
EVS24
Stavanger, Norway, May 13 - 16, 2009

Analysis of the Impact of Plug-In Hybrid Electric Vehicles on
the Residential Distribution Grids by using Quadratic and

Dynamic Programming

Kristien Clement, Edwin Haesen, Johan Driesen
Katholieke Universiteit Leuven, Kasteelpark Arenberg 10 Box 2445, 3001 Leuven, Belgium,

Kristien.Clement@esat.kuleuven.be

Abstract

The charging of batteries of plug-in hybrid electric vehicles at home at standard outlets has an impact
on the distribution grid which may require serious investments in grid expansion. The coordination of
the charging gives an improvement of the grid exploitation in terms of reduced power losses and voltage
deviations with respect to uncoordinated charging. The vehicles must be dispatchable to achieve the most
efficient solution. As the exact forecasting of household loads is not possible, stochastic programming is
introduced. Two main techniques are analyzed: quadratic and dynamic programming. Both techniques
are compared in results and storage requirements. The charging can be coordinated directly or indirectly
by the grid utility or an aggregator who will sell the aggregated demand of PHEVs at the utility. PHEVs
can also discharge and so inject energy in the grid to restrict voltage drops. The amount of energy that is
injected in the grid depends on the price tariffs, the charging and discharging efficiencies and the battery
energy content. A day and night tariff are applied. The charging and discharging of vehicles can respond
on real-time pricing or on a price-schedule as well. Voltage control is the first step in the utilization of
distributed resources like PHEVs for ancillary services.
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1 Introduction
Hybrid electric vehicles (HEVs), battery electric
vehicles (BEVs) and plug-in hybrid electric
vehicles (PHEVs) are becoming more popular.
A PHEV is defined by [1] as any hybrid electric
vehicle which contains at least 1) a battery stor-
age system of 4 kWh or more used to power the
motion of the vehicle, 2) a means of recharging
that battery system from an external source of
electricity and 3) an ability to drive at least
10 miles (16 km) in all electric mode consuming
no gasoline. PHEVs may have a larger battery
and a more powerful motor compared to a HEV,
but their range is still very limited [2]. As such,
PHEVs offer valuable fuel flexibility [3]. Also
combustion engines are less efficient (15-30%)
compared to electric motors [1].

PHEVs are charged by on-board electricity gen-
eration or plugging into electric outlets, so they
have a connection to the grid. There are two
main places where the batteries of PHEVs can be
recharged: either on a car park or at home. The
focus here lies on the latter. The electrical con-
sumption for charging PHEVs may rise up to 5%
of the total electrical consumption in Belgium by
2030 [4]. For a PHEV with a range of 60 miles
(100 km), this amount can increase up to 8%.
From the distribution system operator (DSO)
point of view in a performance based regulation,
there are strong incentives to minimize the power
losses during charging and to avoid transformer
and feeder overload. These incentives promote
coordinated charging. Not only power losses, but
also power quality (e.g. voltage dips, unbalance,
harmonics, etc . . . ) is essential to the DSO as
to grid customers as well. Overnight charging
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can also increase the loading of base-load power
plants and smoothen their daily cycle or avoid ad-
ditional generator start-ups which would enhance
the general efficiency [5]. From the PHEV owner
point of view, the batteries of the PHEV have to
be charged overnight so the driver can drive off
in the morning with a fully-charged battery.
In [6], the uncoordinated and coordinated charg-
ing of the batteries of PHEVs are discussed.
For uncoordinated charging, the vehicles start to
charge immediately or after a fixed start delay.
This is not handled in this paper. For the coordi-
nated charging, the charge profile of the batteries
of PHEVs can be adopted. The charger can
determine the charger profile by electricity price,
frequency, power losses, voltage and owner
preferences [7]. This gives opportunities for in-
telligent or smart charging. The coordination of
the charging could be done remotely for shifting
the demand to periods of lower load consump-
tion and thus avoiding higher peaks in electric
consumption. The idea of coordinated charging
in this paper is to achieve optimal charging and
grid utilization by minimizing the power losses
for both deterministic and stochastic data of the
household loads. For deterministic household
profiles, there is a perfect knowledge of the
future data. The stochastic data reflect an error
in the forecasting of the daily load profiles. Two
program techniques are presented to determine
the power losses for the deterministic and the
stochastic approach: quadratic programming
(QP) and dynamic programming (DP). Both
techniques are compared in results, storage
requirements and computational time.

