis Program started
by the US Department of Energy motivated this
study. When using PSAT as a design and decision
tool, users legitimately expect the most accurate
and complete results possible. When inputs have
uncertainties, deterministic modeling cannot lead

System Analysis Toolkit (PSAT) to perform this
task. Based primarily on Matlab, Simulink and
StateFlow, the software allows a quick
evaluation of different technologies. PSAT is the
default vehicle simulation tool to support both
the FreedomCAR and Fuels Parternship and 21
Century Truck Partnership (21 CTP).

PSAT current version behaves like a multi-
input/multi-output  deterministic ~ non-linear
algorithm; it generates a set of deterministic

to correct simulation results. When dealing with
uncertain inputs, the inputs must be stochastically
modeled; as a result the generated outputs are also
stochastic. Consequently, it becomes possible to
compute quantities such as the most likely values
to occur and some interval of confidence, which
helps better describe and understand the simulation
results.
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Contrary to deterministic inputs, uncertain inputs
are modeled by probability density function
(PDF). Input PDF characteristics (shape, mean,
variance, mode...) are established based on
expert judgments and theoretical knowledge. The
goal is to study how uncertainty propagates
through PSAT algorithms, and to figure out how
this uncertainty on the inputs finally impacts the
algorithm outputs.

2 Monte Carlo
Overview

Methodology

Monte Carlo methods are families of
computational algorithms that rely on repeated
random sampling to compute their results. These
algorithms are used when it is infeasible or
impossible to compute an exact result with a
deterministic algorithm. In our case, PSAT
algorithms are too complex for us to compute the
outputs generated by uncertain inputs. As a
result, instead of simulating directly using
uncertain inputs, we will randomly sample the
uncertain inputs, generate sets of values from all
the inputs samples, and then simulate each set
separately. At the end, the simulation results
obtained for each simulated set are aggregated,
which gives the uncertain output values.

To perform a Monte Carlo simulation, we first
need to choose and model the uncertain inputs.
For this study, the uniform, Gaussian, and
triangular PDF shapes have been implemented.

The second step consists in selecting the
sampling method and the number of points to be
used for the simulation. Each sampling method
has its own convergence rate for a given problem
and algorithm. As a result, we need to adapt
sampling methods and number of points in order
to reach the expected accuracy. After sampling
the uncertain inputs, some correlations eventually
can be added using either the Iman and Conover
procedure or a Copula based method.

The completion of the previous steps leads to the
definition of all the points to be simulated, from
which we define the vehicles to be run in PSAT.
The coordinates of a point in the hypercube
define a vehicle’s uncertain input values.

Finally, these vehicles are simulated in PSAT,
and their results are collected and plotted for
analysis. The methodology is summarized in

Figure 1. The main steps are described in greater
details in further paragraphs.
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Figure 1: Summary of Monte Carlo simulation main
steps

2.1 Input Sampling

A Monte Carlo simulation starts by sampling the
input’s PDF. This first step has a major impact on
the simulation result, because it determines the set
of values representing the uncertain inputs. These
samples need to represent the full range of the
PDF, but also need to highlight high probability
areas more than low ones. Cumulative Distribution
Function (CDF) inversion is the most common
method used to sample PDF.

The general idea of CDF inversion is that by
inverting the uncertain input CDF over uniformly
distributed points, we obtain a good sample of the
PDF.

The precision of this method relies mainly on the
uniform sequence inverted over the CDF.
Consequently, our main concern will be to define
the best sequence of point to be inversed over the
joint CDF. In the next section (sampling methods),
we will discuss different ways of generating these
uniformly distributed points.

The main idea behind Monte Carlo simulation is to
sample a K-dimensional hypercube with N points,
i.e.: to generate an N-point uniform sequence into
a K dimensional unit hypercube. Then, inverse the
join CDF over the sequence of points from the
hypercube, and as a result obtain the samples for
each uncertain inputs PDF.

