

Heuristic Design of Advanced Drives: Analysis of Trade-offs in Powertrain Electrification

E.J.Wilhelm, W.W. Schenler

Paul Scherrer Institut, Villigen PSI, CH-5232, Switzerland
erik.wilhelm@psi.ch

Abstract

Consumer demand for fuel efficient, low-emission vehicles is growing. This trend is motivated on one hand by the increasing fuel cost and on the other by government incentives and increased awareness. By hybridizing and electrifying powertrains, fuel use may be halved without a drastic reduction in drive quality or functionality. Manufacturers are introducing powertrain concepts that avoid asking drivers to compromise, other than with perhaps a slight increase in purchase price. Heuristic design methods are useful for quantifying trade-offs between key stakeholder criteria, particularly with new technologies.

Keywords: EV (electric vehicle), HEV (hybrid electric vehicle), fuel cell, powertrain, simulation

1 Introduction

Several factors are responsible for the trend towards lower emission vehicles. Besides increasing consumer environmental sensibility, fuel and vehicle purchase price play significant roles in personal mobility decisions. Figure 1 illustrates how the increasing price of diesel in France and Belgium reduces sales in countries where diesel vehicles are very popular.

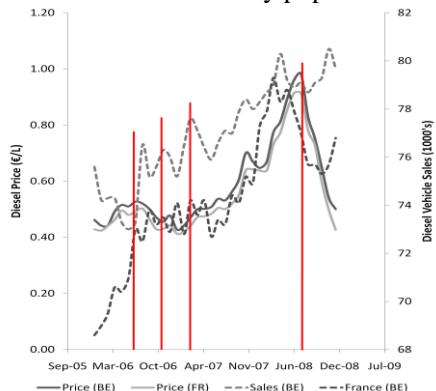


Figure 1: Diesel vehicle sales track fuel price

The ‘knee-jerk’ reaction to pump price manifests itself as a delay in buying new fossil-fuelled cars. Once price falls, however, sales return to normal levels. An interesting trend is observed in the United States, where restrictive emissions standards have limited diesel penetration: hybrid vehicle sales increase proportionally with fuel price. Figure 2 shows how more stringent emissions standards which will soon be introduced in Europe.

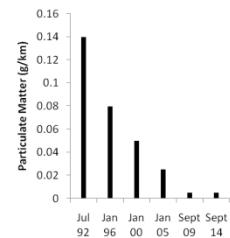
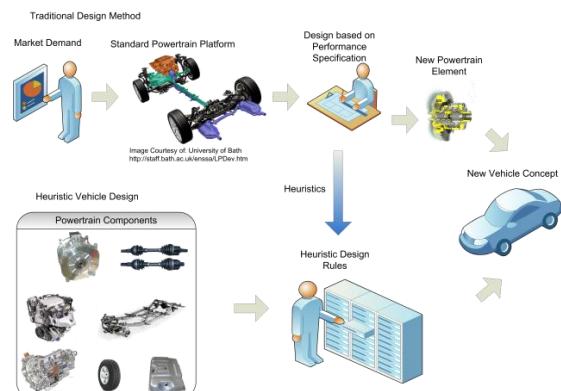


Figure 2: Tightening particulate exhaust standards


These regulations, as well as other legislative measures, will likely result in a similar push towards hybrid vehicles in Europe. The trade-offs associated with moving from internal combustion towards electrified powertrains will be examined in this paper.

1.1 Trade-offs

The trade-off which is most often weighed by consumers is that of purchase cost versus maintenance and fuel costs. Extensive maintenance data is not available for all-electric or fuel cell vehicles, however initial reports suggest that hybrid vehicles are marginally more expensive to maintain than non-hybrid variants of the same model [7]. After cost considerations, consumer preference diverges, with drivers weighing performance, utility, aesthetics, or features as most important. The challenge for manufacturers and policy makers is ensuring that environmental and social considerations are internalized when consumers choose between available options.

1.2 Heuristic Design Methods

Vehicle manufacturers prefer to adhere to incremental design approaches which keep research and development costs low while maximizing the re-use of reliable components in successive design generations, as shown in Figure 3. While the traditional ‘tried and true’ method is efficient when developing conventional powertrain designs, advanced hybrid and electric powertrains often may not be approached by following an evolutionary design path. In order to perform an unbiased analysis of effects of introducing various vehicle technologies, heuristic design methods are used to compose sets of vehicle designs according to ‘rules of thumb’. These heuristic design rules are based in part on historical architecture design methodologies [3], as well as first principles and physical laws. These methods are particularly useful when examining technology implementation in broad markets as opposed to attempting to extrapolate based on narrow case studies.

