
EVS24
Stavanger, Norway, May 13 - 16, 2009

An Embedded Computer Based System for Monitoring,
Diagnostics and Communication in Hybrid and Electric

Vehicles.

M. Paschero1, G. Del Vescovo1, A. Rizzi1, F. M. Frattale Mascioli1
1Sustainable Mobility Research Center, INFOCOM Department,

Via Eudossiana 18, 00184, Roma, maurizio.paschero@pomos.it

Abstract

In the present paper a software system for onboard processing of automotive data is proposed and de-
scribed. The project of a system composed by some modules interacting on the basis of a producer-
consumer paradigm is discussed. The modules run as separateprocesses on an embedded system
equipped with 266 MHz CPU, Linux operating system and several peripherals, including a TFT display.
The producer side is represented by the processes which are in charge of receiving and decoding informa-
tion coming from CAN or RS232 data links, forming a vector of physical quantities describing the status
of the vehicle. The vector is placed in a shared memory segment, where the consumer processes can read
and use it for their purposes. Consumer processes include a graphical display (virtual dashboard), a data
logger recording data on a memory card, and a transmitter module sending information over wireless
channels. In order to achieve the best flexibilty and reusability over a range of vehicle types, some of the
modules are fully configurable by means of a specified configuration file placed on disk. Configuration
files report the information used to decode the incoming datafrom the devices through the data links,
as well as the directives on how to display data on screen. Partial implementation is described in detail.
Future application to real vehicle prototypes is briefly discussed.

Keywords: data acquisition, diagnosis, electronic, instrumentation

1 Introduction

The increasing cost-effectiveness and reliability
of embedded computing systems make them a
suitable choice for flexible and organic informa-
tion management in vehicles (1), (2), (3). An
onboard computer equipped with a touchscreen
LCD provides a highly customizable and updat-
able way of monitoring critical information com-
ing from engines or battery packs, like speed,
operating condition, state of charge. Moreover,
the use of this device enables a simple data inter-
change between the vehicle and the outside world
by means of wireless technologies (2).
Nowadays, in a modern automobile, and espe-
cially in hybrid and electric vehicles is possible
to find up to fifty electronic control units (ECU)

for various subsystems. Typically the biggest
processor is the engine control unit, which is also
referred to as ”ECU” in the context of automo-
biles. The most of those units need to commu-
nicate among them in order to control the per-
formances and the emissions of the vehicle. To
allow microcontrollers and devices to commu-
nicate with each other within a vehicle without
a host computer a few communication protocol
have been proposed. Among them it is remark-
able to mention the serial communication bus and
the ControllerArea Network (CAN) bus. The se-
rial communication bus consists in transmitting
one bit after each other. Among serial busses
it should be mentioned the Recommended Stan-
dard 232 (RS232) proposed in 1969 by the Elec-
tronics Industries Association (EIA) which de-

