

# A Dynamic Ohmic Resistance Estimator of PEMFC Based on Dual Extended Kalman filter

WEI Xuezhe DAI Haifeng SUN Zechang CHEN Jin'gan

*School of Automotive Studies, Tongji University, Shanghai, P.R. 201804*

**Abstract:** Ohmic resistance is very important in the state observation of the proton exchange membrane fuel cell (PEMFC). A PEMFC model based on equivalent circuit and its time-discrete state space expression were established in this paper. The method of estimating the ohmic resistance of PEMFC based on the proposed model by using dual extended Kalman filters (DEKF) was introduced which is featured by simple computation and real time processing. Experiments indicated that the method proposed was very effective in the ohmic resistance estimation and the ohmic resistance could be estimated in real time with a high accuracy.

## 1. Introduction

In paper [1], Dachuan Yu etc. analyzed a stable model by an equivalent circuit including several diodes and BJT and a dynamic model composed by several capacitors and inductances. In paper [2], P. R. Pathapati etc. proposed a CKT model to describe the dynamic characteristics for PEMFC. Mo Zhijun etc. developed an on-line measurement for a general internal-resistance of fuel-cell stacks [3], however, there is some difference between the general internal-resistance and the ohmic resistance. Authors in paper [4] recruited a method to determine the ohmic resistance and studied the affection caused by different working conditions, whereas this method could not be used when the fuel cell stack works. In paper [5], a so-called alternating current variable frequency and variable amplitude method measuring the ohmic resistance was designed, which needs very complex software system and hardware system designs.

In this paper, based on a simplified equivalent circuit model, an ohmic resistance identification method using DEKF was proposed, which was proved to be effective and with a high accuracy during the tests.

## 2. PEMFC Modeling

### 2.1 PEMFC Model

Referred to [3], a simplified equivalent model of the PEMFC was shown in Fig.1.

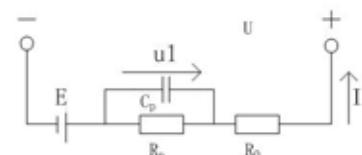



Fig.1 Simplified equivalent circuit model

In this model,  $R_0$  represents the ohmic resistance, which describes the voltage jump caused by a sudden-varying current, the RC circuit consisting of a double-layer capacitor  $C_p$  and a resistance  $R_p$  describes the electro-chemical characteristics of the PEMFC caused by the surface pole structure, and  $E$  is a voltage which could be got from Fig. 2.

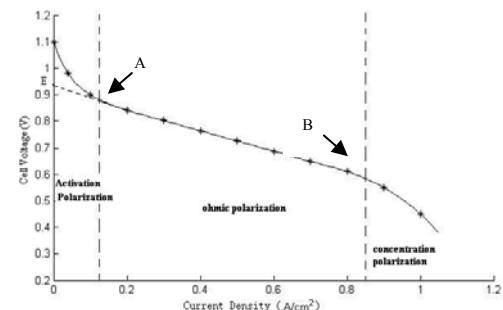



Fig.2 Polarization curve of PEMFC

### 2.2 State-space Expression of the Model

The state-space expression of the model is

$$\frac{du_1}{dt} = -\frac{1}{R_p C_p} u_1 + \frac{1}{C_p} I \quad (1)$$

$$U = -u_1 - IR_0 + E \quad (2)$$

This model could be expressed in a time-discrete form as

$$u_1(k+1) = A_1(k)u_1(k) + B_1(k)I(k) + w_k \quad (3)$$

$$U(k) = C_1(k)u_1(k) - R_0I(k) + E(k) + v_k \quad (4)$$

in which,  $A_i(k) = e^{-\frac{T}{R_p C_p}}$ ,  $B_i(k) = R_p(1 - e^{-\frac{T}{R_p C_p}})$ ,  $C_i(k) = -1$ , and  $w_k, v_k$  are the process noise and sensor noise of the system respectively.  $w_k$  describes the noise caused by the inaccurate model or other unknown input of the system,  $v_k$  describes the noise caused by the sensor.

