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Abstract 

Despite rapid development, the battery is still the single most expensive component in a HEV drivetrain. 

Consequently, its durability is critical to the overall feasibility of the vehicle. The battery ageing 

mechanisms and the resulting cycle life of HEV-optimised batteries are highly non-linear and difficult to 

test. In addition, the selection of load cycle profile is of great significance when battery cycle life is to be 

verified experimentally. This paper presents a statistic method for evaluation and simplification of dynamic 

load profiles based on measured load profiles from heavy-duty HEV applications. The presented method 

has been used to extract simplified synthetic load cycles with configurable energy throughput as well as 

different strategies for state-of-charge control. These cycles were also compared with reference cycles and 

evaluated regarding power distribution, energy distribution, energy window and energy throughput. The 

presented method was found to be a usable tool for creating new battery load cycles for cyclelife tests. In 

addition, it may be a useful to evaluate and compare statistical properties of measured cycles before 

initiating laboratory battery tests.  

Keywords: battery model, battery SoH (State of Health), cycle life, lithium battery, energy storage  

1 Introduction 
The energy storage in a HEV, often a battery or a 

supercapacitor, is the single most expensive 

component in a HEV-powertrain. Hence, its 

cycle life and reliability is of fundamental 

importance for the feasibility of the complete 

HEV. 

 

Batteries are continuously improved for first and 

foremost higher energy and power density with 

prolonged life, increased safety and lower 

production cost. The battery life is nonlinearly 

dependent on several parameters such as voltage 

range, operating temperature, current rate and 

energy throughput. 

 

While some other applications using Li-ion 

batteries, such as consumer electronics and 

communication satellites, may have a predictive 

and representative usage patterns which easily can 

be converted into a typical load cycle suitable for 

cycle life testing, HEV energy storages are used in 

diverse conditions with a wide range of climate 

profiles, drive patterns, duty cycles, average power 

etc. Hence, a uniform and representative load cycle 

is normally not possible to extract. 

 

Furthermore, the HEV powertrain control system 

needs to be complex and dependent on a large 

number of variables in order to obtain high 

performance and good drivability. As a 

consequence, measured battery load cycles are 

typically characterized by fast dynamics, few rest 



EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  2

periods and short power transients combined 

with slower variations in power level. Also, 

batteries used in heavy-duty HEVs are often 

cycled at drive cycles that cannot be divided into 

short, uniform segments to simplify testing. 

 

Generally, the total battery life time in a specific 

application is estimated from a combination of 

field test experiences and a limited number of 

cycle life tests of batteries at cell level with load 

cycles carefully selected to correspond to the 

actual usage as good as possible to provide valid 

information on actual battery lifetime. Different 

applications and different drive patterns result in 

different load cycles. Consequently, a complete 

test matrix covering the full range of possible 

load profiles would require extensive testing over 

several years and expand the test matrix beyond 

practical limits. An additional complication to 

this process is the fact that even small changes in 

the vehicle control system may change the 

battery load cycle in vital aspects, thus requiring 

a new set of cycle life tests to revalidate the 

battery lifetime.  

 

Battery manufacturers often test battery cycle life 

according to standardized load cycles such as the 

widely spread profiles developed by EUCAR, 

USABC, ISO/IEC and other organizations and 

OEMs. Even if detailed case studies and 

measurements are used to select a suitable 

reference case, the load cycle used in cycle life 

tests must often be simplified to increase test 

stability and to reduce the dynamic requirements 

on the battery test equipment.  

 

Simplified load cycles might not be 

representative to the actual battery usage even 

though the average current, RMS power and 

energy throughput are identical. Nevertheless, 

simplified test cycles would greatly simplify the 

set-up and evaluation of cycle life tests as well as 

enabling a comparison between different cycles 

tested by different OEMs. Furthermore, there is a 

need for a method to compare, evaluate and 

combine different load cycles for different 

conditions to enable the usage of existing test 

results from other applications, projects, test 

objects and load cycles in the current 

development by OEMs and battery developers. 

