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Abstract 
This paper presents experimental approach for a longitudinal wheel slip control scheme of the in-wheel 

motorized driving systems applied in the military series hybrid electric vehicles. Research on slip 

mechanism between a tire and ground needs to be modeled and simulated, to secure better vehicle driving 

performance in the field. Especially the effect of diverse gravels has to be precisely defined. A test rig is 

designed to test driving performances and to understand tire slip mechanism. The modeling and simulation 

results presented will be compared with experimental results by the test rig mimicking rectangular 

obstacles with different height. Based on modified modeling of tire slip mechanism, a wheel slip control to 

improve vehicle driving performance in the rough terrain with rectangular obstacles will be proposed. 

Keywords: list 3-5 keywords from the provided keyword list in 9,5pt italic, separated by commas 

1 Introduction 
In recent years, great attention has been gradually 
shown to the development of HEV(Hybrid 
Electric Vehicle), EV(Electric Vehicle), or 
FCEV(Fuel-Cell Electric Vehicle) to reduce 
energy consumption with low carbon, as oil price 
has been steeply increased and environment 
pollution has been socially issued. As a part of 
these trends, ADD(Agency for Defense 
Development) recently developed  the Dog-
Horse robot(Fig.1) equipped a series hybrid 
electric power-train system[1]. The robot can be 
driven by 6 in-wheel motors which are located 
inside tire rims.  
The in-wheel motorized driving system is 
generally applied in the military series hybrid 
electric vehicles. It does have the advantage of 
providing high qualified driving performance in 

rough terrain. The in-wheel motor transfers electric 
power from a battery to mechanical angular 
velocity and torque which finally drive tire and the 
robot. The major advantage of this system is that it 
provides high qualified driving performance in 
rough terrain. However, vehicle driving control for 
the in-wheel motorized driving system is relatively 
difficult because the vehicle is very prone to be 
dynamically unstable unless real-time responses 
about external complex disturbances are responded. 
Its unstable driving causes unnecessary energy 
losses. 
Therefore, research on wheel slip control to 
prevent avoidable slip and to maximize vehicle 
driving performance is clearly required. For an 
initial step of this research, slip mechanism and 
wheel slip control for the HEV in-wheel motor 
along even roads and rough terrain with diverse 
rectangular obstacles. 
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Figure9 : Tractive Friction Coefficient v.s Slip Ratio 

 
 

 
Figure10 : Test-bed for the Tire Characters 

    
At low oscillation with 5Hz, experimental result 
is shown in Fig.11 with simulation data of 
b୲ ൌ 1,500Nୱ/m   and K୲ ൌ 120,660N/m. The 
simulation data behaves similar to experimental 
result in Fig.11.  
     

 
Figure11 : Test Results for Tire Characteristics 

 

3.3 Discussion 
Basic parameters of dynamics model of tire and 
load drum were obtained by experiments. Fig.12 
shows proposed longitudinal slip control model. In 
Fig.12, s୰  is the reference of slip ratio and s is 
actual slip ratio in the system. Γ is electric flux. T୫

כ   
is the torque command of the field weakening 
controller and is calculated from rolling resistance 
and friction force models of (3) and (5). 

 Figure12 : Longitudinal Slip Control Model 

 
Field weakening control scheme and space vector 
PWM method for driving the in-wheel motor of 
the Dog-Horse robot are applied[10]. Therefore, 
the torque command(T୫

כ ) is converted into current 
commands by the field flux-torque-current table. 
The current commands drive in-wheel motor to 
generate desired torques. T୫  is the output torque 
from the in-wheel motor. The plant in Fig.12 
describes the mechanism where the longitudinal 
tire tractive force(F୲୶ ൌ rୣF୸ሺµ ൅ f୰ሻ ) is generated 
by slip ratio(s) and the coefficient of rolling 
resistance in the contact patch.  

4 CONCLUSION 
This paper suggested experimental approach of a 
longitudinal wheel slip control scheme for the in-
wheel motorized driving systems. Behavior of tire 
longitudinal slip mechanism was modeled and 
tested. Experimental results by the test rig 
mimicking rectangular obstacles with different 
height were compared to simulation results. Based 
on modified modeling of tire slip mechanism, a 
wheel slip control for vehicle driving performance 
in the rough terrain with rectangular obstacles was 
discussed. As future work, the control scheme will 
be simulated, tested, and applied in the motor 
inverter of the Dog-Horse robot. 
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