PHEVs have another advantage. The connection
to the electric power grid, mainly for purpose of
charging the batteries for driving needs, offers
more opportunities. PHEVs also have enormous
energy storage capacity. The charge profile of
the vehicles can be extended to negative values,
meaning that the vehicle can also discharge and
thus inject electrical energy from the battery
back in the grid [7]. The energy requirements
of the electric power grid and the vehicle fleet
are complementary [8]. This is the vehicle
to-grid-concept (V2G). For the V2G concept,
a lot of vehicles must be connected to the
power grid. More than 90% of the vehicles are
always available for V2G [1],[8],[9] and must
be connected to the grid when idled. Incentives
could be given to stay plugged in.

The V2G-concept offers opportunities for both
the vehicle owners and the distribution and
transmission system operator (TSO). There is
almost no storage available in the power grid
nowadays so the demand and generation must
be perfectly matched and continuously managed
to absorb fluctuations [9]. The electrical storage
of PHEVs could provide grid services via V2G
concept and add a surplus value to the vehicle
owner [10], although, it is not clear if this would
be economically viable. Grid operators and
vehicle owners have complementary needs. The
PHEV-owner needs energy for driving at more
or less predictable times and the grid operator

is responsible for power balance at each time
instant.

2 Assumptions and modeling

2.1 Load scenarios
From an available set of residential load mea-
surements [11], two large groups of daily win-
ter and summer load profiles are selected. The
load profiles cover 24 hours and the instanta-
neous power is given on a 15 minute time base.

2.2 Specifications of PHEVs
Each of the PHEVs has a battery with a
maximum storage capacity of 11 kWh [5]. Only
80% of the capacity of the battery can be used
to optimize life expectancy. This gives an avail-
able capacity of 8.8 kWh. 10 kWh is required
from the grid, assuming an 88% energy conver-
sion efficiency from AC power absorbed from
the grid to DC power in the battery of the ve-
hicle [12]. The batteries can be charged and dis-
charged, meaning that the energy flow is bidirec-
tional. The charger has a maximum output power
of 4 kW for both directions. The charger of 4 kW
is chosen because the maximum power output of
a standard single phase 230 V outlet is 4.6 kW.
So this is the largest charger that can be used for
a standard outlet at home without reinforcing the
wiring. The maximum penetration degree is 30%
by 2030 for Belgium as predicted by the Tremove
model [13].

2.3 Charging periods
It is not realistic to assume that PHEVs could be
connected at any place where a standard outlet
is present. Therefore in this article, the batteries
of the vehicles are assumed to be connected at
home. Fig. 1 shows the percentage of all trips by
vehicle each hour on average. At that moment,
they are not available for connection. Based on
this figure, two important charging periods are
proposed. The first period is during the evening
and night. Most of the vehicles are at home
from 21h00 until 06h00 in the morning. Some
PHEVs are immediately plugged in on return
from work in order to be ready to use throughout
the evening. Thus the second period takes place
between 18h00 and 21h00. This period coincides
with the peak load during the evening. The num-
ber of vehicles that will be charged during this
period will probably be smaller. Other possible
periods are not considered in this paper because
the focus lies on a connection at home, in weaker
distribution grids, but the proposed methods are
also valid for other periods.

2.4 Grid topology
The radial network used for this analysis is the
IEEE 34 node test feeder [15] shown in Fig 2.
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Figure 1: Percentage of vehicle trips at each hour on
average [14].

This network is downscaled from 24.9 kV to
230 V so this grid topology represents a resi-
dential radial network. The line impedances are
adapted to achieve tolerable voltage deviations
and power losses. Each node is a connection with
a residential load and some of the connections
which are randomly chosen, will have PHEVs
charging or discharging.

GRID

Figure 2: IEEE 34 node test feeder [15].