2 Design Set

The options and heuristics used in composing the vehicle designs in this set were tailored to ensure that an investigation into the trade-offs inherent in powertrain electrification could be effectively and fairly examined.

2.1 Design Options

A comprehensive table of design options which were used can be found in Appendix A. The options were chosen to reflect the state of the art of advanced powertrain technology in 2010. It is also possible to include options that are not currently available to perform ‘what-if’ analysis, with the advantage of having a technology boundary within which interpolations instead of extrapolations can be performed. The allowed hybrid architectures are shown in Figure 4. It is important for the following discussion to note that the Group A architectures may be simulated using the simplification that mechanical and electrical power splitting may be performed interchangeably (i.e. no motor speed or electrical transients are considered). This allows state of charge to be the only control variable for which a control optimization must be performed.

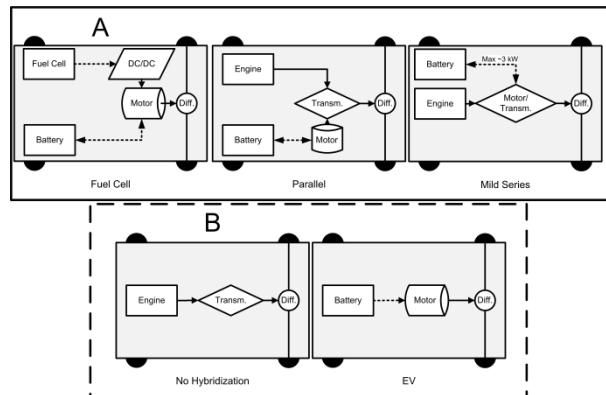


Figure 4: Permitted hybridization options

2.2 Heuristic Rules

The rules used in developing the design set can be found in Appendix B. They reduced the set of 104976 possible technology combinations to a manageable 1402 vehicle designs. Assumptions about advanced technology cost were based on Kromer’s work [1], and basic cost data from the Touring Club Suisse [8] and GM[6]. Life cycle data comes from the GREET model, developed by Argonne National Laboratories [4], and was adapted to the vehicle designs in this study based primarily on weight and materials. Wherever applicable, conservative assumptions have been made in favour of optimistic ones.

3 Analysis of Results

The distribution of the design set by hybridization ratio (motor power over total power at the wheel) is shown in Figure 5, and tends to light hybridization as specified by the heuristics.

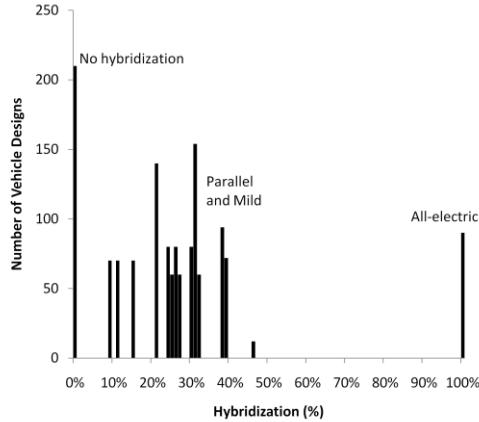


Figure 5: Design set electrification distribution

To objectively and accurately analyze the impact of changing electric powertrain technology, it is important to ensure that an optimal control policy is applied over a specific driving cycle. To achieve this end, the Bellman dynamic programming technique is applied, with the state of charge of the energy storage system as the target while minimizing energy use in the objective function. This technique has been extensively applied by Sundström for parallel and series hybrid vehicles [5]. The colour map in Figure 6 shows the optimal power split for a gasoline/electric hybrid over the EUDC driving cycle. The battery current, state of charge, and vehicle speed are also shown for reference.

