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Abstract 

A precise state of charge (SOC) estimation is necessary to improve the longevity, performance, reliability, 

density, and economics of batteries in conventional internal combustion engine vehicles and some electric 

vehicles.  A Kalman filter is one of the techniques used to determine the SOC of the battery.  For a 

nonlinear battery model, nonlinear Kaman filters such as an extended Kalman filter and a sigma point 

Kalman filter are used.  However, the nonlinear Kalman filters that were used in other studies were very 

complicated to apply to the SOC estimation due to the complex nonlinear equations of the battery model.  

In this study, we represented a battery model with simple linear equations, which can represent the battery 

dynamics for a non-zero battery current.  In this linear battery model, a model parameter was assumed to be 

varied with respect to the SOC.  For this battery model, we applied a dual Kalman filter (DKF) method to 

estimate both the model parameter and the SOC.  In the estimation of the battery model parameter, the 

internal resistance of the battery was estimated from the time constant characteristic of the battery terminal 

voltage at rest after discharging.  Then the SOC was observed from the estimated internal resistance of the 

battery.  As a result of that, we proved that the DKF can effectively estimate the SOC using the simple 

linear battery model. 
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1 Introduction 
Lead-acid batteries are still widely used in 

conventional internal combustion engine vehicles 

and some electric vehicles.  In order to improve 

longevity, performance, reliability, density, and 

economy of batteries, the precise state of charge 

(SOC) estimation is required [1].  Several 

techniques have been studied for the 
determination of SOC, such as ampere-hour 

counting, measurement of the electrolytes physical 

properties, open circuit voltage, impedance 

spectroscopy, and Kalman filter [2]. 

The Kalman filter method can estimate SOC 

dynamically in real-time using a battery model [3].  

For a nonlinear battery model, nonlinear Kalman 

filters have been applied such as an extended 

Kalman filter [1,4-8] and a sigma-point Kalman 

filter [9, 10]. 

However, the nonlinear battery models have 

complex nonlinear equations in SOC estimation 
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methods using the nonlinear Kalman filter [4-

10].  For this reason, the SOC estimation 

algorithm cannot be easily implemented in 

practice.  

In this study, a linear battery model was 

proposed to estimate the SOC by using a linear 

Kalman filter.  In this battery model, a model 

parameter was assumed to be varied with respect 

to the SOC.  This parameter of this battery model 

was also estimated by using another linear 

Kalman filter.  This is the Dual Kalman filter 

(DKF) method to estimate both the model 

parameter and the SOC. 

 

2 Battery Model 

2.1 Battery model structure 

A linear model structure was used for a discrete 

time lead-acid battery model.  Equation (1) and 

(2) represent the linear battery model structure. 

 

1
i

k k k k

T
s s i w

C




 
   

 
          (1) 

 

1 0

OCV( )k k k k

k k k

y s Ri v

K s K Ri v

  

   
       (2) 

 

Where s is the SOC state, i is the battery current, 

y is the battery terminal voltage, R is the battery 

internal resistance, and OCV(sk), the open-circuit 

voltage as a function of SOC, can be computed 

linearly as 

 

1 0OCV( )k ks K s K         (3) 

 

In addition, ηi is the coulombic efficiency(ηi = 1 

for discharge, and ηi ≤ 1 for charge), T is the 

sampling period, C is the nominal capacity, and 

w and v are independent, zero-mean, Gaussian 

noises for process and measurements, 

respectively.  

  

2.2 Experiments 

A lead-acid battery with a nominal voltage of 8 

V and a nominal capacity of 100 Ah was tested. 

For this test, an electronic load was used at room 

temperature. This electronic load can consume 

the battery current with an accuracy of ±0.3%. 

The battery terminal voltage and current were 

measured by a DAQ system, using Labview®  from 

National Instruments.  

The battery was tested on a current profile. This 

current profile is shown in Figure 1.  In the current 

profile, the battery was discharged on the constant 

current pulse and rest sequences.  For the 

discharge, the battery was discharged from 100 

down to 10 A.  According to the discharge current 

profile, the battery terminal voltage was decreased 

and increased.  This battery terminal voltage 

profile is shown in Figure 2.  Furthermore, SOC 

profile of battery was obtained by Ah counting 

method.  Figure 3 shows this SOC profile of 

battery based on the discharge current profile.  
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Figure 1: Discharge current profile 

 

0 100 200 300 400
6

6.5

7

7.5

8

8.5
Discharge Voltage

Time (min)

V
o
lt
a
g
e
 (

A
)

 

Figure 2: Discharge voltage 
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Figure 3: Discharge SOC 



EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  3 

2.3 Model parameters identification 

Model parameters were determined by applying 

the least-square method.  Here, the only internal 

resistance of the battery was assumed to be 

varied with respect to the SOC.  For using the 

least-square method, the battery model output 

equation can be represented as a regression 

model as shown in Eq. (4). 
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For N number of observations, Eq. (4) can be 

written as 

 

Y Φ       (5) 
 

where Y = [y1, y2,…, yN]T and Ф = [φ1
T, φ2

T,…, 

φN
T]T.  As a result, the parameters can be obtained 

from θ = (ФTФ)-1ФTY for a non-singular (ФTФ). 

The observations in which the current was not 

zero were relevant to this determination of 

parameters, because this linear battery model 

cannot represent the slow variation of the effect 

of the time constant when the battery current is 

zero.  Moreover, the observations of 100 A 

discharge current, which is the first pulse in the 

discharge current profile, was only considered 

for identifying the initial internal resistance of 

the battery.   

