EVS24
Stavanger, Norway, May 13-16, 2009

Model reusability and cooperation in model based HEV
control system development

Antti Leivo®, Jussi Suomela?, Ari Hentunen®

Helsinki University of Technology, PL 4300, 02015 TKK, Finland, antti.leivo@tkk.fi
% Helsinki University of Technology, jussi.suomela@tkk.fi
¥ Helsinki University of Technology, ari.hentunen@tkk.fi

Abstract

Model based control system methodologies are increasingly used in HEV control system engineering to
address rise in total system complexity and development effort. Models are often developed in parallel by
lots of modelers. Models are also reused in all project phases as well as in other similar projects. There is
constant threat of project failure due to delays and poor quality if sufficient preparation is not done. In
heavy work vehicles the control software cost is even more critical due to small production series.
Applying strict development process guidelines, overall architecture design and proper training have been
tested by us and it has resulted in increased efficiency in HEV control system development.

Keywords: control system, controller, modeling, training, simulation

1 Introduction 2 Research case

Software controlled systems are taking an This paper is made in HybLab project (see
important role of the functions implemented in Acknowledgments). HybLab is an ongoing project
vehicles — from small passenger cars to heavy whose purpose is to develop methods for
duty work machines [1]. This is even more true hybridization of mobile working machines.

in case of hybrid electric vehicles. The progress

of embedding software into vehicles has been

from minor auxiliary and comfort systems to
safety critical vehicle core functions as '
legislation and development in technology are
allowing it more and more. Modern passenger
cars have dozens of embedded processor units
and a complicated communication bus structure
between those electronic control units (ECUs).
To address increasing effort and complexity in

software development as well as achieving

overall understanding of the total system : :
behavior, many developers have started to use T e e
model based development tools with rapid T
control prototyping systems [2].

Optional: Pumps, Steering Motors, etc.

DC Link

figure 1 Series hybrid power electronics network

In the case studied here we have got an
underground mining loader that has a hydrostatic

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1

driveline and hydraulic cylinders for bucket and
steering. Hydraulic pump is driven by diesel
powered internal combustion engine (ICE). In
hybridization process the hydraulic driveline will
be replaced by an electric driveline. The work
machine will be series hybrid vehicle with ICE as
a primary energy source and batteries and/or
super capacitors for energy storage (see figure 1).

From the modeling and software point of view,
the goal is to produce a simulation model of the
vehicle and its control system using model based
approach. Every significant actuator and energy
components with their efficiency data are
included in the model. Performance and
efficiency can be compared between
conventional and hybrid vehicle models with
desired work cycle. Models of electric
components and power flow make it possible to
develop control and study stability of hybrid
system.

Traction

»
- management | ¥
Thermal .
™ management Rig Device
. 9 specific 110
Vehicle
and
management) .
Power diagnostics
<> -+—» functions
management
Implement
— r—
management

figure 2 Control system modules

In addition to performance and efficiency
information gained from the simulation model,
the component and environment models are used
as a simulated sensor feedback when developing
control system software. Control system consists
of separate device controls and device
diagnostics functions as well as total system level
management systems such as overall hybrid
electric power management, initialization and
shutting down procedures, dataflow between
systems and failure situation handling. (see
figure 2).

The Mathworks MATLAB/Simulink and many of
its additional packages such as SimScape and
SimPowerSystems are used as modeling tool.
dSPACE rapid control prototyping tools are
applied in building control system demonstrator.

Modeling is done in parallel by multiple persons in
different physical locations at the same time. The
cooperation should be fluent and transparent.
Modules of the simulation model should be
possible to be reused in similar projects and
possibly by different people. The challenge is to
develop guidelines and model architecture to
succeed in the project.

Our system consists of several control units
communicating together. However, most of the
subsystems are provided with their own ECU and
our task is more to act as an integrator (see figure
3).

| I |

ECU 1 model

C i i
Device bus 2 Device bus 2
ECtobetnes

ECU

ECU 2 model ECU 3 model

ki

figure 3 Possible control system layout

As we have done these tasks in earlier projects, we
have a starting point where we know quite well the
possible problem points. In this paper will be
explained the challenges one can face in this field
and how they could be overcome.