Figure 2 shows a sample for triangular distribution.
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Figure 2: Triangular PDF sample values histogram

2.2 Sampling Methods

2.2.1  Monte Carlo Sampling

The most popular sampling method is called
Monte Carlo sampling (MC). This method uses
pseudo random numbers (between 0 and 1) to
approximate a uniform distribution. Monte Carlo
sampling convergence rate iS on average
O(N %) (central theorem consequence). This
bound does not depend on the number of inputs
K, unlike for the other methods. The
independence in between a number of uncertain
inputs and a convergence rate makes Monte
Carlo sampling a very useful and efficient
sampling method when dealing with large
number of uncertain inputs. However, as the
bound is probabilistic, there is no way to build
the sequence reaching the optimal bound
(Papageourgiou and Wasilkowski in [1]).

According to the literature, the convergence rate
depends more on the equidistribution of the
sample over [0 1], than on the randomness
(Morgan and Henrion in [2]). Because uniformity
is the main aspect, we will introduce other
sampling methods that focus on the sample’s
uniformity.

2.2.2  Hypercube sampling (Iman and
Shortencartier in [3])

One method of creating more uniform samples
(i.e.: to get a faster convergence rate) is to use
stratified sample methods, such as Latin
Hypercube Sampling (LHS) or Median Latin
hypercube sampling (MLHS). In LHS, the range
of each uncertain input X; is sub-divided into
non-overlapping intervals of equal probability.
Then, one value from each interval is selected at
random with respect to the probability
distribution in the interval. In MLHS, this value
is the mid-point of the interval. The N values
thus obtained for X; are paired in a random
manner (i.e., equally likely combinations) with N
values of X,. These N values are then combined

with N values of X3 to form N-triplets, and so on,
until N k-tuplets are formed. MLHS usually gives
better results than LHS. However, it fails
sometimes with periodic functions with a period
similar to the size of the equiprobable intervals.
There are no periodical functions in PSAT, so we
will generally use MLHS more than LHS.

Hypercube sampling methods only provide
probabilistic  bounds.  Moreover, hypercube
methods were designed to provide good uniformity
in one dimension. Thus, it does not produce perfect
random uniformity in multidimensional
configurations.

As shown in [4] and [5], and assuming PSAT
simulation algorithm is monotonic in each of the
inputs, we can easily compare MC sampling to
LHS. Considering forecast sample means,
variances and percentiles as estimators, we can
show that these estimator variances are lower for
LHS than for MC sampling. In [5], [6] and [7] we
see that this result is confirmed by the
experiments. LHS converges faster than MC for a
low number of inputs (up to 15), and in the worst
case LHS is not worse than MC.

2.2.3  Quasi-Monte Carlo methods

Quasi-Monte Carlo methods are based on low-
discrepancy sequences, which use optimal design
schemes for placing N points on a k-dimensional
hypercube. Unlike Monte Carlo Sampling and
Latin Hypercube, the quasi-random sampling
technique ensures that the sample sets show more
uniformity of properties in multi-dimensions.
There are several different low-discrepancy
sequences (Hammersley, Sobol, Halton, Faure,...),
well-described in the literature, that can be used
for quasi-Monte Carlo simulation. Here we choose
to use Hammersley and Halton sequences.

Using a quasi-Monte Carlo simulation is much
more complicated than using Monte Carlo
methods. These difficulties come from the lack of
theoretical results that allow us to evaluate the
quasi-Monte Carlo method’s accuracy.

This accuracy depends mainly on the simulation
algorithm’s characteristics (such as it variations for
example) and the number of dimensions of the
problem. As a result, there are no general results
concerning the convergence rate estimation.
However, upper and lower bound rates of
convergence can be expressed; we will try to take

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 3



advantage of those bounds to get theoretical
information on the precision.

As shown in [8], a lower bound rate of
convergence can be derived using the Koksma-
Hlwaka inequality. This inequality expresses an
absolute bound on the accuracy of quasi-random
integration (in our case simulation is equivalent
to integration). This bound is proportional to the
discrepancy of the sequence used (in our case the
Hammersley  sequence). Knowing the
Hammersley sequence discrepancy, we can
derive the lower bound of convergence:

O(Iog(NN) )

According to Morokoff in [9] the optimal rate of
convergence is faster than Monte Carlo
sampling. In this case the upper bound rate of

O(NY)

convergence is:

- .
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Figure 3: Error bounds comparison

Figure 3 illustrates the theoretical convergence
rate differences between the Monte Carlo and
guasi-Monte Carlo methods (based on our first
experimental results). As one notices, the upper
bound for quasi-Monte Carlo performs always
better than Monte Carlo. On the other hand, the

lower bound seems wide and only performs better
for a few uncertain inputs and a large number of
points.