Table 1 shows the result of parameters 

identification.  For these parameters, the 

modeling results are shown in Figure 4 and 

Figure 5.  In Figure 4, the battery model 

represents the battery output voltages with 

respect to the 100 A discharge current.  However, 

in Figure 5, this battery model cannot represent 

the accurate battery output voltages for other 

discharge current pulses.  Thus, the battery 

internal resistance, R, should be changed 

according to the SOC.  This internal resistance 

can be estimated from the time constant value of 

the battery output voltage at zero battery current.  

Indeed, the variations of the battery output 

voltage are different in each rest period after 

discharging current pulses as shown in Figure 2 

and Figure 5. 

In Figure 4, the initial time constant value of the 

battery output voltage in the rest period, τ0, is 

shown in Table 1.  An estimation method of this 

time constant value was represented at the next 

section. 

Table 1:  Battery model parameters 

K1 K0 R0 τ0 

0.7023 7.7647 -7.6572× 10
-3

 2294 
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Figure 4: Modeling result 

 in 100 A discharge current pulse 
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Figure 5: Modeling result 

 in whole discharge current profile 

3 Dual Kalman Filter 
Kalman filters are widely used in estimation 

problems [11].  In this study, the SOC was 

estimated by using a DKF.  Figure 6 shows the 

block diagram of the DKF used in this study.  At 

first, the internal resistance of the battery was 

estimated from the battery voltage, current, and the 

previous SOC estimation.  Then, from this 

estimated internal resistance, the SOC estimation 

can be updated by using a linear Kalman filter. 

 

 



EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  4 

Figure 6: Block diagram of the dual Kalman filter 

3.1 Internal resistance estimation 

The internal resistance of the battery can be 

estimated from the time constant of battery 

output voltage based on the initial modeled 

internal resistance and time constant.  Therefore, 

the internal resistance, R, can be represented as 
 

0

0

R R





                 (6) 

 
where τ is the estimated time constant and α is 
the constant coefficient of the internal 
resistance variation. 

3.1.1 Time constant estimation 

In order to estimate the time constant value of the 

battery output voltage, the first order discrete 

time model in Eq. (7) was derived from the first 

order continuous time model in Eq. (8). 
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Where T is the sampling period, τ is the time 
constant, k is the DC gain, exp( / )a T   , and 

(1 exp( / ))b k T    . 

The discrete time model in Eq. (7) can be 
represented to the difference equations as 
 

1 1k k ky ay bu         (9) 

 

1 2 2k k ky ay bu                     (10) 

 
By subtracting  Eq. (10) from Eq. (9) and 

assuming uk-1 = uk-2, Eq. (11) can be obtained. 
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From the time constant model in Eq. (11), the 

time constant τ can be estimated by using a 
Kalman filter.  Eq. (12-13) represent the time 
update equation and Eq. (14-16) represent 

the measurement update equation in the 
Kalman filter [12, 13]. 
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where 
, 1 2a k k kC y y   , and 

aCov
, 

,a wCov , and 

,a vCov  are the covariance of the error, the process 

noise, and the measurement noise, respectively.  

Figure 7 shows the estimation result of 

ˆ ˆexp( / )a T   .  Thus, the time constant value 

can be computed as ˆ ˆ/ ln( )T a   .  Figure 8 

shows the estimation result of the time constant. 
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Figure 7: Estimation result of ˆ ˆexp( / )a T    
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Figure 8: Estimation result of time constant 
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3.1.2 Internal resistance estimation 

From the estimation result of the time constant, 

the internal resistance of the battery in Eq. (6) 

can be computed in Figure 9.  Figure 10 

represents the variation of the internal resistance 

of the battery with respect to the SOC. 
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Figure 9: Estimation of the internal resistance 
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Figure 10: Estimation of the internal resistance 

 with respect to the SOC 

3.2 SOC Estimation 

The SOC can be estimated from the estimated 

internal resistance of battery by applying a 

Kalman filter.  Eq. (17-18) represent the time 
update equation and Eq. (19-21) represent 
the measurement update equation in the 
Kalman filter [12, 13]. 
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where 

, 1s kC K , and 
sCov
, 

,s wCov , and 
,s vCov  are 

the covariance of the SOC error, the process noise, 

and the measurement noise, respectively. 

From the experimental data, the linear battery 

model, and the DKF, the SOC of the battery was 

estimated.  In this estimation, the initial values of 

the DKF are shown in Table 2 and 3.  The battery 

output voltage and SOC estimation results are 

displayed in Fig. 11 and 12, respectively.  As 

shown in Fig. 13, the SOC estimation errors 

quickly converge into the ± 3% error bound. 

Table 2: Simulation condition of the ̂ estimation 

0
ˆ ˆexp( / )a T    

,0aCov   
,a wCov  

,a vCov  

0.99 1 1 0.001 

 

Table 3 Simulation condition of the SOC estimation 

0ŝ  ,0sCov
 

,s wCov  
,s vCov  

50 % 1 1 1 
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Figure 11: Battery voltage estimation result 

 

0 50 100 150 200 250 300 350
0

20

40

60

80

100

Time (min)

S
O

C
 (

%
)

 

 

experiment

estimation result

 

Figure 12: SOC estimation result 
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Figure 13: SOC estimation error 

 

4 Conclusion 
In this study, a lead-acid battery was modeled by 

a simple linear equation.  This linear battery 

model represented the battery output voltage 

according to the internal resistance and the 

battery current input when the current was not 

equal to zero.  For this linear battery model, the 

SOC of the battery was estimated by using the 

DKF.  At first, the internal resistance of the 

battery was estimated from the time constant 

estimation by using the Kalman filter.  Then the 

SOC was estimated using the internal resistance 

estimation by applying the Kalman filter.  

Consequently, the linear battery model and the 

DKF algorithm can effectively estimate the SOC. 
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