3 Quadratic programming
The coordinated charging handles a unidirec-
tional energy flow from the grid to the batter-
ies. Discharging is not implemented. The idea
of coordinated charging is to optimize the grid
utilization and to minimize the power losses.
This optimization problem can be tackled by
quadratic programming. This technique opti-
mizes a quadratic function of several variables,
in this case the power of the PHEV chargers at
all time steps, which are subjected to linear con-
straints. The QP technique is applied to handle
deterministic and stochastic household load pro-
files.

3.1 Optimization problem
By minimizing the power losses, the owners
of PHEVs will no longer be able to control the
charging profile. The only degree of freedom
left for the owners is to indicate the point in

time when the batteries must be fully charged.
For the sake of convenience, the end of the
indicated charging period is taken as the point in
time when the vehicles must be fully charged.
The charging power varies between zero and
maximum and is no longer constant.

3.2 Methodology
The objective is to minimize the power losses
which are treated as a reformulation of the non-
linear power flow equations. This non-linear
minimization problem can be tackled as a se-
quential quadratic optimization [16]. The charg-
ing power obtained by the quadratic program-
ming can not be larger than the maximum power
of the charger Pmax. The batteries must be fully
charged at the end of cycle, so the energy which
flows to the batteries must equal the capacity of
the batteries Cmax. xn is zero if there is no
PHEV placed and is one if there is a PHEV at
node n. The goal is to minimize power losses
while taking into account these constraints. The
quadratic programming uses equations (1) and
(2).

min

tmax∑

t=1

lines∑

l=1

Rl · I2
l,t (1)

s.t.

{ ∀t,∀n ε {nodes} : 0 ≤ Pn,t ≤ Pmax

∀n ε {nodes} :
∑tmax

t=1 Pn,t · 4t · xn = Cmax

xnε {0, 1}
(2)

3.3 Deterministic programming
Fig. 3 represents the outline of the algorithm
of coordinated charging. The vehicles are ran-
domly placed after the selection of a daily load
profile and the number of PHEVs. A flat vol-
tage profile is assumed and the node voltages
are computed with the backward-forward sweep
method assuming that there are no PHEVs. The
backward and forward sweep are formulated as
a matrix multiplication. The quadratic optimiza-
tion is performed in order to determine the op-
timal charging profile. Next, the node voltages
are computed again. This process is repeated
until the power loss based stopping criterion is
reached.
Table 1 and 2 represent respectively the power
losses and the maximum voltage deviations for
the coordinated charging during the different
charging periods. The voltage deviations are
in accordance with EN50160 standard and the
maximum voltage deviations for a penetration
degree of 30% is well below 10%. The voltage
deviation during the evening peak is larger than
the deviation caused by the extra load of charg-
ing vehicles for a penetration degree of 10%.
The vehicles will not be charged at full power
rate during this peak to obtain the objective to
minimize the power losses. For a vehicle pene-
tration of 20% or more, the number of vehicles is
increased, and the charging is more distributed.
This increases the voltage deviation to a level
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Figure 3: Algorithm of coordinated charging.

which is higher compared to the evening peak
level.

Table 1: Ratio of power losses to total energy [%] for
the 4 kW charger in case of coordinated charging.

Charging Season 0% 10% 20% 30%
period

21h00-06h00 Summer 1.1 1.3 1.7 1.9
Winter 1.4 1.5 1.8 2.1

18h00-21h00 Summer 1.5 2.3 3.7 4.7
Winter 2.4 3.3 4.7 5.8

Table 2: Maximum voltage deviation across the entire
grid [%] for the 4 kW charger in case of coordinated
charging.

Charging Season 0% 10% 20% 30%
period

21h00-06h00 Summer 3.1 3.1 3.3 3.7
Winter 4.2 4.2 4.2 4.3

18h00-21h00 Summer 3.0 4.1 5.8 7.2
Winter 4.8 6.0 7.8 9.1

3.4 Stochastic programming
The results of the previous paragraph are based
on deterministic or historical data for the daily
load profiles. So the essential input parameters
are fixed. For this approach, a sufficient number
of measurement data must be available. Most
of the time, however, these measurements are
not adequate to do a perfect forecasting of the
data. A stochastic approach in which an error
in the forecasting of the daily load profiles is
considered, is therefore more realistic.