2 Scope 
The method proposed in this paper suggests a 

statistic approach for analyzing measured battery 

load cycles in terms of a number of key 

properties such as power distribution and energy 

throughput. 

These statistic cycle properties are then used to 

compare cycles and to generate new synthetic load 

cycles where key parameters such as average 

power and current rate can be adjusted while 

keeping other properties of the cycle constant. In 

addition, the method can be used to reduce the 

total load cycle length to a minimum which further 

simplifies the test setup. 

 

The primary target for the work performed is to 

find an objective, reliable method for reducing the 

setup time for battery tests. In addition, the method 

should be a tool for evaluating how applicable 

results from different load cycle tests are to a 

particular application. 

 

First and foremost this method is developed for use 

in cycle life tests of Li-ion batteries optimized for 

heavy-duty HEVs. There are however no direct 

restriction to the usage of the method to the testing 

of other secondary batteries.  

 

Specifically, this paper investigates the suitability 

of using a Markov chain as a model for the battery 

load cycle in heavy-duty HEV applications. 

Firstly, the theoretical background the method is 

presented together with the battery model. 

Secondly, a simplified charge sustaining algorithm 

is added to the system to control the state-of-

charge (SOC) of the battery during longer load 

cycles. Thirdly, the method is used to generate a 

number of synthetic load cycles to be compared 

with a reference cycle from a HEV city-bus. 

Additionally, the simulation results are compared 

to test results on Li-ion cells cycled at both 

measured and synthetic load cycles. 

3 Stochastic Model 
The use of a Markov chain has been suggested for 

load cycle simulation in several papers [1], [2], [3] 

and [4].  

This method can easily be adapted to HEV load 

cycles by converting the power into discrete power 

levels in a state-vector S in which each level 

represents a unique state. A probability matrix Q, 

called the Markov matrix, can then be formed 

where the probability for transition from state i to 

state j is equal to element Qij: 

 

)|( 1 jSiSPQ nnij ===
+  (1) 
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where Sn+1 is the next state (power level), Sn is 

the current state and P is the probability for a 

transition from Sn to Sn+1. 

 

The m x m matrix, Q, is typically a sparse matrix 

with the greatest elements around the diagonal 

Q1,1 to Qm,m. Each column sum must be equal to 

1, since the probability for transition to any 

possible new state must be one for each current 

state. This is however only true if all states in the 

state vector is entered in the real load cycle. If 

not, numeric problems might occur depending on 

the implementation. The Q matrix is “trained” 

with one or several load cycle to populate each 

element with the corresponding probability. 

 

A new, synthetic cycle of any length can then be 

calculated using a minimum of tools, which will 

be further described in section 3.1: 

 

1. an initial state in the S-vector for which 

the corresponding column sum ≠ 0 

2. a random number generator 

 

Changes and adaptations to the probabilities in 

the Q matrix should be avoided to preserve 

stability. Instead, power levels can either be 

adjusted according to an independent weight 

function before the population of the Q matrix or 

the output state can be adjusted by selecting 

either a higher or lower power level than the one 

generated by the random function. Even though 

such modifications to the cycle are in conflict to 

the stochastic approach, it will in practice be 

necessary to include them to first and foremost 

keep the SOC within the admissible range.  

 

There is a specific issue related to the selection 

of states to include in the S-vector. Depending on 

the choice and the cycle properties the S-vector 

and the Q-matrix may contain empty states / 

empty column. These states might in turn cause 

instabilities to the cycle generation. There are 

two obvious solutions to this issue:  

 

1. The corresponding column in Q can be 

populated as the linear interpolation 

between adjacent columns. This method 

will generate a stable output but may 

cause the output synthetic cycle to consist 

of power levels never observed in the real 

cycle. 

2. The SOC-algorithm can be changed to 

avoid selecting states (power levels) not 

observed in the real cycle. 

 

In theory, this may not be an issue, but in practice 

when using standard random number generators in 

for example Matlab® it may be relevant as 

described further in section Implementation. The 

second method was selected in this project to 

ensure that the procedure can work with a large 

variety of load cycles in combination with a 

comparably large Q-matrix. 