EVS24 International Battery, Hybrid and Fuel Cell ElectricVehicle Symposium 1



fines the characteristics of the electrical signals
such as voltage levels, signaling rate and other
relevant quantities. A CAN bus network can in-
clude multiple nodes, and each node is able to
send and receive messages, but two or more dif-
ferent nodes can not obtain the bus simultane-
ously. Each message is transmitted serially onto
the bus, bit after bit. If the bus is free, any node
may begin to transmit. Otherwise, if two or more
nodes begin sending messages at the same time,
the message with the more dominant ID obtain
the bus according with the communication proto-
col rules and it is received by all nodes. The CAN
protocol was officially released in 1986 at the So-
ciety of Automotive Engineers (SAE) but only in
the most recent years it has been extensively im-
plemented. In fact, nowadays it is very easy to
find commercial components such as thermal en-
gines, electric motors, inverters, storage systems
etc. etc. provided with a CAN controller which
allow the component to be interconnected to the
CAN network of the vehicle. Nevertheless it is
still possible to find components communicating
through serial bus or very rarely on analog chan-
nels. Based on the previous arguments it seems
reasonable to assume that each relevant quantity
related to the instantaneous status of the vehi-
cle can be measured and transmitted on a com-
munication bus. The full understanding of this
capability makes clear the opportunity to equip
the vehicle with a computer based embedded sys-
tem capable to store and elaborate this informa-
tion. This opportunity becomes even more attrac-
tive for electric and hybrid vehicles where a large
amount of information coming from different de-
vices must be taken under consideration.
In the present paper, an embedded computer
based system is proposed for a set of automo-
tive applications, with special regard to hybrid
and electric vehicles. More precisely in Sec. 2
will be shortly introduced the hardware platform
used for the implementation. In Sec. 3 will be
described the software architecture of the whole
system. Special emphasis will be given to the
strategies used to make the software reusable and
scalable. In Sec. 4 will be described the modules
of the software which have been already imple-
mented. In Sec. 5 will be shortly described the
projects for the development of two prototypes
which are now under development in the labo-
ratories of Polo per la Mobilità Sostenibile (PO-
MOS) (4) which will mount a signal elaboration
system based on the software described in this
paper.

2 Hardware Platform

The hardware platform required to host the pro-
posed system need to be compact, robust, light
and capable to support different communication
standards such us CAN, RS232, USB, Ether-
net, GSM, GPRS, UMTS. Moreover it should be
equipped with a solid state disk to allow hosting
of the developed software and a removable solid
state memory to allow post processing of moni-
toring stored data. Furthermore it should mount
a LCD touch screen to allow the implementation

of a digital dashboard. Finally the system should
be able to work properly in a wide range of tem-
perature and with a voltage level available in a
standard vehicle. Based on the previous speci-
fications, the hardware platform adopted for the
development of the proposed system is the Engi-
cam GPX21 (5), a board based on the Freescale
i.MX21 32-bit multimedia processor, with sev-
eral peripherals and connection facilities. The
GPX21 board is shown in Fig. 1. The board

Figure 1: The GPX21 board

is connected to a Thin Film Transistor (TFT)
5.7” display with 640 x 480 resolution shown in
Fig. 2. The salient system specifications are re-

Figure 2: The GPX21 LCD

ported in Table 1. The available computational
power and the advanced operating system allow
the handling of multiple processes communicat-
ing by a shared memory segment. The develop-
ment can be done in standard C or C++ using
the gcc arm-linux toolchain. Advanced graphical
applications can be developed thanks to the pres-
ence of the nano-X graphic server installed on
the system (6). Communication with the host PC
can be established via the Secure SHell (SSH)
protocol over the Ethernet link. This way, the
GPX21 console can be accessed remotely, in or-
der to transfer executable code and other files,
perform configuration actions and view the con-
sole output of running programs for testing pur-
poses.

EVS24 International Battery, Hybrid and Fuel Cell ElectricVehicle Symposium 2



Table 1: GPX21 specifications

Name Value/Range
CPU model ARM926

CPU frequency 266 MHz
Multimedia accelerator Integrated with CPU

RAM 64 MB
Serial ports RS232, RS485

Wireless connectivity GSM, GPRS, UMTS
USB 2.0

Ethernet 10 Mbps
CAN bus 500 bps

Operating system Linux 2.4
Flash disk 64 MB
Display TFT 5.7”

VGA Resolution 640 x 480
Temperature range -40, +85 C

Supply voltage 9, 30 V
Power consumption 5 W

Size 170 x 123 x 44 mm
Weight 400 gr

3 Software Architecture

The software architecture is designed with the
aim of making the system modular and easy to
be upgraded with new functions. This require-
ment can be fulfilled by defining an interprocess
communication procedure which allows different
independent processes to interact with a unique
set of data. Of course the competition among
processes to access the data must be synchro-
nized through well defined strategies. A simple
scheme of the software architecture is shown in
Fig. 3. In the left side of the figure is shown the
CAN bus of a generic vehicle, and other incom-
ing automotive data by means of a serial commu-
nication link. Recently, the most of components
(i.e. thermal engine, electric motor, energy stor-
age system, GPX21, etc. etc.) are connected to
the CAN bus through a CAN controller. Each
component transmit on the CAN bus to all other
components the information about its status fol-