The daily load profiles are the essential input pa-
rameters. The uncertainties of these parameters
can be described in terms of probability density
functions. In that way, the fixed input parameters
are converted into random input variables with
normal distributions assumed at each node. N in-
dependent samples of the random input variable
ωi, the daily load profile, are selected.
Equation (3) gives the estimation for the stochas-
tic optimum v̂n. The function g

(
Pn,t, ω

i
)

gives
the power losses and Pn,t is the power rate of the
charger for all the PHEVs and time steps. f̂N is
a sample-average approximation to the objective
of the stochastic programming problem.

v̂n = min

{
f̂N (Pn,t) ≡ 1

N

N∑

i=1

g
(
Pn,t, ω

i
)
}

(3)

The mean value of the power losses, E (v̂n),
is a lower bound for the real optimal value of
the stochastic programming problem, v∗ [17], as
shown in (4).

E (v̂n) ≤ v∗ (4)

E (v̂n) can be estimated by generating M inde-
pendent samples ωi,j of the random input vari-
able each of size N . M optimization runs are
performed based on (3). v̂j

n is the mean optimal
value of the problem for each of the M samples
as shown in (5). The optimal values of the M
samples constitute a normal distribution.

v̂j
n = min

{
f̂N

j
(Pn,t) ≡ 1

N

N∑

i=1

g
(
Pn,t, ω

i,j
)
}

, j = 1...M

(5)

From equation (6), LN,M is an unbiased estima-
tor of E (v̂n).

LN,M =
1

M

M∑

j=1

v̂j
N (6)

Simulations indicate that in this type of problem,
the lower bound converges to the real optimal
value when N is sufficiently high. A forecasting
model for the daily load profile for the next 24
hours is required. The daily load profiles of the
available set are varied by a normal distribution
function. The standard deviation σ is determined
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in such a way that 99.7 % of the samples vary at
maximum 5 or 25 % of the average µ.
For 2000 independent samples of the daily load
profile, one optimal charging profile is calcu-
lated. This optimal charging profile is used to
determine the power losses for the 2000 indi-
vidual load profiles. This is the stochastic op-
timum. For each of these 2000 load profiles,
the optimal charging profile and the correspond-
ing power losses are also computed, which is the
deterministic optimum.
The power losses of the deterministic optimum
are subtracted from the power losses of the
stochastic optimum and divided by the deter-
ministic optimum, defined as ∆P . This is shown
for a variation of the household loads of 5 and
25% in Fig. 4 and 5 respectively. The value
of this difference is always positive. The fore-
casting of the daily load profiles introduces an
efficiency loss because the charge profiles of the
PHEVs are not optimal for this specific daily load
profile. If the standard deviation of the normal
distribution and thus the variation of the house-
hold load is reduced, the 2000 charge profiles of
the deterministic optimum will converge to the
optimal charge profile. The efficiency loss will
also reduce indicating that the power losses of the
differences will go down by a factor 25 as shown
in Fig. 4 compared to 5.
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Fig. 4: Histogram of the efficiency loss of an arbitrary
day during winter for a variation of 5%.

In general, the difference between the power
losses of the stochastic and the deterministic op-
timum is rather small. It is clear that the error
in forecasting does not have a large impact on
the power losses. The daily household load pro-
files during the winter season are showing the
same trend each day during winter season result-
ing in a optimal charge profile which resembles
a deterministic charge profile of a specific day as
shown in Fig. 6 for the last node of the test grid.
Both charge profiles have the same trend. There-
fore, the contrast in terms of power losses be-
tween the deterministic and stochastic optimum
is not large. However, the difference between the
uncoordinated and coordinated charging is much
larger because the charge profiles are more diffe-
rent. The uncoordinated charging has a constant
charge profile for a specific amount of time.
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Fig. 5: Histogram of the the efficiency loss of an arbi-
trary day during winter for a variation of 25%.
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Figure 6: The deterministic optimum and optimal
charger profile for node 33.