3 Model based
development process

Software development can be seen as a sequence
of progressive phases:

e concept design
requirements specification
system level design
unit design
implementation
unit testing
integration
system testing

o field tests
The previous list could be expanded by test design,
documentation, electronics design, further
development, updates and maintenance.
Development is in practice an iterative design-
implement-test process, and commonly expressed

software

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2

as the V-cycle [3]. This iteration can be
simplified by a graphical modeling tool which
makes it possible to define, simulate, visualize
and document model structure and behavior in an
unified environment (see figure 4).

Requirements

Documentatio

Implementation

figure 4 Tasks integrated into model

In addition to actual control system model, the
vehicle and its environment as well as drive cycle
are also modeled with the very same methods. A
unified model environment enables virtual
testing without the need for real devices in early
phases of the project, allowing many kinds of
what-if-scenarios easily. This is called model-in-
loop-simulation (see figure 5). Terms controller
model and plant model are often used to separate
the controller(s) that are being developed from
the plant that is used as a testing environment.

Control commands—jm{
Controller

Plant model
model

|-——Sensor feedback:

figure 5 Controller and plant model separation

Modeling is often aided by so called rapid
control prototyping (RCP) systems. Those
systems consist of one or more prototyping
ECUs with abundant memory, CPU and testing
resources. Those are connected to a host-PC. The
code, most often C-code, is automatically

generated from the models. It is then compiled and
loaded into the RCP units. The behavior of the
running models (or more precisely, software
generated from model) can be monitored and
controlled in real-time via host-PC. With those
systems, one can rapidly implement the control
system and verify the concept [4]. This is the final
phase that we are focusing on this paper, but after
RCP there would be automatic code generation
(ACG) for the production-intent control hardware
and better quality requirements. To minimize the
need for field tests (not totally replacing them),
hardware-in-loop —testing systems (HIL) would be
applied. HIL system emulates behavior of real
device and environment by giving ECU realistic
input/output signals. The overall picture of model
based development workflow is shown in figure 6.

Designing Field tests

\ 4

Rapid control
prototyping

HIL-testing

On-target
implementation

figure 6 Workflow of model based software
development

4 Challenges and problems

As with all things, implementing something
complex is never straightforward. Here is a list of
some of the possible problems that one may
confront in this context.

Human coordination problems. Project is divided
for practical reasons into several subtasks and
several people start to make things on their own
way. Integration of the modules may be very
troublesome and many parts have to be remade if
the specification is inadequate. It may also be that
the working roles are overlapping and the same
task is specified and done by several people,
different ways. It may also be that good
specifications are done, but information does not
transfer between people.

Data coordination problems. Modelers work with
different versions of one or more subsystems or
files. Modifications can be overwritten with old
versions if data is transferred “manually”, slowly
and without systematic backup feature. Editions
have to be done again and again. Also, separate
specification documents and models often have
lots of dependencies. If one changes e.g. CAN

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 3

message specification document, then one must
change the CAN database file and the control
models. This introduces lots of possible error
points.

Documentation and startup problems.
Documenting is not enforced enough or is only
done after the project, when nobody uses it
anymore. Almost nobody likes to document
willingly. Documentation requires general
guidelines as well. There are often changes in
personnel. Exiting people cause losses in
intellectual property and quiet knowledge.
Adding new people into a software project at late
stages can generate more work than it is worth
[5].

Attitude problems. There can be, from the old
school C/C++ programmers, negative attitude
towards new methods such as model based
software development and automatic code
generation. It is also possible that the
specifications made are not obeyed as own
solutions are seen as better ones.

Modeling tool problems. There are many kinds of
time consuming, hard-to-anticipate issues with
software licenses, installation,
corporate/university security settings, immature
tools, insufficient support from development tool
vendor. Different simulation and development
tools can have complex mutual version
compatibility requirements. Differences in
software versions between development staff can
cause compatibility issues.

External delays and other problems. Component
delivery times in demonstrator vehicle projects
may be long and variable. New technology
components are often prototype quality versions,
not yet off-the-shelf/series production. They may
require additional engineering and
communication with vendor to make them fully
functional. Their documentation may also be
missing or contain errors or a wrong version.
These failures in delivery times may cause
enormous delays and unplanned work.