Figure 3: Scheme of the software architecture

lowing the CAN protocol rules. However, it is
not uncommon to have automotive devices com-
municating through serial ports, following stan-
dards like the RS232.
On the right side of the figure are shown all the
hardware peripherals which can be considered
to take advantage of the output of the elabora-
tion of the signals read from the communication
busses. Among them can be mentioned an LCD
screen to display data, an SD flash memory to
store data and a Wi-Fi modem to transmit, but
other devices can be taken under consideration.
The central portion of the figure (enclosed in a
dashed line) represents the software used to allow
the communication between the hardware com-
ponents mounted on the vehicle and the hardware
peripherals used to make the information about
the vehicle usable for the final user of the car.
All the software modules enclosed in the dashed
line are implemented as independent processes
running in the embedded system CPU.
The software architecture can be described
through a producer-consumer paradigm. More
precisely the producer side is constituted by the
modules labeled with ‘CanRx’ and ‘SerialRx’
in Fig. 3 whereas the consumer side is consti-
tuted by the modules labeled by ‘Dashboard’,
‘DataRec’, and ‘DataSend’ in the same figure.
As previously remarked the software is designed
to allow the addition of other modules on both
the producer and the consumer side when a larger
number of facilities is needed. The communi-
cation between the producer and the consumer
side is realized by means of a shared memory ap-
proach. The shared memory can be interpreted
at an high level as the status vector of the of the
vehicle. It is constituted ofn real numbers rep-
resenting the instantaneous values ofn quanti-
ties associated with the status of the vehicle. The
status vector is formed using the following rule:
each component of the vector reports the most
recent known value of the physical quantity it
refers to. This value is the one contained in the
last received CAN (or serial) data message refer-
ring to that specific signal. This approach allows
the consumer side to ignore the rules of the com-
munication protocol used to transmit signals in
the vehicle. In fact the producer side modules
take care of formatting data read on the com-
munication busses in a high level format making
the physical structure of the vehicle transparent
for the consumer side modules. The mentioned
modules on the producer and the consumer side
are designed to be usable in many types of ve-
hicle and does not require, for example, the full
a priori knowledge of the components connected
to the CAN bus, so they do not need to be re-
compiled if the configuration of the CAN net-
work is changed. The claimed generality can
be guaranteed through the use of a few config-
uration files describing in a specified format the
hardware components connected to the CAN bus
of the actual implementation. This step, needed
to guarantee the generality of the software, could
be overpassed if the companies working in the
automotive sector will find an agreement on the
assignation of the CAN ID to specified quantities
once for all, by defining a fully open standard. In

EVS24 International Battery, Hybrid and Fuel Cell ElectricVehicle Symposium 3



this situation the server could inquire each node
of the bus to obtain the complete knowledge of
the CAN network, avoiding the requirement of
a configuration file. The configuration file must
include a table of the CAN ID and the format-
ting of the transmitted bytes for each components
connected to the CAN bus. Moreover this config-
uration file should include high level information
regarding the number and the physical nature of
the real parameters needed to describe the sta-
tus of each components. A similar configuration
file is used for other types of data links, like se-
rial communication ports. These configuration
files, depending on the particular implementa-
tion, will allow the producer modules to gener-
ate the shared memory structure corresponding
to the actual configuration of the CAN bus or se-
rial communication and, similarly, will allow the
consumer modules to read a given sub-portion of
the status vector in order to perform the desired
elaboration. Another configuration file is used
for specifying the desired layout of the graphical
dashboard. By this file is possible to select the
number and type of graphic controls to use, and
to connect them to the physical quantities (status
vector components) of interest. In order to aid
the editing of the configuration files, GUI appli-
cations are provided which can be run on a reg-
ular PC. These GUI application allow the user
to insert the desired configuration entries with a
friendly interface. They speed up the file editing
process and protect against error making several
checks on the inserted data.