In Fig. 4 and 5, a specific household load profile
is assumed which is varied by a normal distri-
bution function. In Fig. 7, the load profiles are
randomly selected out of a database of household
load profiles. This database contains profiles that
differ more each day and are more peaked which
increases the efficiency losses.
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Fig. 7: Histogram of the efficiency loss of an arbitrary
day during winter for other household profiles.
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4 Dynamic programming
The optimal coordination of charging PHEVs
can also be tackled by the dynamic program-
ming technique (DP). The QP and DP techniques
are compared with respect to results, storage re-
quirements and computational time. The DP
technique decomposes the original optimization
problem into a sequence of subproblems which
are solved backward over each stage. A classi-
cal implementation of the DP technique is the
shortest path problem. For the application of
this paper, the model is represented as a series
of plug-in hybrid electric vehicles.

4.1 Optimization
There are Q vehicles with charging batteries and
the maximum value of Q corresponds to a pene-
tration degree of 30%. The battery content of
these Q vehicles at each stage are the Q state
variables St,i. The number of stages T is the
number of hours of the charging period multi-
plied by four because the household loads are
available on a 15 minute time base.
The backward recursive equations for the con-
ventional dynamic programming technique are
given in (7) and (8).

ft = min [Lt (St, Pt) + ft+1 (St+1)] t = 1, 2, ...., T (7)

s.t.{ St,i = St+1,i − Pt,i ·∆t ∀i = 1, ..., Q (8)

The function ft represents the total optimal
power losses from period t to the last period T .
The vector St is a Q-dimensional vector. Each
storage level can take R discrete values at time t.
Lt are the power losses during period t and St,i

is the battery content of the ith vehicle at time
stage t. The power of the chargers is represented
by Pt and is also a Q-dimensional vector. So the
first component of this vector gives the power of
the charger for the first PHEV. The output of the
charger is not continuous, but has a step size of
400 W. This is relatively large, but smaller step
sizes would lead to too much computational time
which is proportional to RT [18]. The constraints
of the problem remain the same and are shown in
(9).

0 ≤ St,i ≤ Cmax

0 ≤ Pt,i ≤ Pmax

ST,i = Cmax ∀i = 1, ..., Q
(9)

The power loss objective function is to minimize.
The storage vector St is a Q-dimensional vector
and thus ”the curse of dimensionality” [19] arises
which is handled by modifying the original dy-
namic programming technique.
The dynamic programming technique successive
approximation (DPSA) decomposes the multi-
dimensional problem in a sequence of one-
dimensional problems which are much easier to

handle [20]. The optimizations occur one vari-
able at a time while holding the other variables at
a constant value. All the variables are evaluated
that way. This technique converges to the global
optimum for convex problems. This method will
be used for the deterministic and stochastic pro-
gramming.

4.2 Deterministic programming
A daily load profile of the selected season is cho-
sen and the vehicles are placed randomly. The
DPSA technique needs initial values of the state
variables to start the iteration. These values are
generated by calculating the optimal charge tra-
jectory for each PHEV separately without con-
sidering the other PHEVs. These optimal trajec-
tories are put together into one temporary opti-
mal trajectory and thus one Q-dimensional state
vector. All the components of the state vector are
held constant except the first one. The optimal
charge trajectory for the first component of the
state variable is defined. The new value is as-
cribed to the first component and the procedure
continues until the last component of the state
vector is optimized. This procedure is repeated
until convergence is obtained. The problem is
switched from a multidimensional problem to a
sequence of one-dimensional problems. The al-
gorithm of dynamic programming successive ap-
proximation is represented in Fig. 8.