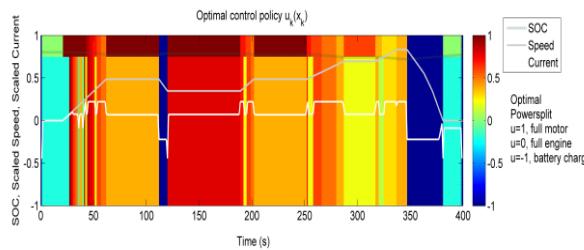


Figure 6: Optimal hybrid control for EUDC

Each of the Group A architectures was simulated over the full 11km NEDC driving cycle to determine its optimal control policy and hence minimum fuel consumption and emissions. This ensures fair comparison of the various technologies by ensuring that all influence parameters are considered, such as battery size impacting overall vehicle weight, for example.

The results are sensitive to controls optimization, to the extent that fuel consumption can vary up to 40% between un-optimized and optimized cycle runs.

The sensitivity of fuel consumption to vehicle weight is reduced through hybridization, as is shown by the relative slopes of the lines in Figure 7. This is a direct result of the energy recaptured during regenerative braking reducing inertial losses.

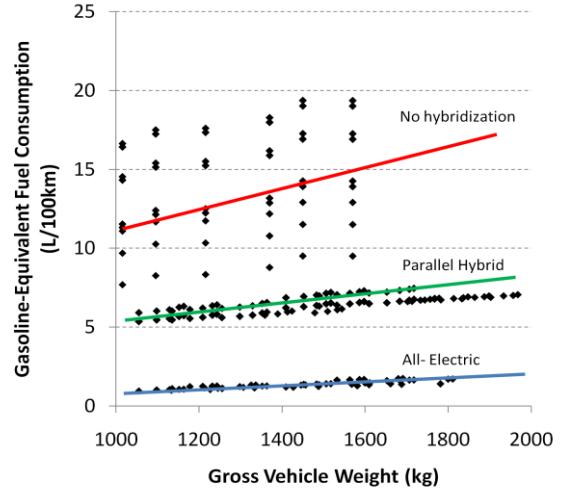


Figure 7: Hybrid sensitivity to weight reduction

It is also clear from Figure 7 that as the degree of hybridization increases, the sensitivity of the vehicles fuel consumption to weight decreases. Figure 8 illustrates the fuel consumption to performance trade-off, which is dominated by compact, parallel hybrids. The figure also shows that electric vehicles are severely underpowered for their weight in this design set.

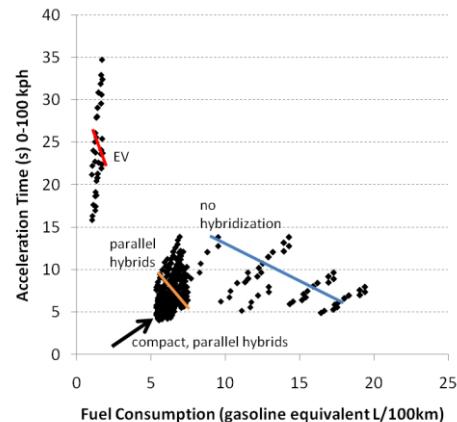


Figure 8: Consumption/performance trade-off

Top speed is directly proportional to vehicle power, and inversely proportional to aerodynamic

drag. The trend line in Figure 9 shows how increased top speed performance results in a tendency to higher greenhouse gas emissions.

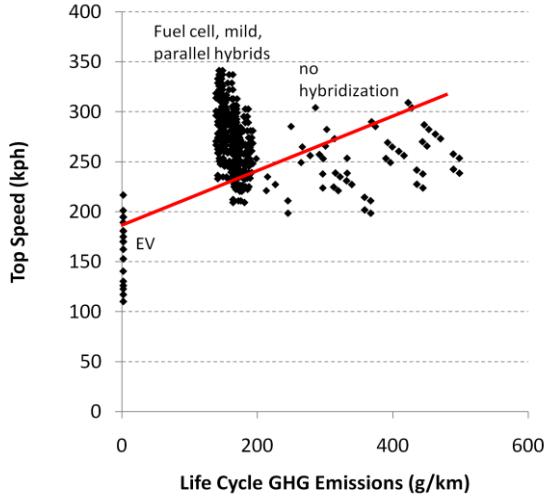


Figure 9: Higher top speed with higher emissions

It is clear from Figures 8 and 9 that there is a large degree of data clustering present in the design set. The hybrid vehicle designs are grouped very closely, with EV's and non-hybrid's representing outlier sets. This illustrates clearly the intuitive trend that exists in the hybrid cluster, namely, that the higher the degree of electrification, the lower the fuel consumption and the lower the performance.

