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Abstract

Despite rapid development, the battery is still the single most expensive component in a HEV drivetrain.
Consequently, its durability is critical to the overall feasibility of the vehicle. The battery ageing
mechanisms and the resulting cycle life of HEV-optimised batteries are highly non-linear and difficult to
test. In addition, the selection of load cycle profile is of great significance when battery cycle life is to be
verified experimentally. This paper presents a statistic method for evaluation and simplification of dynamic
load profiles based on measured load profiles from heavy-duty HEV applications. The presented method
has been used to extract simplified synthetic load cycles with configurable energy throughput as well as
different strategies for state-of-charge control. These cycles were also compared with reference cycles and
evaluated regarding power distribution, energy distribution, energy window and energy throughput. The
presented method was found to be a usable tool for creating new battery load cycles for cyclelife tests. In
addition, it may be a useful to evaluate and compare statistical properties of measured cycles before

initiating laboratory battery tests.
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While some other applications using Li-ion
1 Introduction batteries, such as consumer electronics and
communication satellites, may have a predictive
and representative usage patterns which easily can
be converted into a typical load cycle suitable for
cycle life testing, HEV energy storages are used in
diverse conditions with a wide range of climate
profiles, drive patterns, duty cycles, average power
etc. Hence, a uniform and representative load cycle
is normally not possible to extract.

The energy storage in a HEV, often a battery or a
supercapacitor, is the single most expensive
component in a HEV-powertrain. Hence, its
cycle life and reliability is of fundamental
importance for the feasibility of the complete
HEV.

Batteries are continuously improved for first and
foremost higher energy and power density with
prolonged life, increased safety and lower
production cost. The battery life is nonlinearly
dependent on several parameters such as voltage
range, operating temperature, current rate and
energy throughput.

Furthermore, the HEV powertrain control system
needs to be complex and dependent on a large
number of variables in order to obtain high
performance and good drivability. As a
consequence, measured battery load cycles are
typically characterized by fast dynamics, few rest
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periods and short power transients combined
with slower variations in power level. Also,
batteries used in heavy-duty HEVs are often
cycled at drive cycles that cannot be divided into
short, uniform segments to simplify testing.

Generally, the total battery life time in a specific
application is estimated from a combination of
field test experiences and a limited number of
cycle life tests of batteries at cell level with load
cycles carefully selected to correspond to the
actual usage as good as possible to provide valid
information on actual battery lifetime. Different
applications and different drive patterns result in
different load cycles. Consequently, a complete
test matrix covering the full range of possible
load profiles would require extensive testing over
several years and expand the test matrix beyond
practical limits. An additional complication to
this process is the fact that even small changes in
the vehicle control system may change the
battery load cycle in vital aspects, thus requiring
a new set of cycle life tests to revalidate the
battery lifetime.

Battery manufacturers often test battery cycle life
according to standardized load cycles such as the
widely spread profiles developed by EUCAR,
USABC, ISO/IEC and other organizations and
OEMs. Even if detailed case studies and
measurements are used to select a suitable
reference case, the load cycle used in cycle life
tests must often be simplified to increase test
stability and to reduce the dynamic requirements
on the battery test equipment.

Simplified load cycles might not be
representative to the actual battery usage even
though the average current, RMS power and
energy throughput are identical. Nevertheless,
simplified test cycles would greatly simplify the
set-up and evaluation of cycle life tests as well as
enabling a comparison between different cycles
tested by different OEMs. Furthermore, there is a
need for a method to compare, evaluate and
combine different load cycles for different
conditions to enable the usage of existing test
results from other applications, projects, test
objects and load cycles in the current
development by OEMs and battery developers.

2 Scope

The method proposed in this paper suggests a
statistic approach for analyzing measured battery
load cycles in terms of a number of key

properties such as power distribution and energy
throughput.

These statistic cycle properties are then used to
compare cycles and to generate new synthetic load
cycles where key parameters such as average
power and current rate can be adjusted while
keeping other properties of the cycle constant. In
addition, the method can be used to reduce the
total load cycle length to a minimum which further
simplifies the test setup.

The primary target for the work performed is to
find an objective, reliable method for reducing the
setup time for battery tests. In addition, the method
should be a tool for evaluating how applicable
results from different load cycle tests are to a
particular application.

First and foremost this method is developed for use
in cycle life tests of Li-ion batteries optimized for
heavy-duty HEVs. There are however no direct
restriction to the usage of the method to the testing
of other secondary batteries.