4.3 Stochastic programming
The uncertainties of the household loads must
also be implemented in the DP technique. 2000
stochastic household load profiles are generated
and the mean power losses of these loads are
used to determine the total power losses ft as pre-
sented in (10).

ft = min [E (Lt (St, Pt)) + ft+1 (St+1)] t = 1, 2, ...., T
(10)

The same stochastic load profiles as produced
in the stochastic programming of the QP tech-
nique are applied to make the comparison more
clear. One optimal charge profile is generated
for these 2000 stochastic household loads with
the DPSA technique. The power losses are cal-
culated separately for the 2000 household load
profiles and the single optimal charge profile.
This is the stochastic optimum. For the deter-
ministic optimum, the optimal charge profile and
power losses are determined for each of the 2000
stochastic household load profiles, giving 2000
optimal charge profiles. The power losses of the
deterministic optimum are subtracted from the
power losses of the stochastic optimum and di-
vided by the deterministic optimum for a varia-
tion of the household loads of 5 and 25%.

4.4 Results
In general, the difference between the results of
the DP and QP techniques is negligible although
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Figure 8: Algorithm of DPSA charging.

the QP technique gives more accurate results be-
cause the values of the charge profile are continu-
ous, in contrast to the DP technique where a step
size of 400 W is introduced for the power of the
charger, giving a discrete charge profile. In Fig.
9, the charge profiles for the QP and DP tech-
nique are compared. Reducing the step to an in-
finitesimal value would give the same result as
the QP technique. This step size is taken rather
large to reduce the number of levels and with
that the computational time and storage require-
ments. The storage requirements are heavier for
the DP technique compared to the QP technique
because every possible path over each stage must
be stored. Since this leads to very large matrices
and increased computational time, the DP tech-
nique is slower.

5 Discharging of PHEVs

The charging of PHEVs increases the total load
of the distribution grid considerably. These ex-
tra loads cause a rise of power losses and voltage
deviations as shown in [6]. Therefore, the vol-
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Figure 9: The charge profile for node 1 for the QP and
the DP program technique.

tage deviations must be controlled by the electric
charger to meet the EN50160 standard. The vol-
tage support should be embedded in the charger.
This could even be made obligatory because the
grid reliability must be assured. In the test grid of
this paper, no voltage deviations occur in the case
of no PHEVs. Therefore, this support is not con-
sidered as an ancillary service, but is a first step
in the direction of supporting the grid by PHEVs.
PHEVs are not technical and economically suit-
able for all kind of ancillary services. These ve-
hicles respond quickly, but they have a high cost
per kWh and the battery capacity is rather lim-
ited, so the duration of the services must be low.
The ancillary services are not handled in this pa-
per but are studied in [9] and [21].

5.1 Optimization problem
The discharging and charging of PHEVs is op-
timized in this section. The test grid and the
charging period stay the same. The power of the
charger varies and can also be negative meaning
that the vehicle is discharging and thus inject-
ing energy into the grid. The objective function
is now linear so a linear programming technique
(LP) can be used.

5.2 Methodology
The objective function is a cost function which
must be minimized as shown in (11). This func-
tion is very simple and has only two constants:
one constant represents the tariff during the day
and a one constant is the tariff overnight. The
ratio of the day constant to the night constant is
estimated about 1.6 [22]. A night tariff starts be-
tween 21h00 and 23h00 and ends between 06h00
and 08h00. In this paper, the night tariff starts at
22h00 and ends at 07h00.
The constraints of (2) are kept and new con-
straints are added as shown in (12). The vehi-
cles are now also able to discharge so the charger
output varies between -4000 and 4000 W. The
discharge efficiency is also taken into account,
which is 88%. The capacity of the batteries, Cn,t,
must be between zero and Cmax for each time
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step and equals Cmax at the end of the charging
period. The voltage must satisfy the EN50160
standard so the node voltages Vn,t at each time
step must be higher than 90% of 230 V, which is
Vlimit. The goal is to minimize this cost function
while fulfilling the constraints.

min
nodes∑

n=1

(

tnight∑

t=1

Cday · Pn,t +

tmax∑

tnight+1

Cnight · Pn,t) (11)

s.t.