4 Software implementation

The principle at the base of the proposed soft-
ware architecture is the sharing of the status vec-
tor of the vehicle among different software mod-
ules. This scheme has been implemented by
means of processes communicating via a shared
memory segment. The modules implemented so
far are the CanRx, the DataRec and the Dash-
board processes (see Fig. 3). Moreover, to allow
a simpler development of the Dashboard mod-
ule, some higher level graphical functions built
on top of the lower level nano-X API functions
have been written. These high level functions
make easier the drawing of signal-monitoring
controls like gauges, led arrays, 7 segment digit
displays. The adopted mechanism for the inter-
process communication is based on shared mem-
ory. It has the advantage of allowing the best
performance, thanks to its low-level data sharing
paradigm which allows to avoid data copies and
costly stream management. The main drawback
of the shared memory approach is the access syn-
chronization (simultaneous write and read oper-
ation have to be avoided to prevent race con-
ditions). The access regulation has been real-
ized by means of a simple semaphore, allow-
ing just one process at once to access the mem-
ory segment. The memory segment, besides the
state vector values, contains ancillary informa-
tion about the state vector (name, range, measure
unit of each component). The state vector in-
stances are placed in a circular buffer. The use of

a buffer is adopted to loosen the timing require-
ments for the access of the various modules. The
buffer holds the last N issues of the vector. For
the preliminary tests, N has been set to 64. The
developed software modules will be described in
the following subsections.

4.1 CanRx module

The CanRx process is in charge of receiving the
CAN messages issued by the devices connected
to the bus. The received messages are decoded
with the aim of getting the numerical values ex-
pressing the physical quantities of interest. The
decoded values are then written to the proper
subportion of a previously created shared mem-
ory segment. A CAN message has a maximum
length of 8 bytes (64 bits). The bits in a single
message are usually employed to carry more than
one value of interest. For example, bits from 0 to
15 carry motor speed value, bits from 16 to 23
carry engine torque value, and so on. Numerical
values of interest, carried by some bits in a CAN
message, are referred to as signals. Getting the
physical quantities from a CAN message usually
requires knowledge about meaning and location
of each signal (e.g. bits from 0 to 15 of the CAN
message with a certain ID number carry motor
speed information). Moreover, information on
how the value is encoded is necessary. Decod-
ing a signal typically involves: converting the
number from binary to decimal, then applying an
affine transformation consisting in possible mul-
tiplication by a scale factor (gain) and addition of
an offset value. The employed CAN message ID
numbers, and the meaning, location and encod-
ing of each signal vary from device to device, and
each company typically adopts proprietary con-
ventions, due to the lack of a widespread standard
scheme. In order to achieve a fully general soft-
ware module, the mapping between CAN mes-
sages and physical quantities of interest is not
hard-coded in the executable, but read on start-
up from a configuration file. The file tells the
CanRx module the IDs of the CAN messages
to be processed along with the location, name
and decoding information for each signal of in-
terest. The configuration file can be easily edited
on a PC by means of the provided GUI interface.
The CanRx module performs some initialization
steps and then enters an infinite loop in which
the messages received from the CAN controller
are processed. The program flow can be summa-
rized as follows (the parameters in italics can be
provided by the user from the command line):

1. Open can device in the requestedmode
(blocking or non-blocking) and set thebaud
rate.

2. Read up the configuration file placed in a
conventional disk location.

3. Access or create the shared memory seg-
ment and semaphore, identified by a con-
ventional key.

EVS24 International Battery, Hybrid and Fuel Cell ElectricVehicle Symposium 4



4. Write the ancillary information on the
shared memory (name, range, measure unit
of each signal).

5. Enter the infinite loop.

(a) Read CAN messages from the mes-
sage queue.

(b) Get current time from the system
clock, for time stamping.

(c) Decode the messages to get the signal
values.

(d) Write up time stamp and signal values
to the state vector in the shared mem-
ory circular buffer, at the current cur-
sor position.