As illustrated by the diagram above, using quasi-
Monte Carlo method is tricky — it is a priori
difficult to know whether or not it is worth using it
compared to LHS. However, as expressed in [7],
[8], [10] and [11], it is often worth using the quasi-
Monte Carlo for low numbers of uncertain inputs.

2.3 Sampling Method Comparison

2.3.1 Convergence comparison

Our first purpose is to make sure all different
sampling methods implemented in PSAT lead to
the same results. We first simulate different
vehicles, with different number of uncertain inputs
and sampling methods. Our purpose is to verify
that in some representative cases, our algorithm
converges to the right output PDF. All the
sampling methods were simulated for up to 1000
points, which is sufficient to get an output PDF
with constant means and variances.

We then compared the results obtained with the
four different sampling methods (all methods are
independent from one to the other). If the four
methods converge around the same value, there are
great chances that this value is the right one.

Figure 4 shows the result from an uncertain input
sampling (i.e.: equivalent to the Monte Carlo
simulation of one input through the identity
function). It is a good indicator of the sampling
method efficiencies since the quality of the input
sampling makes most of the Monte Carlo
simulation efficiency. Moreover we can derive the
input theoretical mean and variance, and then
derive the exact convergence rate of each sampling
method.
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Figure 4: Mean and variance of a sampled Gaussian input PDF, for different sampling method and number of points

All the methods converge to the theoretical value
(straight black line). On the second diagram, we
can see that for a large number of points,
approximately over 600, results from all the
methods are bounded in the interval: theoretical
value +/- 0.5 %. A 100-point sample gives at
least a five-percent accuracy on mean and
variance for each method.

It is clear that the Hammersley sequence gives the
best results, a five-percent error with 30 points,
less than 0.1% error for more than 600 points. The
second best method is MLHS.

Figure 5 illustrates the results of the PSAT fuel
consumption simulation, using Monte Carlo with 5
uncertain inputs. In this case, we derived
theoretically the 95% confidence interval on the
forecast mean (black dashed line).
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Figure 5: Mean and variance of a forecast PDF, for different sampling method and number of points
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In this case, it is not possible to figure out the
PDF mean and variance theoretical values.
However, we can notice that all methods
converge to about the same value.

Hammersley sequence results are not relevant.
This is due to the fact that when generating a
Hammersley sequence for N points, the N points
have a uniform repartition. However, any subset
of points does not. This aspect and the fact that
quasi-random sequences are not stochastic make
quasi-Monte Carlo hard to validate. However, we
can notice that it converges to the same value as
the others do.

Similar simulations and observations were
carried out for different wvehicles types and
different numbers of uncertain inputs. In every
case, the Monte Carlo simulation led to similar
observations as above. Based on these results, we
will assume that each sampling method
converges to the right output PDF, under the
following assumptions.

e Less than 35 uncertain inputs

e At least 5% accuracy with 1000 points

2.3.2 Sampling method convergence rate

Being sure that all the sampling methods converge
to the right output PDF, we now need to study the
convergence rates particular to each sampling
method.

Monte Carlo simulation is a stochastic process,
which means that running the algorithm multiple
times with the exact same assumptions leads to
different results (because the point sequences
generated are different from one run to another).

As a result, we need to find the number of points
leading to an acceptable error interval around the
simulation results. To do so, we choose a vehicle
and define a set of uncertain inputs. We then run
multiple Monte Carlo simulations  without
modifying the predefined assumptions.

Figure 6 illustrates this method. In this example,
we simulated five times a hybrid vehicle with 6
uncertain inputs, using MLHS. The tags indicate
estimator variances for 50, 100, 200 and 1000
points.
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Figure 6: MLHS convergence rate study
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The process described above was carried out for
all the stochastic sampling methods (all the
methods except the Hammersley sampling).