3.1 Implementation 

Firstly, the S-vector of length m is selected to 

correspond to the reference load cycle properties. 

The m x m-matrix Q is then formed by stepping 

through the reference load cycle and incrementing 

the corresponding state Qn,x for each step, followed 

by the normalization of the columns by the total 

column sum. The first step in this learning process 

can be repeated for every measured (or simulated) 

load cycle that should be included in the synthesis 

as long as the sample rate is the same for all cycles 

and the total number of cycle steps for all cycles 

are used to normalize the columns in the second 

step. 

 

At this stage it is also possible to introduce 

limitations, weight functions, or in other ways 

change the properties of Q and any generated 

synthetic cycles compared to the input cycle(s). 

 

Following the calculation of the Q-matrix, a 

synthetic cycle can easily be generated step-wise 

using a general random number generator. In 

Matlab®, this can be done by creating a support 

matrix Qs consisting of the cumulative column 

sum of Q and the random generator rand; the 

column in Qs corresponding to the current state is 

compared by a random number [0..1] and the 

element closest to the random number is selected 

as the next state. That is, the output state is the first 

row index n of Qs(n,x) that satisfies the relation 

Qs(n,x)> rand where x is the current state and n is 

the next state. Simplified examples of Q and Qs 

are shown in Figure 1 and Figure 2. These 

examples are however not representative to HEV-

cycles. 
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This short algorithm is repeated for each step in 

the cycle starting the initial state x0 

corresponding to the initial power level. The 

output state n of each iteration is used as input 

state x for the next calculation. There is no 

theoretical limit to the total length of the 

synthetic cycle. In practice the length will 

however be limited by a lower limit determined 

by the requirements on correspondence with the 

reference cycle (see section 3.2).  
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Figure 1 Example of 10 x 10 Markov matrix Q 
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Figure 2 Example of cumulative sum matrix Qs of Q 

As mentioned in the previous section, a problem 

with SOC exceeding the maximum limits might 

occur when battery load cycles from charge-

sustaining HEVs are studied, especially if the 

cycles are comparably long and the energy 

throughput is in the range of the usable energy 

content of the battery. In such cases the SOC of 

the target battery must be calculated for each 

time step and then, via a predefined SOC control 

strategy, be used to adjust the output power for 

the next step to limit the required SOC-range. 

Thus, the battery load cycle cannot be treated as 

a purely stochastic process from a strictly 

fundamental standpoint unless the battery 

capacity is infinitely large or the load cycles are 

very short in duration. Nevertheless, this 

limitation of the proposed method is still viable 

since it replicates the situation in a real HEV 

where the drive pattern and road profile may be 

considered as stochastic whereas the actual 

battery current is limited and controlled by a 

control unit based on a non-stochastic strategy. 

If, in addition, the S-vector is composed by 

representative levels with a high number of levels, 

the SOC-strategy will only have a minor impact on 

cycle properties in terms of power and energy. 

This issue and a proposed solution are presented in 

detail in the following sections, where the first part 

presents the definition of SOC and the associated 

battery model, followed by an example of a simple 

SOC-preserving control strategy. 

3.1.1 Battery model used for SOC-estimation 

The state-of-charge (SOC) of a battery is typically 

defined as the ratio between the available 

discharge capacity and the maximum discharge 

capacity at a specific temperature and age (state-

of-health – SOH). While the SOC in a HEV is 

carefully controlled to ensure the performance and 

durability of the battery throughout the design 

lifetime, this is not the case for the generated 

stochastic cycle according to the Markov-process. 