{ ∀t,∀n ε {nodes} : −Pmax ≤ Pn,t ≤ Pmax

∀t,∀n ε {nodes} : 0 ≤ Cn,t ≤ Cmax

∀t,∀n ε {nodes} : Vlimit ≤ Vn,t

∀n ε {nodes} :
∑tmax

t=1 Pn,t · 4t · xn = Cmax

xnε {0, 1}

(12)

5.3 Results
The results are represented for the worst day of
the winter season, this is the day with the highest
peak. The new constraints are added separately
to distinguish their impacts. For Fig. 10, the ve-
hicles are not able to discharge and no voltage
constraint is implemented. The objective func-
tion is simplified and a single tariff is used, mak-
ing no difference between night and day. The
charge profiles for a node at the end of the IEEE
test grid are showed in Fig. 10 for three different
penetration degrees. Because the objective func-
tion is no longer minimizing power losses and a
single tariff is assumed, the vehicles are charging
randomly during this period.
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Figure 10: Charge profile for different penetration de-
grees and no voltage constraint.

Fig. 11 shows the voltage profiles for the same
node. Because no voltage constraint is imple-
mented, the voltage goes well below the voltage
limit. Therefore, a voltage constraint is imple-
mented in the linear programming. The charge
profile is show in Fig. 12 also for a node at the
end of the test grid. The vehicles will not be
charging on the moment the voltage is already
low due to the household loads. The cost func-
tion stays the same so the vehicles are randomly
charging between 21h00 and 06h00, satisfying
an extra constraint: the voltage constraint.
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Figure 11: Voltage profile for different penetration de-
grees and no voltage constraint.
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Figure 12: Charge profile for different penetration de-
grees with voltage constraint.

Fig. 13 shows the voltage profiles if the vol-
tage constraint is implemented. The voltage stays
well above the limit voltage
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Figure 13: Voltage profile for different penetration de-
grees with voltage constraint.

The discharging of the vehicles is implemented
in the program and the objective function has two
tariffs. However, the vehicles are not discharg-
ing as shown in Fig. 14. The charging period
starts at 21h00 and thus there is only one hour
left to discharge at peak tariff. This is not hap-
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pening because the batteries of the PHEVs are
assumed to be empty at the start of the charging
period and charging and discharging at the same
cost price will be uneconomical because of the
charge and discharge efficiencies. Because there
is no other objective, and there are only two cost
prices, the vehicles are further randomly charged
at night tariff. There is no incentive to reduce the
power losses.
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Figure 14: Charge profile for different penetration de-
grees.

In the previous argumentation, it is assumed that
the batteries are empty at the beginning of the
charging period. For the next model, there is
energy left in the batteries at the start of the
charging period. This energy is stochastic deter-
mined by a Gauss curve with an avarage of zero
and a σ of 1000 W. Fig. 15 shows the charge pro-
files of a node at the end of the test grid for diffe-
rent penetration degrees. The night tariff starts at
22h00, therefore the vehicles are discharging be-
tween 21h00 and 22h00 depending on the energy
left in the battery. The batteries still must be fully
charged at the end of the period.
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Figure 15: Charge profile for battery capacity diffe-
rent from zero.

The impact of the energy left in the battery at the
beginning of the charging period is shown in Fig.
16. The more energy left in the battery, the more
the PHEVs are discharging between 21h00 and
22h00, when the peak tariff is valid. The amount
of discharging is directly related to the energy left

in the battery. This is shown for a penetration
degree of 50%.
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Figure 16: Charge profile for different battery capac-
ity degrees.

6 Conclusion
In general, coordinated charging of plug-in hy-
brid electric vehicles can lower power losses and
voltage deviations by flattening out peak power.
At the first stage, historical data is used so there is
a perfect knowledge of the load profiles. In a sec-
ond stage, stochastic programming is introduced
to represent an error in the forecasting which in-
creases the power losses. This efficiency loss is
rather small if the trend of the household load
profiles is known, so charging during the peak
load of the evening can be avoided. These results
are obtained by the quadratic programming tech-
nique. The dynamic programming technique is
also implemented but does not improve the com-
putational time nor the achieved accuracy. The
applied techniques and methods can be extended
to other objective functions.
A voltage support could be implemented in the
electric chargers to avoid too large voltage drops
in the grid. If discharging is applied, it is only
economically beneficial at the moment the peak
tariff is valid. The vehicles will only discharge
if some energy is left in the battery. The results
are of course depending on the depicted charging
period.
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