(e) If CAN read mode is non-blocking,
sleep for somesleep time.

Some details about the user parameters follow.
Thecan device to be opened is usually identified
in UNIX-like systems by a device file under the
/dev directory (e.g. /dev/can0). Thebaud rate
to be set for the provided device is expressed in
Kbit/s. The readingmode affects the kind of read
operation, blocking or non-blocking. In blocking
mode, the read operation does not return until a
message is actually received. This could block
the process for a while. In non-blocking mode
the read operation returns immediately anyway,
even if no message has been received. In this
case, to avoid continuous access of the process to
shared resources (e.g. CPU, shared memory), a
sleep call has to be performed to stop the process
for a sleep time expressed in milliseconds. If no
device is provided from the command line, a sim-
ulation mode is activated, in which the read op-
erations are simulated with randomly generated
CAN messages. The simulated reading mode is
of non-blocking type.

4.2 DataRec module

The DataRec module is in charge of dumping
the information passing through the shared mem-
ory segment to a persistent storage device. More
precisely, every issue of the status vector, along
with its time stamp, has to be output to a log file.
Each file has also the ancillary information about
signals reported inside of it, and it has a unique
name allowing to retrieve the interval of time it
refers to. The main requirements the DataRec
module has to meet are the following:

1. It must not miss any issue of the state vec-
tor appearing in the proper buffer inside the
shared memory segment.

2. It has to handle the case in which the disk it
is writing gets full. In this situation the older
log records have to be erased to make room
for the new ones (FIFO policy, even if more
sophisticated strategies could be employed).

3. It must have a lower priority with respect
with other processes (CanRx, graphics) in
accessing the shared resources (mainly CPU
and shared memory).

4. The generated log files must be easy to
browse and suitable for post-processing.

Data in log files are organized as follows. Each
row contains one issue of the state vector, with
the time stamp on the first column. Columns
are separated by TAB characters, ancillary infor-
mation is reported at the end of the file. This
way, the generated files are easy to load with
well known software packages like MATLAB or
spreadsheet applications. The number of rows
contained in each file is fixed. This way, all files
have a similar size, chosen with the idea of get-
ting a good compromise between the time in-
terval covered by a single file, and the ease of
loading, browsing and processing. The actual
time interval covered by a file depends on the
rate at which new state vectors are written to the
buffer. The DataRec module performs some ini-
tialization steps and then enters an infinite loop in
which the state vector issues read from the shared
memory segments are dumped to the chosen me-
dia. The program flow can be summarized as fol-
lows (the parameters in italics can be provided by
the user from the command line):

1. If the givenpath is an accessible directory,
access or create the log file directory inside
of it.

2. Check free disk space. If disk space is not
sufficient, try to erase older DataRec log
files, if present.

3. Access the shared memory segment and
semaphore, identified by a conventional key.

4. Read up the ancillary information from the
shared memory (name, range, measure unit
of each signal).

5. Enter the infinite loop.

(a) If first iteration, or if a log file has been
closed, start a new log file. This in-
volves generating its name from clock
time and checking for free disk space.
If space if not sufficient, erase older
DataRec log files.

(b) Until completion of the log file, per-
form the following steps in loop.

i. Read up the state vector issues
from the shared memory buffer.
The considered state vector circu-
lar buffer positions are the ones
ranging from one after the last
read position until the current po-
sition set by the writing modules.
The read state vectors are imme-
diately dumped to disk.

ii. Sleep for somesleep time.
(c) Write the ancillary information to the

completed log file and close it.

Some details about the user parameters follow.
Thepath has to be necessarily provided, it has to
be a valid directory on the chosen media to write
onto. There must be a predetermined minimum

EVS24 International Battery, Hybrid and Fuel Cell ElectricVehicle Symposium 5



free disk space, or otherwise some disk space has
to be occupied by older DataRec log files, which
can be erased by the DataRec module. Thesleep
time is expressed in milliseconds.