However, the average SOC for any truly stochastic 

cycle will be equal to the initial SOC for an 

infinitely long cycle if the total probability for 

charge is equal to the probability for discharge, 

capacity wise. This is naturally not the case for real 

cycles of finite length, especially not for HEV 

batteries with a comparably high energy 

throughput. Hence, the resulting SOC of the 

synthetic cycle must be controlled according to a 

pre-defined strategy using a similar method as is 

implemented in a real HEV. 
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 (5) 

Firstly, a method for a step-wise calculating SOC 

during the extraction of the synthetic cycle is 

selected. Using the relation in (5) and a fixed value 

for the reference capacity Creference, the SOC(t) is 

numerically calculated as the Euler approximation 

of the integrated current in each step. If the load 

cycle is characterized by constant power levels 

rather than current levels, a separate algorithm for 

estimation of current must be added. Any battery 

model able to calculate current from a power input 

is possible to use at this stage. For simplicity, a 

rudimental Thevénin equivalent circuit is used 

here: 

 

( ) ( ) ( ) ( )tItRtUtU OCV +=  (6) 
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Assuming the typically narrow SOC-range of 

most Li-ion batteries designed for HEV’s, the 

average open circuit voltage UOCV may be 

regarded as a constant. Similarly, the internal 

resistance can be simplified using a single value 

or a limited set of values to further simplify the 

equation. 

Starting from the input power to the battery, the 

power – current relation in (7) must be satisfied 

for all time steps. 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )2
tItRtItUtItUtP OCV ⋅+⋅=⋅=  (7) 

 

Solving this equation for each time instant yields 

a time-varying current vector to be used in SOC-

estimation. 

 

Secondly, an appropriate SOC strategy is added 

to keep the SOC of the battery within the 

acceptable range throughout the duration of the 

synthetic cycle. This approach, or any other 

SOC-preserving method, is absolutely essential 

when extracting synthetic cycles in which the 

energy throughput is comparable to the 

maximum usable energy of the battery.  

3.1.2 SOC Control Strategy 

Naturally, there are countless ways to control the 

SOC in a HEV. That is especially challenging for 

cycles with an energy throughput that is 

comparable to or exceeding the usable battery 

energy. A synthetic load cycle could either be 

designed to replicate the SOC-trends of the target 

load cycle as accurately as possible, or to reflect 

the statistical properties of the load cycle using 

an additional weight function that will control the 

SOC to stay within the acceptable range. One 

approach to control SOC is to limit the charge 

power close to the upper SOC-limit and the 

discharge power close to the lower limit. 

Rutquist et al [5] suggested the tangent function 

as the optimal control function u=f(soc) for a 

simplified system with a supercapacitor energy 

storage. This strategy may be expanded to 

batteries, at least within a narrow SOC-range, 

and was therefore used in this paper. 

 

Regardless of which strategy that is chosen, a 

stable weight function that limits the maximum 

SOC-swing of the synthetic load cycle is needed. 

The reference for this function could either be a 

static target (SOCtarget), a dynamic SOC signal 

according to measured properties or a simulated 

signal assuming a constant average efficiency of 

the battery cell. 

Since the generated cycle is stochastic, no change 

made to the Q-matrix will be efficient to keep SOC 

within the admissible range. Even small changes in 

the Q-matrix defining the Markov process might 

cause severe stability problems in the cycle 

generation. Hence, the Q-matrix must be left un-

changed and the output power levels used to 

control SOC instead. 

 

The inverse tangent function according to [5] was 

used to generate a limit function for SOC. This 

function can be configured with different steepness 

at the edges (see Figure 3). For each step generated 

according to the method described in the previous 

section, the output power level is weighed with 

this limit function. If the SOC is close to the target 

SOC no change is made to the output power. In 

contrast, when the SOC is close to the limits the 

target function gradually limits the charge power 

(at high SOC) and the discharge power (at low 

SOC). The calculated new power level is then 

adjusted to fit the pre-defined power levels (states) 

in the S-vector. The adjustment factor 0..1 is based 

on the Matlab® tangent function tan according to 

equations 8 and 9. 
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where

 

 
SOCtarget is the centerpoint of the admissible SOC-

range, 

SOCmax is the maximum admissible SOC, 

SOCmin is the minimum admissible SOC, and 

SOCslope is a control parameter typically between 1 

and 10 that determines the steepness of the limit 

function close to the boundaries. 
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Figure 3 Limit function using tangent function and 

SOCslope between 1 and 10 



EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  6

The limit function SOCLimit Fcn varies between 

0..1 for SOC between [SOCmin … SOCmax] and 

can be used directly as a multiplication factor for 

the output power level in each step of the cycle 

generation: 

1+
= nFcn Limitoutput SSOCP

 (9)

 

The corrected output state corresponding to 

Poutput in (9) must then be selected as the power 

level that best corresponds to the discrete levels 

in the state vector S for which the probability is 

larger than zero. 