Specifically, this paper investigates the suitability
of using a Markov chain as a model for the battery
load cycle in heavy-duty HEV applications.
Firstly, the theoretical background the method is
presented together with the battery model.
Secondly, a simplified charge sustaining algorithm
is added to the system to control the state-of-
charge (SOC) of the battery during longer load
cycles. Thirdly, the method is used to generate a
number of synthetic load cycles to be compared
with a reference cycle from a HEV city-bus.
Additionally, the simulation results are compared
to test results on Li-ion cells cycled at both
measured and synthetic load cycles.

3 Stochastic Model

The use of a Markov chain has been suggested for
load cycle simulation in several papers [1], [2], [3]
and [4].

This method can easily be adapted to HEV load
cycles by converting the power into discrete power
levels in a state-vector S in which each level
represents a unique state. A probability matrix Q,
called the Markov matrix, can then be formed
where the probability for transition from state i to
state j is equal to element Q;:

Qii:P(Sn+l:i|Sn:j) (1)
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where S,,; is the next state (power level), S, is
the current state and P is the probability for a
transition from S, to S, ;.

The m x m matrix, Q, is typically a sparse matrix
with the greatest elements around the diagonal
Q1110 O, Each column sum must be equal to
1, since the probability for transition to any
possible new state must be one for each current
state. This is however only true if all states in the
state vector is entered in the real load cycle. If
not, numeric problems might occur depending on
the implementation. The Q matrix is “trained”
with one or several load cycle to populate each
element with the corresponding probability.

A new, synthetic cycle of any length can then be
calculated using a minimum of tools, which will
be further described in section 3.1:

1. an initial state in the S-vector for which
the corresponding column sum # 0
2. arandom number generator

Changes and adaptations to the probabilities in
the Q@ matrix should be avoided to preserve
stability. Instead, power levels can either be
adjusted according to an independent weight
function before the population of the Q matrix or
the output state can be adjusted by selecting
either a higher or lower power level than the one
generated by the random function. Even though
such modifications to the cycle are in conflict to
the stochastic approach, it will in practice be
necessary to include them to first and foremost
keep the SOC within the admissible range.

There is a specific issue related to the selection
of states to include in the S-vector. Depending on
the choice and the cycle properties the S-vector
and the Q-matrix may contain empty states /
empty column. These states might in turn cause
instabilities to the cycle generation. There are
two obvious solutions to this issue:

1. The corresponding column in Q can be
populated as the linear interpolation

between adjacent columns. This method
will generate a stable output but may
cause the output synthetic cycle to consist
of power levels never observed in the real
cycle.

2. The SOC-algorithm can be changed to
avoid selecting states (power levels) not
observed in the real cycle.

In theory, this may not be an issue, but in practice
when using standard random number generators in
for example Matlab® it may be relevant as
described further in section Implementation. The
second method was selected in this project to
ensure that the procedure can work with a large
variety of load cycles in combination with a
comparably large Q-matrix.

3.1 Implementation

Firstly, the S-vector of length m is selected to
correspond to the reference load cycle properties.
The m x m-matrix Q is then formed by stepping
through the reference load cycle and incrementing
the corresponding state Q,, , for each step, followed
by the normalization of the columns by the total
column sum. The first step in this learning process
can be repeated for every measured (or simulated)
load cycle that should be included in the synthesis
as long as the sample rate is the same for all cycles
and the total number of cycle steps for all cycles
are used to normalize the columns in the second
step.

At this stage it is also possible to introduce
limitations, weight functions, or in other ways
change the properties of Q and any generated
synthetic cycles compared to the input cycle(s).

Following the calculation of the Q-matrix, a
synthetic cycle can easily be generated step-wise
using a general random number generator. In
Matlab®, this can be done by creating a support
matrix Qs consisting of the cumulative column
sum of Q and the random generator rand; the
column in Qs corresponding to the current state is
compared by a random number [0..1] and the
element closest to the random number is selected
as the next state. That is, the output state is the first
row index n of Qyn,) that satisfies the relation
Qsmx> rand where x is the current state and 7 is
the next state. Simplified examples of Q and Qs
are shown in Figure 1 and Figure 2. These
examples are however not representative to HEV-
cycles.

