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Abstract 
The main objectives of this paper are to demonstrate the development of the hybrid vehicle control system 

with the GPS (navigation) system of a vehicle travelling a pre-planned driving route. To verify the 

improvement in vehicle fuel economy, we developed the forward-facing simulator, which can be applied to 

the proposed HEVs control system. The proposed HEVs control system recognizes upcoming driving 

patterns because it has terrain (uphill, downhill) and speed information. The controller calculates the 

parameters related to pattern recognition during a sampling time to choose a comparable driving cycle and 

to classify into three driving modes (Urban/ Extra-urban/ Highway mode). Moreover, a dynamic 

programming approach is proposed to obtain the optimal fuel economy and the state of charge (SOC) 

trajectory. For this approach, we developed a rule-based controller to manage the battery SOC according to 

the target SOC range. The amount of the target SOC range depends on the driving pattern recognition 

during a specific time period. The conventional HEV control system sustains the battery SOC within a 

limited range. Compared with the conventional controller, the proposed control system, by using road slope 

and speed information, gives results that confirm improved fuel economy. 

Keywords:  HEV (hybrid electric vehicle), navigation, controller, state of charge, simulation,  

1 Introduction 
As an alternative to conventional vehicles, 
Hybrid Electric Vehicles (HEVs) can achieve 
better fuel economy and reduce pollution 
emissions. HEVs can use gasoline (or diesel) 
engine energy to generate electric energy through 
a motor-generator system with a rechargeable 
energy storage system. Compared to similar 
conventional vehicles, Hybrids has more 
advantages: it can operate the combustion engine 
closer to the highest efficiency range; can capture 

the wasted energy from deceleration through the 
regenerative braking system and convert it into 
electrical power; and can use the electric power to 
charge the batteries, which in turn can propel the 
electric motor for hill climbing, acceleration, and 
high power demand conditions.  
 
The conventional HEV control system commonly 
monitors and maintains the battery state of charge 
(SOC) at the upper (approximately 60%) and the 
lower (approximately 40%) limit range. The 
battery needs to provide propulsive power for 
unexpected hill climbing and/or acceleration 
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conditions. The battery requires a sufficient 
charge storage space for regenerating mechanical 
potential and/or kinetic energy during downhill 
and/or deceleration conditions. When the battery 
SOC falls below the lower limits, in the 
conventional control system, the engine power 
will engage and provide electrical charging 
power to the battery immediately via the 
commands that increase engine torque and speed. 
However, this conventional control system is 
advantageous for obtaining adequate results 
when the vehicle operates on a flat terrain 
travelling route (without road slope information). 
When HEVs are operating at a relatively high 
altitude and/or high speed, more power may be 
required and the battery may be discharged faster 
than when HEVs are operating at a relatively low 
altitude and/or low speed. In such a case, the 
battery SOC control using GPS (navigation) 
information can be applied. 
 
Arun Rajagopalan investigated an instantaneous, 
control strategy for a parallel HEV. This strategy 
continuously modifies itself based on future 
driving conditions, when speed or elevation 
changes. Traffic and elevation information from 
GPS is used in an adaptive fuzzy logic controller 
[3]. Erik Hellstrom studied how information 
about future road slopes can be utilized in a 
heavy truck. A model predictive control scheme 
is used to control the longitudinal behavior of the 
vehicle. And computer simulations showed that 
fuel consumption can be reduced by 2.5% [2]. 
Yoshitaka Deguchi proposed a charge/discharge 
control system, which uses fuel efficiency as the 
control parameter. The parameter is updated 
according to the magnitude of the difference 
between the predicted SOC and the actual SOC 
and whenever traffic information is updated. Fuel 
economy was improved by 3.5% on the test route, 
by 7.8% on the downhill route and 0.5% on a 
congested route [4]. 
 
Accordingly, we developed the forward-facing 
simulator,which can be applied to the proposed 
HEVs control system. The proposed HEVs 
control system recognizes future driving patterns 
based on information about the travelling terrain 
(uphill, downhill) and speed. This rule-based 
controller manages the battery SOC according to 
the incoming target range. The target SOC range 
depends on pattern recognition during a specific 
time period. Moreover, a dynamic programming 
approach is proposed to obtain the optimal fuel 
economy and the optimal SOC trajectory. The 

results of the proposed control system are 
presented and conclusions are described in 
comparison to those of the conventional control 
system.  
 

2 Road slope and vehicle speed 
information 

 
The Global Positioning System (GPS) is a 
common vehicle navigation system. It offers a 
signal that contains the longitudinal and latitudinal 
position information of the vehicle on a route. 
When the departure and destination points are 
specified, the driver drives the hybrid vehicle 
along the planned route and obtains information 
along this path from the GPS. Once the vehicle 
receives information on the future driving 
condition in advance, the control system can 
operate the vehicle to reduce fuel consumption. 
For example, Figure1 shows an illustration of the 
SOC control management scheme with or without 
slope information. When an HEV is to travel on an 
uphill in the near future at a relatively high speed 
and high altitude (c-d region), the motor/generator 
(MG) will require more power to satisfy the power 
demand and the battery SOC may drop. In the 
conventional control system, if the battery SOC 
falls below the threshold lower limit, the 
motor/generator (MG) will prevent the discharge 
of the battery. 
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Figure1: Control scheme of road slope (altitude) 

information 
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6 Conclusions 
 
This paper presents the hybrid vehicle control 
algorithm with GPS (navigation) system for 
vehicles travelling a pre-planned driving route. 
To verify fuel economy improvement, we 
developed the forward-facing simulator 
applicable to the proposed HEVs control system.  
 
To predict the future state of a vehicle, the 
proposed HEV control system recognizes the 
future driving patterns from information on the 
terrain (uphill, downhill) and speed. The 
controller calculates the parameters during a 
sampled time in order to choose a driving cycle 
and to classify three driving modes (Urban/Extra-
urban/Highway mode) 
 
This rule-based controller commands manage the 
battery SOC according to an incoming target 
range. The target SOC range depends on pattern 
recognition during specific time period. 
Moreover, a dynamic programming approach 
was proposed to obtain the optimal fuel economy 
and the optimal? SOC trajectory. Dynamic 
programming is well-known for finding the best 
solution for  optimal control of the HEV. In the 
simulation, ideal fuel efficiency can be expected 
to be approximately 4.84% enhancement. The 
optimal SOC trajectory at the transition of road 
section boundaries suggests rules of control 
strategy based on the ideas described. In addition, 
the backward-facing simulation (DP) and the 
forward-facing simulation results were compared 
to verify the reliability of the proposed forward-
facing control system and vehicle components 
model. Compared with the conventional 
controller, the proposed control system gives 
results that confirm improved fuel economy, 
using road slope and speed information in the 
simulation. 
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