 

3.1.3 Optimisation 

Any cycle generated according to the proposed 

method will reflect the fundamental properties of 

the reference cycle. However, the actual SOC-

characteristics as well as other cycle properties 

will differ significantly between different 

synthetic cycles. To find and evaluate solutions / 

versions of the synthetic cycle with good, 

objective correspondence to the reference cycle, 

an optimisation process was run where key 

aspects of the cycle were compared to the 

reference cycle by means of weighted error 

functions, (10) to (14). A large number of cycles 

were generated, each according to the same 

Markov process and with the same settings, 

presented in Table 1. 

 

1. 

Difference in SOC over the complete cycle: 

∑ −⋅
−

⋅=
2

1
12

1 n

n referencesyntheticSOCSOC SOCSOC
nn

KERR
(10) 

2. 

Difference in RMS-power, scaled to kW: 

[ ] [ ]kWPkWPKERR referenceRMSsyntheticRMSPPRMS ,, −⋅=  (11) 

3. 

Difference in maximum energy window: 

[ ] [ ]WhWWhWKERR referencewindowsyntheticwindowWWwindow ,, −⋅=  (12) 

4. 

Difference in power distribution: 

( ) ( )
∑ −⋅=

S

referencesynthetic

distPP
N

SPhist

N

SPhist
KERR

dist

,,
,

 (13)  

where  

N = number of elements 

S = discrete power vector 

hist(Y,X) = the histogram (distribution) of Y over 

X 

5. 

Difference in energy distribution: 

( ) ( )
∑ −⋅=

S

referencesynthetic

distWW
N

SWhist

N

SWhist
KERR

dist

,,
,

 (14)  

where  

N = number of elements 

S = discrete power vector 

hist(Y,X) = the histogram (distribution) of Y(X) 

The weight factors KSOC, KP and KW are set for the 

specific application to set internal priority between 

the evaluation measures. 

 

For sufficiently long synthetic cycles the power 

distribution and energy distribution over the 

discrete power vector are expected to be similar to 

that of the reference cycle. However, this is only 

the case if the reference cycle can be modelled as a 

truly stochastic Markov process. Consequently, the 

shape of the power and energy distribution can be 

compared to the reference cycle to determine 

 

a) the validity of the Markov process to 

model the load cycle 

b) the minimum length of the synthetic 

output cycle to cover the full spectrum of 

the reference cycle 

Previous sections described the SOC-strategy as a 

necessary perturbation to the true Markov cycle 

since it affects the power levels in the synthetic 

cycle when the estimated SOC-level is close to the 

limits. 

 

The method in this paper uses the five presented 

error functions above, with weight factors 

according to Table 1 set to address specific 

properties. If the synthetic cycle should be similar 

to the reference cycle in SOC-variations, a larger 

value should be assigned to the factor KSOC, and 

similar for the other properties. Naturally it is also 

viable to use a combination of the K-factors to 

generate cycles that in average corresponds well to 

the reference cycle. Nevertheless, the fourth and 

fifth error function should be used to determine the 

minimum cycle time or minimum cycle length 

which has the fundamental properties of the 

reference cycle in terms of distribution of power 

and energy. 
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3.2 Evaluation 

The feasibility of the proposed method was 

evaluated based on an investigation of a large 

number of synthetic load cycles extracted and 

compared to a reference cycle. This reference 

cycle is based on measured battery current and 

battery voltage from a heavy-duty prototype 

HEV city-bus in Gothenburg, Sweden. Using the 

measured voltage and current together with the 

logged SOC-level estimated by the battery 

management unit, the Q-matrix was calculated 

according to the method described in previous 

sections, based on this single reference load 

cycle. In addition, the logged battery data was 

used to extract parameters for the simple battery 

model needed for SOC-estimation. 