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 3



This short algorithm is repeated for each step in
the cycle starting the initial state X
corresponding to the initial power level. The
output state n of each iteration is used as input
state x for the next calculation. There is no
theoretical limit to the total length of the
synthetic cycle. In practice the length will
however be limited by a lower limit determined
by the requirements on correspondence with the

reference cycle (see section 3.2).
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Figure 1 Example of 10 x 10 Markov matrix Q
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Figure 2 Example of cumulative sum matrix Q, of Q
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As mentioned in the previous section, a problem
with SOC exceeding the maximum limits might
occur when battery load cycles from charge-
sustaining HEVs are studied, especially if the
cycles are comparably long and the energy
throughput is in the range of the usable energy
content of the battery. In such cases the SOC of
the target battery must be calculated for each
time step and then, via a predefined SOC control
strategy, be used to adjust the output power for
the next step to limit the required SOC-range.
Thus, the battery load cycle cannot be treated as
a purely stochastic process from a strictly
fundamental standpoint unless the battery
capacity is infinitely large or the load cycles are
very short in duration. Nevertheless, this
limitation of the proposed method is still viable
since it replicates the situation in a real HEV
where the drive pattern and road profile may be
considered as stochastic whereas the actual
battery current is limited and controlled by a
control unit based on a non-stochastic strategy.

If, in addition, the S-vector is composed by
representative levels with a high number of levels,
the SOC-strategy will only have a minor impact on
cycle properties in terms of power and energy.
This issue and a proposed solution are presented in
detail in the following sections, where the first part
presents the definition of SOC and the associated
battery model, followed by an example of a simple
SOC-preserving control strategy.

3.1.1 Battery model used for SOC-estimation

The state-of-charge (SOC) of a battery is typically
defined as the ratio between the available
discharge capacity and the maximum discharge
capacity at a specific temperature and age (state-
of-health — SOH). While the SOC in a HEV is
carefully controlled to ensure the performance and
durability of the battery throughout the design
lifetime, this is not the case for the generated
stochastic cycle according to the Markov-process.
However, the average SOC for any truly stochastic
cycle will be equal to the initial SOC for an
infinitely long cycle if the total probability for
charge is equal to the probability for discharge,
capacity wise. This is naturally not the case for real
cycles of finite length, especially not for HEV
batteries with a comparably high energy
throughput. Hence, the resulting SOC of the
synthetic cycle must be controlled according to a
pre-defined strategy using a similar method as is
implemented in a real HEV.

soc (l‘) _ c reference [As ]_ c discharged (t )[As ] _
C rrace 145 ] (5)
C reference [AS ]_ J. Idl
0

C reperence [AS ]

Firstly, a method for a step-wise calculating SOC
during the extraction of the synthetic cycle is
selected. Using the relation in (5) and a fixed value
for the reference capacity Cieferences the SOC(t) is
numerically calculated as the Euler approximation
of the integrated current in each step. If the load
cycle is characterized by constant power levels
rather than current levels, a separate algorithm for
estimation of current must be added. Any battery
model able to calculate current from a power input
is possible to use at this stage. For simplicity, a
rudimental Thevénin equivalent circuit is used
here:

U(t)=U ye )+ R()I() (6)
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Assuming the typically narrow SOC-range of
most Li-ion batteries designed for HEV’s, the
average open circuit voltage Upcy may be
regarded as a constant. Similarly, the internal
resistance can be simplified using a single value
or a limited set of values to further simplify the
equation.

Starting from the input power to the battery, the
power — current relation in (7) must be satisfied
for all time steps.

P(e)=U(0)-1(6)=U o, (1)- 1)+ R(e)- (1(1))° (7

Solving this equation for each time instant yields
a time-varying current vector to be used in SOC-
estimation.

Secondly, an appropriate SOC strategy is added
to keep the SOC of the battery within the
acceptable range throughout the duration of the
synthetic cycle. This approach, or any other
SOC-preserving method, is absolutely essential
when extracting synthetic cycles in which the
energy throughput is comparable to the
maximum usable energy of the battery.

3.1.2 SOC Control Strategy

Naturally, there are countless ways to control the
SOC in a HEV. That is especially challenging for
cycles with an energy throughput that is
comparable to or exceeding the usable battery
energy. A synthetic load cycle could either be
designed to replicate the SOC-trends of the target
load cycle as accurately as possible, or to reflect
the statistical properties of the load cycle using
an additional weight function that will control the
SOC to stay within the acceptable range. One
approach to control SOC is to limit the charge
power close to the upper SOC-limit and the
discharge power close to the lower limit.
Rutquist et al [5] suggested the tangent function
as the optimal control function u=f{soc) for a
simplified system with a supercapacitor energy
storage. This strategy may be expanded to
batteries, at least within a narrow SOC-range,
and was therefore used in this paper.

Regardless of which strategy that is chosen, a
stable weight function that limits the maximum
SOC-swing of the synthetic load cycle is needed.
The reference for this function could either be a
static target (SOCiser), @ dynamic SOC signal
according to measured properties or a simulated
signal assuming a constant average efficiency of
the battery cell.

Since the generated cycle is stochastic, no change
made to the Q-matrix will be efficient to keep SOC
within the admissible range. Even small changes in
the Q-matrix defining the Markov process might
cause severe stability problems in the cycle
generation. Hence, the Q-matrix must be left un-
changed and the output power levels used to
control SOC instead.

The inverse tangent function according to [5] was
used to generate a limit function for SOC. This
function can be configured with different steepness
at the edges (see Figure 3). For each step generated
according to the method described in the previous
section, the output power level is weighed with
this limit function. If the SOC is close to the target
SOC no change is made to the output power. In
contrast, when the SOC is close to the limits the
target function gradually limits the charge power
(at high SOC) and the discharge power (at low
SOC). The calculated new power level is then
adjusted to fit the pre-defined power levels (states)
in the S-vector. The adjustment factor 0..1 is based
on the Matlab® tangent function tan according to
equations 8 and 9.

SOCope
SOC_ SOC;arget
S0¢,,,—SOG, (8)

SOQ ipen =1—|ta (
max arget

where

SOC 46 1s the centerpoint of the admissible SOC-

range,

SOC,,, 1s the maximum admissible SOC,

SOC,,;, is the minimum admissible SOC, and

SOCyiope is a control parameter typically between 1

and 10 that determines the steepness of the limit

function close to the boundaries.
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Figure 3 Limit function using tangent function and
SOCslope between 1 and 10
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The limit function SOC;,.; re.n Varies between
0..1 for SOC between [SOC.i, ... SOCax] and
can be used directly as a multiplication factor for
the output power level in each step of the cycle
generation:

P SOC, S

output: LimitFen™ n+l

)
The corrected output state corresponding to
Pupue in (9) must then be selected as the power
level that best corresponds to the discrete levels
in the state vector S for which the probability is
larger than zero.

3.1.3 Optimisation

Any cycle generated according to the proposed
method will reflect the fundamental properties of
the reference cycle. However, the actual SOC-
characteristics as well as other cycle properties
will differ significantly between different
synthetic cycles. To find and evaluate solutions /
versions of the synthetic cycle with good,
objective correspondence to the reference cycle,
an optimisation process was run where key
aspects of the cycle were compared to the
reference cycle by means of weighted error
functions, (10) to (14). A large number of cycles
were generated, each according to the same
Markov process and with the same settings,
presented in Table 1.

1.
Difference in SOC over the complete cycle:
1 10
ERRoc = Ksoc 'ﬁ'z"‘ SOC\)’nrhem - SOCr'eferem’e ( )
2 1

2.

Difference in RMS-power, scaled to kW:
ERRPM =K, ‘P RMS, synthetic [kW]_ P RMS, reference [kW]‘ (1 1)

3.

Difference in maximum energy window:
ERRWM,H,M =K, - Wwind(m‘,\w/hetir [Wh]_wwindmv.r‘(/fer‘em-e[Wh] (12)
4.

Difference in power distribution:

hist(PoierS)  hist(PeS) (13)
N N \

ERRPM = KP,disI . Z‘
S

where
N = number of elements
S = discrete power vector

hist(Y,X) = the histogram (distribution) of Y over
X

5.
Difference in energy distribution:

histW yiS)  histW,enS) (14)
N N \

ERR\M,,\, = Kw,dm . Z‘
5

where

N = number of elements

S = discrete power vector

hist(Y,X) = the histogram (distribution) of Y(X)

The weight factors Ksoc, Kp and Ky are set for the
specific application to set internal priority between
the evaluation measures.

For sufficiently long synthetic cycles the power
distribution and energy distribution over the
discrete power vector are expected to be similar to
that of the reference cycle. However, this is only
the case if the reference cycle can be modelled as a
truly stochastic Markov process. Consequently, the
shape of the power and energy distribution can be
compared to the reference cycle to determine

a) the validity of the Markov process to
model the load cycle

b) the minimum length of the synthetic
output cycle to cover the full spectrum of
the reference cycle

Previous sections described the SOC-strategy as a
necessary perturbation to the true Markov cycle
since it affects the power levels in the synthetic
cycle when the estimated SOC-level is close to the
limits.