Design considerations. It may be that because of
a totally new type of project, system overall
picture is not very clear at initial point and it
evolves during the project. This may result in a
lot of re-engineering. Parts of the models are
used in simulation, rapid control prototyping as
well as implementation and testing phases.
Models have to be designed to support this kind
of reuse.

5 Solution

To counter the potential issues, actions have been
taken. Solutions have been searched in four
different ways: through guidelines, system
architecture, software tool and communication.

5.1 System architecture
considerations

Concept of plant model and controller model as in
figure 5 has been developed in following way:

design

Driver

model — Visualization

ECU2

r¢—p> Vehicle model
model

ECU1
model | Environment

\ ECU3 model
model ’

A

figure 7 Generic MIL-simulation architecture

Controller model is divided into separate ECU
models, representing a physical ECU. Plant model
is divided into driver model, vehicle model,
environment model and visualization. With this
division, one can take or leave the visualization,
change terrain (work cycle environment), change
drive style and work cycle actions (driver model;
switching between joystick input, drive cycle
input, constant input is applied here) or change
vehicle parameters and structure. Work cycle
power demand does not just come into an abstract
ECU. It comes from the vehicle state, affected by
the environment model (terrain data). Driver
model HMI commands (throttle, brake, steering) as
in real vehicle and these are brought to ECU via
1/0 signals.

When one wants to implement the ECU functions
in a real RCP hardware, the setup is as follows
(ECU 2 from figure 7 is reused as an example in
figure 8):

Vehicle n.etw'ork ECU 2
communication model

Device I/0
functions

figure 8 RCP model components

The ECU model itself remains unchanged, but
hardware 1/0O abstraction brought into the model

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 4

via Vehicle network communication and Device
1/0 functions interface model blocks. It is also
worth noting that handling these mentioned
functions in separate blocks and communicating
via grouped signal bus resembles an AUTOSAR
software function [6] and this may be helpful if
you will be migrating your system into
AUTOSAR standard later.

Driver |
model <—»| Visualization
ECU2 | i
/ HLUo [Vehicle model
ECU 1
model _ | Environment
\ Ecus | L model
model [T

figure 9 HIL-simulator model structure

In HIL-phase, one wants to test ECU 2 which
runs in a real ECU hardware. A HIL-simulator
runs the whole plant model and brings signals to
the ECU 2 via HIL-simulator’s ECU 2 HIL 1/0 —
interface (see figure 9).

As well as separation of big concerns (controller,
vehicle, /O, driver, visualization, environment,
communication) it is necessary to separate each
component model (ICE, generator, battery,
DC/DC-converter as well as cooling system
components) into a module. Figure 10 shown
main main division which should be further
subdivided into single components. Make them
modular, parameterized and generic. Always, if
possible, use the same signal interface for
components of the same type.

Vehicle model

Functional simulation

Electromechanics |«g—pw
ICE - and power
electronics
Vehicle
t mechanics
Implemgnt
hydraulics

Thermal simulation

-Thermal control cmd——jm Cooling

—Components temperaturejm-
system

——Components heating power=jmi

figure 10 Generic vehicle functional model structure

5.2 Modeling guidelines

There are some common modeling guidelines
available already. For MATLAB/Simulink there
are for example MAAB [7], J-MAAB [8], dSPACE
guidelines and MISRA rules. Guidelines for
achieving compatibility with AUTOSAR
architecture already exists for MATLAB/Simulink.
It is necessary that some or all those are applied in
your projects and further adapted for your need.
Guidelines for communication and cooperation
policies are needed as well. Mutually agreed and
applied guidelines make models understandable,
editable, readable and compatible together.

5.3 Communication and coordination

As has been seen in previous chapter Challenges
and problems, most of the problems arise from
poor communication and incomplete overview of
the task that is under work. Someone has to be
responsible for the overall system architecture
before and during modelers do their job. As people
tend to avoid complicated things, information has
to be easily available and publishable. Not only
project manager, but also all of the members need
to aware of the status of the project. It is necessary
to train and supervise personnel for desired
practices and guidelines.

5.4 Assisting software tools

To succeed in all above, tasks can be assisted with
proper tools. Those may include version control
systems, shared publishing platform (wiki-style),
model verification tools and real-time
communication channel to handle easily who is

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 5

doing what. Use only tools that are easy to use
and train.