 

Using the proposed SOC-strategy and general 

settings for SOC-average and SOC-limits as well 

as battery data from a relevant Li-ion battery (see 

Table 1) a number of synthetic cycles were 

generated and evaluated according to the error 

functions described in previous sections.  

Table 1 Battery properties and SOC-strategy settings 

Parameter Abbr. Value Unit 

 

SOC-strategy 

 
  

Reference SOC SOCtarget 50 % 

Upper SOC limit SOCmax 60 % 

Lower SOC limit SOCmin 30 % 

Initial SOC SOCinitial 50 % 

SOC-str SOCslope 10 - 

Sampling time tstep 0.1 s 

Optim.-factor, SOC KSOC 1/10 - 

Optim.-factor, RMS-power KP 1/500 - 

Optim.-factor, Energy window KW 1/40 - 

    

Battery    

Total energy WBattery 3000 Wh 

Total capacity CBattery 5 Ah 

Total internal resistance ESRBattery 0.45 Ω 

Open circuit voltage at 50% SOC UOCV 630 V 

    

 

Firstly, the minimum cycle length was evaluated 

using error functions 4 and 5. The outcome of 

this part indicated that, for this particular 

reference cycle and set of conditions, the cycle 

must be at least 30% of the original length to 

capture the fundamental properties (see Figure 

4). Other reference cycles, or the usage of a 

combination of cycles to calculate the Q-matrix, 

would most likely yield other results. In addition, 

the choice of the discrete power vector S is of 

fundamental importance in the evaluation; if a 

low number of power levels (states) are included 

in S, all states with high probability in the 

reference cycle are likely to occur in the synthetic 

cycles after a comparably low number of steps. 

The example in this paper used an S-vector of [-

100:1:100]% of rated peak power, resulting in a 

101x101 sized Q-matrix. This fact will in turn 

require the cycle length to be in the same range as 

the number of elements in Q (≈10000) to allow the 

cycle to span over the complete range of states.  

 

In Figure 4 the cumulative error between the 

power distribution and energy distribution is 

presented as function of the fraction of the 

reference cycle length. 

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

Synthetic Cycle Length [% of original]

S
u
m

 o
f 

e
rr

o
r 

o
v
e
r 

c
y
c
le

 [
%

]

 

 

1/(7x3 + -16x2 + 13x + 0.95)

1/(7x3 + -29x2 + 23x + 1.7)

Energy Spectrum

Power Spectrum

Polyfit, 3rd order

 

Figure 4 Cumulative error between power- and energy 

distribution and the reference cycle for different 

synthetic cycle length. 

The correspondence between the power- and 

energy distribution for the synthetic cycle and the 

reference cycles as a function of cycle length is 

also clearly evident in Figure 5 to Figure 8 where 

the distributions are shown for 5% and 80% 

respectively. 
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Figure 5 Power distribution at 5% cycle length 



EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  8

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

1

2

3

4

5

6

7

Power [% of peak]

F
re

q
u
e
n
c
y
 [

%
]

 

 

Original Cycle

Synthetic Cycle

 

Figure 6 Power distribution at 80% of cycle length 

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Power [% of peak]

F
re

q
u
e
n
c
y
 [

%
]

 

 

Original Cycle

Synthetic Cycle

 

Figure 7 Energy distribution at 5% cycle length 
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Figure 8 Energy distribution at 80% cycle length 

In addition to optimising the cycle generation 

process for good correspondence to the reference 

cycle in terms of power distribution and energy 

distribution, the SOC-changes must be taken into 

considerations. Nevertheless, the presented 

method has shown promising results and may be 

used for simplifying the set-up of battery tests, 

the evaluation of load cycles and to combine 

several reference cycles into one test cycle. 
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