The method in this paper uses the five presented
error functions above, with weight factors
according to Table 1 set to address specific
properties. If the synthetic cycle should be similar
to the reference cycle in SOC-variations, a larger
value should be assigned to the factor Ksoc, and
similar for the other properties. Naturally it is also
viable to use a combination of the K-factors to
generate cycles that in average corresponds well to
the reference cycle. Nevertheless, the fourth and
fifth error function should be used to determine the
minimum cycle time or minimum cycle length
which has the fundamental properties of the
reference cycle in terms of distribution of power
and energy.
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3.2 Evaluation

The feasibility of the proposed method was
evaluated based on an investigation of a large
number of synthetic load cycles extracted and
compared to a reference cycle. This reference
cycle is based on measured battery current and
battery voltage from a heavy-duty prototype
HEV city-bus in Gothenburg, Sweden. Using the
measured voltage and current together with the
logged SOC-level estimated by the battery
management unit, the Q-matrix was calculated
according to the method described in previous
sections, based on this single reference load
cycle. In addition, the logged battery data was
used to extract parameters for the simple battery
model needed for SOC-estimation.

Using the proposed SOC-strategy and general
settings for SOC-average and SOC-limits as well
as battery data from a relevant Li-ion battery (see
Table 1) a number of synthetic cycles were
generated and evaluated according to the error
functions described in previous sections.

Table 1 Battery properties and SOC-strategy settings

Parameter Abbr. Value  Unit

SOC-strategy

Reference SOC SOCtarget 50 %
Upper SOC limit SOCmax 60 %
Lower SOC limit SOCmin 30 %
Initial SOC SOCinitial 50 %
SOC-str SOCslope 10 -
Sampling time tstep 0.1 s
Optim.-factor, SOC Ksoc 1/10 -
Optim.-factor, RMS-power Kp 1/500 -
Optim.-factor, Energy window Kw 1/40 -
Battery

Total energy Wiattery 3000 Wh
Total capacity Chattery 5 Ah
Total internal resistance ESRgattery 0.45 Q
Open circuit voltage at 50% SOC Uocv 630 \Y

Firstly, the minimum cycle length was evaluated
using error functions 4 and 5. The outcome of
this part indicated that, for this particular
reference cycle and set of conditions, the cycle
must be at least 30% of the original length to
capture the fundamental properties (see Figure
4). Other reference cycles, or the usage of a
combination of cycles to calculate the Q-matrix,
would most likely yield other results. In addition,
the choice of the discrete power vector § is of
fundamental importance in the evaluation; if a
low number of power levels (states) are included
in §, all states with high probability in the

reference cycle are likely to occur in the synthetic
cycles after a comparably low number of steps.
The example in this paper used an S-vector of [-
100:1:100]% of rated peak power, resulting in a
101x101 sized Q-matrix. This fact will in turn
require the cycle length to be in the same range as
the number of elements in Q (=10000) to allow the
cycle to span over the complete range of states.

In Figure 4 the cumulative error between the
power distribution and energy distribution is
presented as function of the fraction of the
reference cycle length.

150

Energy Spectrum
Power Spectrum
Polyfit, 3rd order

o
=)

1/(7x3 + -16x2 + 13x + 0.95)

@
t=)
T

Sum of error over cycle [%]

1/(7x3 + -29x2 + 23x + 1.7)

. . . . .
0 10 20 30 40 50 60 70 80 920 100
Synthetic Cycle Length [% of original]

Figure 4 Cumulative error between power- and energy
distribution and the reference cycle for different
synthetic cycle length.

The correspondence between the power- and
energy distribution for the synthetic cycle and the
reference cycles as a function of cycle length is
also clearly evident in Figure 5 to Figure 8 where
the distributions are shown for 5% and 80%
respectively.

8

: : — Original Cycle
,,,,,,,,,,, I Synthetic Cycle ||
T T

4 —

6

Frequency [%]
©w S o

S}
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Figure 5 Power distribution at 5% cycle length
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Figure 6 Power distribution at 80% of cycle length
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Figure 7 Energy distribution at 5% cycle length
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Figure 8 Energy distribution at 80% cycle length

In addition to optimising the cycle generation
process for good correspondence to the reference
cycle in terms of power distribution and energy
distribution, the SOC-changes must be taken into
considerations. Nevertheless, the presented
method has shown promising results and may be
used for simplifying the set-up of battery tests,
the evaluation of load cycles and to combine
several reference cycles into one test cycle.
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