We then derived the estimator’s variances in
function of the number of points and compared
the results obtained with the different sampling

methods. The sampling methods in which the
estimator’s variances go to zero the fastest are the
best. Figure 7 illustrates this comparison between
the different sampling methods. This result was
obtained simulating six uncertain inputs with a
hybrid vehicle.
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Figure 7: Sampling method convergence rate comparison

In the above example, MLHS converges the
fastest for the output mean. The sampling method
does not have a significant impact on the output
variance.

Based on these diagrams, we can derive the
number of points required for each sampling
method to reach a particular accuracy. To be
more specific, we define the expected precision
as an estimator variance, and determine the
number of points providing this variance for each
sampling method.

This method cannot be applied to quasi-Monte
Carlo simulation, because the point sequences
used are not stochastic. However, individual
simulations allow comparisons of non-stochastic
methods with conventional Monte Carlo
methods. According to the literature and our

experimental results, we can state that quasiMonte
Carlo simulations give the best results for a low
number of uncertain inputs [12].

2.4 Determining the sampling method

This validation study gave us a better
understanding of our algorithm behaviour. Table 1
summarizes how to select a pair of uncertain
inputs/number of samples, depending on the
number of uncertain inputs. The values given
below are based on the experimentations run
during the validation process. Some additional
simulations need to be run in order to get a more
accurate understanding of the algorithm’s
behaviour. The impact of aspects such as the type
of vehicle simulated, the cycle considered, or the
correlations structure should also be considered.
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Table 1: Monte Carlo simulation assumptions to be used for different number of inputs

Number of Sampling method Number of Correlation
uncertain inputs n points method

n<12 Hammersley 100 Cholesky

12<=n<=25 MLHS (or LHS) 150 Cholesky
n>25 Monte Carlo Sampling 200 Copula

3 Simulation Assumptions

The vehicle simulated is a midsize car Plug-in
Hybrid Electric Vehicle with a battery sized to
follow the Urban Dynamometer Driving
Schedule (UDDS) drive cycle for 10 miles in
electric mode. The configuration considered is
an input split, similar to the one used by Ford and
Toyota. The engine power is sized to sustain a
6% grade at 65 mph (~100 km/h) without any
support  from the battery. The main
characteristics are defined in Table 2.

Table 2: Main Vehicle Characteristics

Glider mass (kg) 990
Frontal area (m2) 2.2
Coefficient of drag 0.29
Wheel radius (m) 0.317
Tire rolling resistance 0.008

For each set of assumptions considered, a
specific vehicle is defined to meet the vehicle
technical specifications (performance,
gradeability...).

The control strategy used in the simulation is
based on a blended approach, where the engine is
started based on a power threshold dependent
upon the battery state of charge (SOC). The
engine is then used close to its best efficiency
curve. As a consequence, the battery is recharged
and the charge depleting range increased.

The objective of the following chapters is to
evaluate the benefits of using Monte Carlo
approach compared to the initial method based
on using only three points. In the case of the

triangular distribution based on three points, a
vehicle was defined for each case, with the low
case being composed of all the low case
assumptions, the middle case of all the middle
assumptions and the high case of all the high
assumptions. Using that approach, one expects to
have a larger uncertainty range.

The output from Monte Carlo will be first
discussed and then compared with the three points
approach.

Twelve inputs were considered in the Monte Carlo
simulation to assess the uncertainty of the vehicle
fuel efficiency:
m Glider (body & chassis) mass
Frontal area
Coefficient drag
Rolling resistance
Electric motor controller #1 power density
Electric motor #1 power density
Electric motor #1 efficiency
Electric motor controller #2 power density
Electric motor #2 power density
Electric motor #2 efficiency
Engine efficiency
Electrical power

The cost estimation of the vehicle powertain was
also based on several inputs, including component
powers (engine, electric machine, battery...),
energy, glider mass...

Due to the large number of uncertain inputs, the
MHLS was used. One thousand points were
simulated to ensure proper convergence. Figure 8
shows the overall process.
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Figure 9 illustrates the fuel economy and
electrical consumption forecasts. The center line
represents the mode of the output PDF, which
represents the most likely value to occur
considering the uncertainty of the inputs. The
lines at both ends represent the 10% and 90%
distribution percentiles. These 2 lines define an
80% confidence interval on the result (i.e. there is
80 % probability for the output result to occur in
this interval).

