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Abstract

A precise state of charge (SOC) estimation is necessary to improve the longevity, performance, reliability,
density, and economics of batteries in conventional internal combustion engine vehicles and some electric
vehicles. A Kalman filter is one of the techniques used to determine the SOC of the battery. For a
nonlinear battery model, nonlinear Kaman filters such as an extended Kalman filter and a sigma point
Kalman filter are used. However, the nonlinear Kalman filters that were used in other studies were very
complicated to apply to the SOC estimation due to the complex nonlinear equations of the battery model.
In this study, we represented a battery model with simple linear equations, which can represent the battery
dynamics for a non-zero battery current. In this linear battery model, a model parameter was assumed to be
varied with respect to the SOC. For this battery model, we applied a dual Kalman filter (DKF) method to
estimate both the model parameter and the SOC. In the estimation of the battery model parameter, the
internal resistance of the battery was estimated from the time constant characteristic of the battery terminal
voltage at rest after discharging. Then the SOC was observed from the estimated internal resistance of the
battery. As a result of that, we proved that the DKF can effectively estimate the SOC using the simple

linear battery model.
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counting, measurement of the electrolytes physical
1 Introduction properties, open circuit voltage, impedance
spectroscopy, and Kalman filter [2].
The Kalman filter method can estimate SOC
dynamically in real-time using a battery model [3].

I it . liability. densit q For a nonlinear battery model, nonlinear Kalman
ongevity, performance, reliability, density, an filters have been applied such as an extended

economy of batteries, the precise state of charge Kal il 14- . _point Kal
(SOC) estimation is required [1].  Several ﬁﬁerp?g 1|O§er [1,4-8] and a sigma-point Kalman

techniqgues have been studied for the
determination of SOC, such as ampere-hour

Lead-acid batteries are still widely used in
conventional internal combustion engine vehicles
and some electric vehicles. In order to improve

However, the nonlinear battery models have
complex nonlinear equations in SOC estimation

EVS24 International Battery, Hybrid and Fuel Cell Electric VVehicle Symposium 1



methods using the nonlinear Kalman filter [4-
10]. For this reason, the SOC estimation
algorithm cannot be easily implemented in
practice.

In this study, a linear battery model was
proposed to estimate the SOC by using a linear
Kalman filter. In this battery model, a model
parameter was assumed to be varied with respect
to the SOC. This parameter of this battery model
was also estimated by using another linear
Kalman filter. This is the Dual Kalman filter
(DKF) method to estimate both the model
parameter and the SOC.

2 Battery Model

2.1 Battery model structure

A linear model structure was used for a discrete
time lead-acid battery model. Equation (1) and
(2) represent the linear battery model structure.

T ).
S =S, —(%) I, +W, (1)

Yy, =0CV(s,)+Ri, +V,
=K, + K, +Ri, +V,

)
Where s is the SOC state, i is the battery current,
y is the battery terminal voltage, R is the battery
internal resistance, and OCV(sy), the open-circuit
voltage as a function of SOC, can be computed
linearly as

OCV(s,) =K, +K, (3)

In addition, 7;is the coulombic efficiency(7; =1
for discharge, and 7; < 1 for charge), T is the
sampling period, C is the nominal capacity, and
w and v are independent, zero-mean, Gaussian
noises for process and  measurements,
respectively.

2.2 Experiments

A lead-acid battery with a nominal voltage of 8
V and a nominal capacity of 100 Ah was tested.
For this test, an electronic load was used at room
temperature. This electronic load can consume
the battery current with an accuracy of +0.3%.
The battery terminal voltage and current were

measured by a DAQ system, using Labviewe from
National Instruments.

The battery was tested on a current profile. This
current profile is shown in Figure 1. In the current
profile, the battery was discharged on the constant
current pulse and rest sequences.  For the
discharge, the battery was discharged from 100
down to 10 A. According to the discharge current
profile, the battery terminal voltage was decreased
and increased. This battery terminal voltage
profile is shown in Figure 2. Furthermore, SOC
profile of battery was obtained by Ah counting
method. Figure 3 shows this SOC profile of
battery based on the discharge current profile.
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Figure 3: Discharge SOC
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2.3 Model parameters identification

Model parameters were determined by applying
the least-square method. Here, the only internal
resistance of the battery was assumed to be
varied with respect to the SOC. For using the
least-square method, the battery model output
equation can be represented as a regression
model as shown in Eq. (4).

Y, =0CV(s,)+Ri,
= Klsk + KO + le (4)
- T
=[s, 1 i][K, K, R]
=0

For N number of observations, Eq. (4) can be
written as

Y-®0 )

where Y = [yy, Va..., WT and @ = [, ¢,,...,
on']". As a result, the parameters can be obtained
from 6 = (®'®)*dTY for a non-singular (O'D).
The observations in which the current was not
zero were relevant to this determination of
parameters, because this linear battery model
cannot represent the slow variation of the effect
of the time constant when the battery current is
zero. Moreover, the observations of 100 A
discharge current, which is the first pulse in the
discharge current profile, was only considered
for identifying the initial internal resistance of
the battery.

Table 1 shows the result of parameters
identification. For these parameters, the
modeling results are shown in Figure 4 and
Figure 5. In Figure 4, the battery model
represents the battery output voltages with
respect to the 100 A discharge current. However,
in Figure 5, this battery model cannot represent
the accurate battery output voltages for other
discharge current pulses. Thus, the battery
internal resistance, R, should be changed
according to the SOC. This internal resistance
can be estimated from the time constant value of
the battery output voltage at zero battery current.
Indeed, the variations of the battery output
voltage are different in each rest period after
discharging current pulses as shown in Figure 2
and Figure 5.