### 3. Resistance Estimation Based on DEKF

#### 3.1 DEKF Resistance Estimator<sup>[6-8]</sup>

If we define the parameter vector of the model as

$$\theta = [R_0 \ C_1 \ R_i \ E]^T,$$

and the dynamic characteristics of the parameters are expressed as

$$\begin{cases} \theta(k+1) = \theta(k) + r_k \\ U(k) = C_2(k)\theta(k) - u_i(k) + E(k) + e_k \\ C_2(k) = [-I(k) \ a \ b \ 1] \\ a = (\partial U(k)/\partial u_i(k)) \times (\partial u_i(k)/\partial C_1(k)) \\ b = (\partial U(k)/\partial u_i(k)) \times (\partial u_i(k)/\partial R_i(k)) \end{cases},$$

and varying of the parameters is driven by some little noise  $r_k$ , the sensor noise of the parameter estimator is described by the noise  $e_k$ , here let  $Q_r = E(r \times r^T)$ ,  $Q_e = E(e \times e^T)$ , then the whole dual extended Kalman filter is summarized as following equations. Generally, the principle of the DEKF is shown in Fig. 3.

$$P_\theta(k | k-1) = P(k-1 | k-1) + Q_r \quad (5)$$

$$A_i(k-1) = \exp\left(-\frac{T}{R_i(k-1)C_i(k-1)}\right) \quad (6)$$

$$B_i(k-1) = R_i(1 - A_i(k-1)) \quad (7)$$

$$u_i(k | k-1) = A_i(k-1)u_i(k-1 | k-1) + B_i(k-1)I(k-1) \quad (8)$$

$$P(k | k-1) = A_i(k-1)P(k-1 | k-1)A_i(k-1)^T + Q_w \quad (9)$$

$$K(k) = P(k | k-1)C_i^T(k)[C_i(k)P(k | k-1)C_i^T(k) + Q_v]^{-1} \quad (10)$$

$$\begin{aligned} u_i(k | k) &= u_i(k | k-1) \\ &+ K(k)[U(k) - C_i(k)u_i(k | k-1) + R_iI(k) - E(k)] \end{aligned} \quad (11)$$

$$\theta(k | k-1) = \theta(k-1 | k-1) \quad (12)$$

$$P(k | k) = (I - K(k)C_i(k))P(k | k-1) \quad (13)$$

$$K_\theta(k) = P_\theta(k | k-1)C_2^T(k)[C_2(k)P_\theta(k | k-1)C_2^T(k) + Q_e]^{-1} \quad (14)$$

$$\theta(k | k) = \theta(k | k-1) + K_\theta(k)[U(k) - C_2(k)\theta(k) + u_i(k)] \quad (15)$$

$$P_\theta(k | k) = (I - K_\theta(k)C_2(k))P_\theta(k | k-1) \quad (16)$$

#### 3.2 Initialization of the Algorithm

Initialization of  $R_0$  was determined by the slope of the line A-B in Fig.2, and its value was

about  $1\Omega$ . Time constant  $\tau = R_p C_p$  and  $R_p$  could be determined by a voltage response of a current pulse<sup>[9]</sup>, and  $u_i(0 | 0)$  was set to be 0 at first.  $P$  and  $P_\theta$  describe the uncertainties of the initial states and initial parameters, while  $Q_e$  and  $Q_r$  decide the correcting of the prediction. According to the real condition, we can adjust the  $P$  and  $Q$  by analyzing the sensor noise and the process noise.

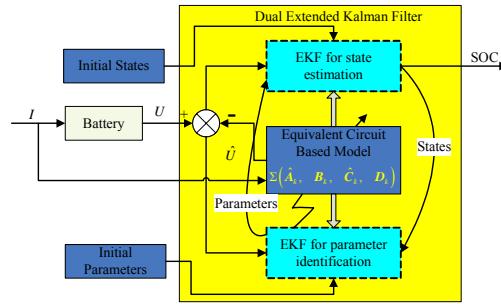



Fig. 3 General Principle of DEKF

### 4. Tests and Results

Two different tests were implemented. The first one composed of several different current pulses (Fig.4). This test was implemented on a test bench. The second test was a current profile we got when the vehicle was running, and current profile was shown in Fig.5.

Fig.4 shows that, ohmic resistance changes with the varying of the current, and larger current leads to smaller ohmic resistance. When current is large, there is more water generated on the anode of the stack, and the humidity of the membrane rises, which introduces a smaller ohmic resistance. Fig.5 is the voltage comparison between the model and the actual stack.

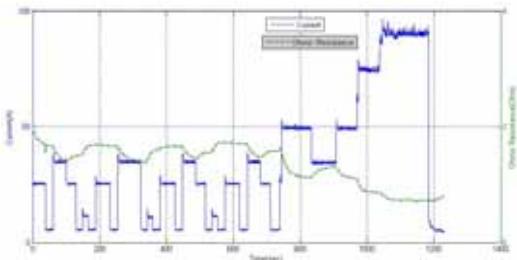



Fig.4 Ohmic resistance versus current on the test bench

From Fig.6, we can also see the resistance changing caused by the working conditions. In a regular condition, as the current loading on the stack, and with a good humidity control, the

ohmic resistance reduces to a stable value.