Although elaborate emission control technologies installed on modern high-end vehicles moderate the trend shown in Figure 10 [2], the driving factors behind NOx emissions are fuel consumption and vehicle weight. Electric powertrains offer reduced GHG and NOx emissions at a relatively low cost.

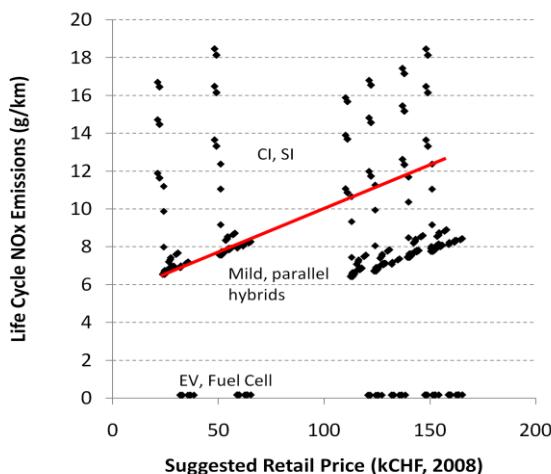


Figure 10: Heavy and high powered vehicles result in higher life-cycle NOx emissions

Table 1 provides criteria averages to put the various results into perspective.

Table 1: Design set criteria averages

Acceleration time (s) 0-100 kph	9.64
Maximum Velocity (kph)	260.40
Maximum Grade (degree)	8.60
Suggested Retail Price (CHF, 2008)	CHF 110'921.58
Fuel Consumption (Gas. Equiv. L/100km)	7.34
Greenhouse Gas Emissions (g/km)	18751.83
Nitrous Oxide Emissions (g/km)	8.13

4 Conclusions

To objectively analyze the impact that electric powertrain technologies have, a design set has been composed according to heuristic rules. The performance of previously-untried combinations of powertrain and control technologies has been studied, as opposed to examining and incrementally optimizing existing systems. The design set was then rigorously simulated, and the results were used to evaluate performance using key criteria such as environmental impact, drivability, and cost among others. The conclusions that were reached are that:

- the sensitivity of hybrid vehicles to weight reduction is lower than that of conventional vehicles,
- control optimization is important for objective comparisons,
- powertrain electrification leads to a reduced trade-off between fuel consumption and performance, with marginal cost increases,
- EV's and fuel cell vehicles offer similar life-cycle environmental trade-offs with respect to performance,
- Fuel cell vehicles incur greater cost, but qualitative utility of electric vehicles is lower due to long recharge.

Acknowledgments

This work has been supported by the Swiss Competence Center Energy and Mobility (CCEM-CH), in collaboration with MIT and industrial partners under the framework of the Alliance for Global Sustainability.

References

- [1] M. Kromer, J.B. Heywood, *A Comparative Assessment of Electric Propulsion Systems in the 2030 US Light-Duty Vehicle Fleet*, Proceedings of the 2005 SAE World Congress, 2008-01-0459 Detroit, Michigan, April 14-17, 2008
- [2] J.B. Heywood, *Internal Combustion Engine Fundamentals*, ISBN 0-07-100499-8, New York, McGraw-Hill, 1988
- [3] J.M. Weaver, K. Muci-Küchler, S. Kamali, *Heuristics for Architecting Automobiles and Automotive Systems: Educating the Next Generation of Automotive System Architects*, Proceedings of the 2005 SAE World Congress, 2005-01-1794 Detroit, Michigan, April 11-14, 2005
- [4] Argonne GREET model 2.7 and 1.8c, http://www.transportation.anl.gov/modeling_simulation/GREET/, accessed on 2009-03-29
- [5] O. Sundström, L. Guzzella, P. Soltic, *Optimal Hybridization in Two Parallel Hybrid Electric Vehicles using Dynamic Programming*, Proceedings of the 17th World Congress The International Federation of Automatic Control, 4642-4647 Seoul, Korea, July 6-11, 2008
- [6] General Motors vehicle comparison tool, <http://compare.autodata.gm.ca/compare/main.asp?lang=en>, accessed on 2009-03-14
- [7] Lexus Reports, http://www.lexusreports.com/blog/1018486_hybrid-repairs-command-a-small-premium, accessed on 2009-02-24
- [8] Touring Club Suisse, Autokatalog 2009, http://www.tcs.ch/main/de/home/auto_moto/autokatalog.html, accessed on 2008-10-04

Authors

Erik Wilhelm is working towards his PhD from the ETH Zurich in the Technology Assessment group (GaBE) at the Paul Scherrer Institut. His focus is on advanced powertrain simulation and heuristic vehicle design. The results of this research will be applied for policy analysis using multi-criteria analysis. He has an Honours Bachelor and Masters of Chemical Engineering from the University of Waterloo.