6 Results
Mentioned actions were taken into use in this
project (I11). Here is a list of compared projects.

e Earlier project (I): Most of the time
approximately 5 active modelers, lots of
changes in personnel. Simulation and
RCP. Loose specification for models and
modeling. Severe module integration
problems and lots of remaking.

e Earlier project (I1): 3-5 active modelers,
some changes. Mostly different people
that in project I. Simulation. Strict
specification that were not supervised
very intensively. Some success and
fluent workflow, but not very reusable
models and models mostly
understandable only by author.

e Current project (I11): somewhat variable
group, 4-7 active modelers (mostly
different people that in previous project
1). Simulation and RCP. Strict guidelines
based on previous experiences, trained
for everyone. Modules were integrated
with very light effort and were highly
reusable in many project phases and
some other tests.

There were quite a lot of changes in personnel, so
everything cannot be explained by personal
learning of modelers. It is interesting to note, that
the results got better even if there were slight
increase in modeler team size.

7 Conclusions

Control system software is being developed
increasingly in model based methodology due to
its dramatic effectiveness in many cases
compared to traditional methods. To be fully
beneficial in large projects and to unleash full
potential of novel development methods, a
strictly defined policy is needed to avoid
problems in cooperation and model reuse. Proper
guidelines increase modelers’ productivity and
overall awareness of the project status compared
to earlier case of lesser controlled projects.

Acknowledgments

This paper is part of an ongoing project
Hybridization of work machines funded by the
Multidisciplinary Institute of Digitalisation and

Energy (MIDE) of Helsinki

University of

Technology.

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

Fabbrini, F.; Fusani, M.; Lami, G.: Software
Travels in the Fast Lane: Good news or bad?
ERCIM news magazine number 68. 01/2007.
news.ercim.org/content/view/120/263/.
accessed on Oct 31% 2008.

Charette, Robert N.: Why Software Fails,
Spectrum, IEEE online magazine 9/2005.
http://spectrum.ieee.org/sep05/1685.
Accessed on Oct 31% 2008.

Schauffele, J.:Zurawka T.. Automotive
Software Engineering. p. 23. ISBN 3-528-
01040-1, Wiesbaden, Wieweg, 2003.

Suomela J., Sainio P., Leivo A., Jakubik P.,
Degerholm M., Lehmuspelto T., Control
System Development for an 8 Wheel Off-
Road HEV By Using V-Cycle, The 22nd
International Battery, Hybrid and Fuel Cell
Electric Vehicle Symposium & Exposition,
EVS 22, Yokohama, Japan, October 23 - 28
2006.

Brooks, F.P.: The Muythical Man-month,
anniversary edition, ISBN 0-201-83595-9,
Addison-Wesley, Reading, Mass., 1995.

AUTOSAR Technical overview.
http://www.autosar.org/find02.php. Accessed
Apr 9th 2009.

Mathworks Automotive Advisory Board:
Control Algorithm Modeling Guidelines
Using MATLAB®, Simulink®, and
Stateflow® - Version 2.0.
http://www.mathworks.com/industries/auto/m
aab.html. Accessed Apr 8th 2009.

Japan MATLAB Automotive Advisory
Board: PLANT MODELING GUIDELINES
USING MATLAB® and Simulink® version
2.1. http://j-
maab.cybernet.jp/free/pmwg/english.html.
Accessed Apr 9th 20009.

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 6

Authors

Antti Leivo received his M. Sc. degree
in automation and systems technology
from the Helsinki University of
Technology, Finland, in 2005. He has
been working since 2005 as a
researcher at the Helsinki University
of Technology. His main research
projects are in the field of model based
software development of hybrid
electric work machines.

Jussi Suomela is senior research
scientist and project manager in
Department of Automation and
Systems Technology in Helsinki
University of Technology (HUT). His
main research areas are hybrid electric
vehicles and field and service robotics.
He received his doctoral degree from
HUT in 2004.

Ari Hentunen. Hentunen received his
M.Sc. degree in electrical engineering
from the Helsinki University of
Technology, Finland, in 2005. From
2005 to 2007, and since 2008, he has
been working as a researcher at the
Helsinki University of Technology.
During 2007-2008 he worked at Patria
Land & Armament as an R&D
engineer in the field of model-based
software development. His main
research projects are in the field of
hybrid electric work machines and
DC/DC converters.

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium