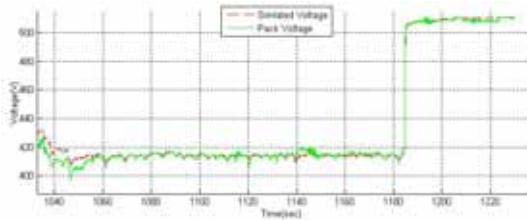



Fig.5 Voltage comparison between the model and actual stack on test bench

Fig.7 shows the voltage comparison of the model and the actual stack, which proves the accuracy of the model and the parameter estimation.

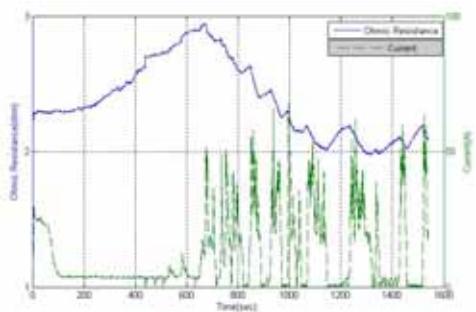



Fig.6 Estimated ohmic resistance versus current on vehicle

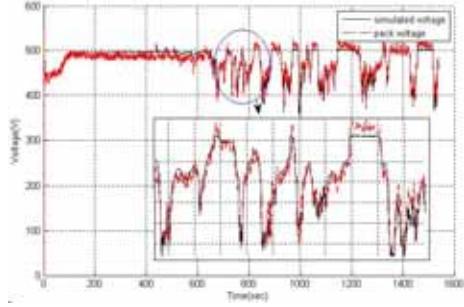



Fig.7 Voltage comparison between the model and actual stack on vehicle

## 5. Conclusions

- A. The proposed method based on the equivalent circuit model and the dual Kalman filter was very effective in the ohmic resistance estimating of the PEMFC. Testing results show the high accuracy of the estimation;
- B. The complexity of the algorithm is not very high, which introduces a low cost in the algorithm implementation. This method could be implemented on the platform of MCU or DSP easily.

C. Although in this paper, only the ohmic resistance estimation of the PEMFC was introduced, the method could be applied to estimate other parameters very well in a similar pattern with little adapting.

## References

- [1] Dachuan Yu, S. Yuvarajan. Electronic circuit model for proton exchange membrane fuel cells[J]. *Journal of power sources*, 2005, 142: 238-242.
- [2] P.R. Pathapati, X. Xue, J. Tang. A new dynamic model for predicting transient phenomena in a PEM fuel cell system[J]. *Renewable Energy*, 2005, 30: 1-22.
- [3] Mo Zhijun, Hu Linhui. On-line measurement for a general internal-resistance of fuel-cell stacks [J]. *Chinese Journal of Power Sources*, 2005, 29 (2): 95~98
- [4] Zhang Jinhui, Pei Pucheng. Experiment on ohmic resistance of proton exchange membrane fuel cell [J]. *Journal of Tsinghua University (Science and Technology)*, 2007, 47 (2): 228~231
- [5] Chen Qihong, Shu Zhifeng. Research on online monitoring system of fuel cell resistance [J]. *Journal of Huazhong Normal University (Nature Science)*. 2007 , 41(3):377-381.
- [6] R.E. Kalman. A new approach to linear filtering and prediction problems[J]. *Transaction of the ASME-Journal of Basic Engineering*, 1960(82D): 35-45.
- [7] Gregory L. Plett. Extended kalman filtering for battery management systems of LiPB-based HEV battery packs, part 3, State and parameter estimation[J]. *Journal of Power Sources*, 2004, (134):277-292.
- [8] Dai Haifeng, Wei Xuezhe, Sun Zechang. Estimate State of Charge of Power Lithium-ion Batteries Used on Fuel Cell Hybrid Vehicle with Method Based on Extended Kalman Filtering [J]. *Chinese Journal of Mechanical Engineering*, 2007(43) : 92-96.
- [9] Wei Xuezhe, Zou Guangnan, Sun Zechang, "Modeling and parameter estimation of Li-ion battery in a fuel cell vehicle." *Chinese Journal of Power Sources*. Vol. 28, 2004, pp. 605-608.