Warren Schenler did his undergraduate studies in engineering physics at Oregon State University, and graduate studies in Technology and Policy, Operations Research, and Energy Systems Analysis at the Massachusetts Institute of Technology. He came to Switzerland to work at the ETH Zurich on energy research projects studying electric power system issues in Switzerland, Romania and China, and has continued this work at the Paul Scherrer Institut in the GaBE group. His research interests also include transportation, geothermal and hydrogen energy systems.

Appendix A: Technology Options

Category	Technology Choices			Options	
CLASS	compact sedan (C)	midsized sedan (M)		2	
HYBRIDIZATION	none (No)	mild series (SHV)	parallel (PHV)	all electric (EV)	4
FUEL	diesel (D)	gasoline (G)	hydrogen (H)		3
PROPULSION	compression ign (CI)	spark ign (SI)	fuel cell (FC)		3
MARKET	passenger (P)	luxury (L)	sport (S)		3
DISPLACEMENT	1.4	2.4	3.2		3
PEAK FUEL CELL POWER (kW)	65	90			2
PEAK BATTERY POWER (kW)	15	40	55		3
BATTERY CAPACITY (Ah)	8.5	32	60		3
SEATING	2	4	5		3
INDUCTIVE FORCING	none (NoF)	Turbocharger (Tur)	Supercharger (Sup)		3
All Option Combinations:				104976	

Appendix B: Heuristic Design Rules

Endogenous Options	Dependent Endogenous Options	Assumptions
CI uses diesel	mild series hybrids only 0.5 kWh and 3 kW	<i>Cost</i> Compact vehicles have a baseline cost of CHF 21207
SI uses gasoline, hydrogen	parallel hybrids only use 20 and 60 kW	Midsized vehicles have a baseline cost of CHF 48137
FC uses hydrogen	parallel hybrids only use 8.5 and 32 Ah	SUV vehicles have a baseline cost of CHF 67964
Inductive forcing with SI	sport vehicles have Cd of 0.2	Average diesel premium paid is CHF 2884
sport fuel cell 90kW	passenger vehicles have Cd of 0.3	no additional cost for gasoline
compact fuel cell 65 kW	luxury vehicles have Cd of 0.25	cost of hydrogen storage integrated in fuel cell cost
2 seating only for sport	compact have base weight of 1096 kg	luxury adds a cost premium of CHF 100026
4 seating only for compact	midsized have base weight of 1450 kg	sport adds a cost premium of CHF 88892
	pickup have base weight of 2062 kg	no cost associated with increased engine displacement
	no mild series fuel cell hybrids	battery and fuel cell costs defined by Kromer [1]
	luxury adds 120 kg	
	sport subtracts 80 kg	<i>Weight</i>
	compact has frontal area of 2.1 m	no additional weight variation for diesel or gasoline
	midsize has frontal area of 2.9m	fuel cell has 360 W/kg including hydrogen storage systems
	sport fuel cell has only 90 kW	motor adds weight proportional to 1.35 kW/kg
	no fuel cell without hybridization	specific power of motor/battery is 0.76 kW/kg
	mild series hybrids only add power assist in low range	specific energy of battery is 0.06 kWh/kg
		battery weight is heavier of either volumetric/gravimetric
		<i>Other</i>
		displacement correlates linearly with power
		acceleration is linearly related to power and weight
		constant efficiencies: for electric path 80%, for fuel cell 50%, for otto 20%, for diesel 30%
		idle losses are assumed for non-hybrid and fuel cell powertrains, scaled with engine/fuel cell size
		life-cycle emissions scaled from GREET [4]
		half of efficiency improvement from forcing dedicated to efficiency improvement, half to performance increase
		maximum hill climbing speed is 20 kph
		stoichiometry for hydrogen combustion is 0.92, as with CNG
		state of charge may float up to 5% between start and end cycle
		interior volume depends only on width and height