The output PDF obtained here are multi-mode.
This is due to the fact that for a PHEV the fuel
economy and electrical consumption are non-
monotonic over the uncertain inputs. Each local
mode represents the most likely value to occur,
for a given number of internal combustion engine
(ICE) starts. This PDF provides additional

Histogram of the MSRP Cost probability density function sample

information on the wvehicle’s general behavior.
However, it requires more points to be simulated
to get the expected accuracy for a given number
of ICE starts. Moreover, given this multi mode
shape it is very hard to get a PDF estimation of
the result.

Figure 10 illustrates the cost forecast. Contrary to
the forecast considered above, the cost forecast is
single mode, which makes its interpretation
easier.

Based on this single mode forecast we can derive
a Kernel estimation of the cost PDF. Figure 11
illustrates the cost PDF estimation using Kernel
estimation. This estimation provides a full and
accurate description of the output PDF.
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5 Comparison between Monte
Carlo and Three Points
Approach

Figure 12 compares the fuel economy and
electrical consumption obtained from the Monte
Carlo analysis with the three values (all low, all
medium, all high together).

As expected the range between the min and the
max values is smaller using Monte Carlo. While
the 3 points study fuel economy ranges from 53 to
61 mpg with a mode of 57 mpg, Monte Carlo
provides a mode of 55 mpg within 54 and 57.5
mpg with an 80% confidence interval.

Similar conclusions can be drawn from the
electrical consumption where a smaller range is
achieved. The 3 points approach provides extreme
cases
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Figure 12: Comparison Between Three Points and Monte Carlo for Fuel and Electrical Consumptions

6 Conclusion

By allowing the introduction of uncertainty in our
algorithm inputs, the Monte Carlo method
increases the amount of information useful to
describe a vehicle’s possible behaviors. The major
improvement concerns the introduction of the risk
notion associated with each result. Instead of
providing a single forecast value, Monte Carlo
simulation provides the probability of occurrences
associated with every possible output value. As a
result, forecasts are more fully and accurately

described and confidence intervals can be derived
for each output.

A Monte Carlo library containing all the essential
features required to carry out accurate studies of
the uncertainty propagation has been implemented
into PSAT and validated.

Different sampling methods were compared for
several powertrain configurations. For each
option, the most appropriate number of samples
was defined.
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The results from Monte Carlo based on a midsize
PHEV were defined, providing a mode for both
fuel economy and cost within a certain confidence
interval. The approach was then compared with
the existing 3 points option. Results demonstrated
that Monte Carlo provided a narrower range.

However, increasing the amount of information
available on the results has a computational cost.
The experiments carried out so far led us to a first
evaluation of the number of points required to
simulate. This number of points varies from 100
to 200 points, depending on the number of
uncertain inputs considered. While computational
time varies from each configuration, the average
time required to simulate a PHEV on all these
points is 150 minutes.

To conclude, Monte Carlo analysis provides
useful insight for the uncertainty of specific
technologies. Due to the requirements for the
computations, this method is currently only
applicable to studies with limited number of
vehicles or powertrain configurations.
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APPENDIX — Monte Carlo Main Assumptions

DISTRIBUTION

Triangular Gaussian
Parameter Unit Min Max Mode Mean Variance
Glider Mass Kg 886 995 940.5
Motor Controller #1 | W/kg 4900 12600 6000
Power Density
Electric Motor #1 | W/kg 1085 1300 1255
Power Density
Motor Controller #2 | W/kg 4900 12600 6000
Power Density
Electric Motor #2 | Wikg 1085 1300 1255
Power Density
Frontal Area m” 2.222 0.0172
Coefficient Drag 0.24 0.31 0.27
Rolling Resistance 0.0072 0.01 0.0078
IC Engine Efficiency % 38 0.39
Electric  Drive #1 | % 95.5 0.39
Efficiency
Electric  Drive #2 | % 95.5 0.39
Efficiency
Electrical Accessory | W 210 7.803
Power
Wheel Radius : 0.317 m

Total Battery Energy : 8 kwWh
Battery Voltage : 194.4 V
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