In Figure 4, the initial time constant value of the
battery output voltage in the rest period, 7y is
shown in Table 1. An estimation method of this

time constant value was represented at the next
section.

Table 1: Battery model parameters
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Figure 5: Modeling result
in whole discharge current profile

3 Dual Kalman Filter

Kalman filters are widely used in estimation
problems [11]. In this study, the SOC was
estimated by using a DKF. Figure 6 shows the
block diagram of the DKF used in this study. At
first, the internal resistance of the battery was
estimated from the battery voltage, current, and the
previous SOC estimation. Then, from this
estimated internal resistance, the SOC estimation
can be updated by using a linear Kalman filter.

lk > Internal resistance ]
> Estimation
yk “U
N ~
~
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-
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Estimation
.
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Figure 6: Block diagram of the dual Kalman filter

3.1 Internal resistance estimation

The internal resistance of the battery can be
estimated from the time constant of battery
output voltage based on the initial modeled
internal resistance and time constant. Therefore,
the internal resistance, R, can be represented as

R=aR,— )

To

where 7 is the estimated time constant and « is
the constant coefficient of the internal
resistance variation.

3.1.1 Time constant estimation

In order to estimate the time constant value of the
battery output voltage, the first order discrete
time model in Eq. (7) was derived from the first
order continuous time model in Eq. (8).

6(z)-Kel=e )
Z—¢ (7)
__b
Cz-a
k
_ 8
() s+1/7¢ ®)

Where T is the sampling period, 7 is the time
constant, & is the DC gain, a=exp(-T /), and

b=kr(l—exp(-T /7)).
The discrete time model in Eq. (7) can be
represented to the difference equations as

Y =y, +bu )
Vi1 =Y, , +bu, (10)

By subtracting Eq. (10) from Eg. (9) and
assuming Uy.1 = Uk, EQ. (11) can be obtained.

Y = Vi =AYy = Yio) +b(U, —U, ) (11)
~a(Y1— Yi2)

From the time constant model in Eqg. (11), the
time constant 7 can be estimated by using a
Kalman filter. Eq. (12-13) represent the time
update equation and Eq. (14-16) represent

the measurement update equation in the
Kalman filter [12, 13].

a =4, (12)
Cov,, =Cov,,, +Cov,,, (13)
Loy = Covz;,kC;,k [Ca,kcov';kclk +Cov,, I (14)

a =4 + L. [V —Yu— éQCa,k] (15)
Cov;, = (1-L,,C, )Covy, (16)

Where Ca,k = yk_l - yk_z I} and COVa ] COV and

aw '’
Cov,, are the covariance of the error, the process
noise, and the measurement noise, respectively.
Figure 7 shows the estimation result of
a=exp(-T /7). Thus, the time constant value
can be computed as 7=-T/In(d) . Figure 8
shows the estimation result of the time constant.
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Figure 7: Estimation result of & =exp(-T /7)

x 10
2.5

0 50 100 150 200 250 300 350
Time (min)

Figure 8: Estimation result of time constant
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3.1.2 Internal resistance estimation

From the estimation result of the time constant,
the internal resistance of the battery in Eqg. (6)
can be computed in Figure 9. Figure 10
represents the variation of the internal resistance
of the battery with respect to the SOC.
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Figure 9: Estimation of the internal resistance
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Figure 10: Estimation of the internal resistance
with respect to the SOC

3.2 SOC Estimation

The SOC can be estimated from the estimated
internal resistance of battery by applying a
Kalman filter. Eq. (17-18) represent the time
update equation and Eq. (19-21) represent
the measurement update equation in the
Kalman filter [12, 13].

o nT).

e_s [T (17)
()

COV§_,k = C0V§,k—1 +Cov,,, (18)
L, =Cov;,C,[C, Cov;,C/, +Cov, I* (19
8 =8+ Lylyi —(8.Cy + K, +Riy)] (20)

COV§+,k =(1- Ls,sz,k)Cov§,k (21)

where C,, =K,, and Cov,, Cov,,, and Cov,, are

the covariance of the SOC error, the process noise,
and the measurement noise, respectively.

From the experimental data, the linear battery
model, and the DKF, the SOC of the battery was
estimated. In this estimation, the initial values of
the DKF are shown in Table 2 and 3. The battery
output voltage and SOC estimation results are
displayed in Fig. 11 and 12, respectively. As
shown in Fig. 13, the SOC estimation errors
quickly converge into the + 3% error bound.

Table 2: Simulation condition of the 7 estimation

Cov,, | Cov, Cov

a,w a\v

4, =exp(-T/7)
0.99 1 1 0.001

Table 3 Simulation condition of the SOC estimation
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Figure 11: Battery voltage estimation result

100 T T T T T T
experiment
— estimation result |

80

60

40

SOC (%)

20

0 r r r r r
0 50 100 150 200 250 300 350
Time (min)

Figure 12: SOC estimation result
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Figure 13: SOC estimation error

4 Conclusion

In this study, a lead-acid battery was modeled by
a simple linear equation. This linear battery
model represented the battery output voltage
according to the internal resistance and the
battery current input when the current was not
equal to zero. For this linear battery model, the
SOC of the battery was estimated by using the
DKF. At first, the internal resistance of the
battery was estimated from the time constant
estimation by using the Kalman filter. Then the
SOC was estimated using the internal resistance
estimation by applying the Kalman filter.
Consequently, the linear battery model and the
DKF algorithm can effectively estimate the SOC.
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