4.3 Dashboard module

The Dashboard module, still in a development
stage, is in charge of performing a suitable vi-
sual rendering of some of the values contained
in the status vector. This is done by simulat-
ing some typical analog or digital monitoring
controls, like gauges, LED arrays, 7 or 16 seg-
ments alphanumeric displays. The controls are
expected to exhibit a dynamic behaviour sim-
ilar to the one of their hardware counterparts,
in particular the velocity of variation and iner-
tia have to be reproduced for a comfortable and
easily readable rendering. The screen drawing
function is carried out trough the facilities of
the nano-X graphic server, providing a program-
ming interface which allows to get a handle to
the screen and to draw very low-level geomet-
rical patterns like lines, arcs, rectangles and so
on. The nano-X server also provides an inter-
face for getting input from the user (e.g. through
a touchscreen). In order to draw the hardware-
like controls able to display the current value of
a signal, a collection of C functions have been
written and some data structures have been de-
fined. Each data structure is in charge of hold-
ing the current status and layout of a control (e.g.
the number of LEDs in a LED array, the color of
on and off LEDs, size and position of the LEDs,
mapping between the number of lighted LEDs
and the value to represent, inertia, currently dis-
played value, etc...). The function in charge of
managing a control takes the current status struc-
ture and the new value to display as its parame-
ters, and updates the graphical rendering of the
control accordingly. An example of digital dash-
board generated using the Dashboard module is
shown in Fig 4. In order to achieve a reusable
software module, the dashboard layout is speci-
fied via a configuration file placed in a conven-
tional location. The file contains the type and

Figure 4: Example of digital dash board generated
using the Dashboard module.

layout of the controls to draw, the value that each
of them has to display (signals are identified by
their name, reported among the ancillary infor-
mation on the shared memory segment), the map-
ping between the position of the control (num-
ber of lighted LEDs, gauge angle, etc...) and the
numerical value. The DataRec module performs
some initialization steps and then enters an infi-
nite loop in which some of the status vector com-
ponents read from the shared memory segment
are graphically rendered to screen. The program
flow can be summarized as follows (the parame-
ter in italics can be provided by the user from the
command line):

1. Read up the configuration file placed in a
conventional disk location.

2. Access the shared memory segment and
semaphore, identified by a conventional key.

3. Read up the ancillary information from the
shared memory (name, range, measure unit
of each signal).

4. Connect to the nano-X graphic server and
create the main window.

5. If some correspondence is found between
the signal names on shared memory and on
configuration file, create and initialize the
data structures for the controls specified on
configuration file.

6. Enter the infinite loop.

(a) Read the current values of the signals
to display, accessing the most recent
status vector in the shared memory.

(b) Update each graphic control.
(c) Sleep for somesleep time.

The sleep time is expressed in milliseconds, it
should be set to a value assuring a proper update
rate of the screen. The usual refresh rate of a vi-
sual information ranges from 20 to 30 frames per
second.

5 Future Developments

In the first stage the CanRx and DataRec modules
have been realized in a simple, not highly opti-
mized form. The next development step will in-
volve the full implementation of three new mod-
ules: Dashboard, SerialRx and DataSend. The
core graphical routines for the Dashboard mod-
ule have already been realized and some demo
programs have been carried out. The complete
implementation of the module requires the capa-
bility of connecting to the shared memory seg-
ment and reading from it in a way rather similar
to the one of the DataRec module. The other key
feature to realize is the capability to automati-
cally create and setup the required graphical con-
trols according to a configuration file read from
disk. The SerialRx module will read automotive
signal information from a serial (RS232, RS485)

EVS24 International Battery, Hybrid and Fuel Cell ElectricVehicle Symposium 6



port, decode it and write it to the shared mem-
ory segment like the CanRx module. In order to
realize it, some information must be got as con-
cerns the way automotive devices (drives, bat-
tery packs, etc...) encode signal values in serial
communication character streams. Once an ad-
equately general outline of encoding techniques
has been achieved, a method must be studied to
make the SerialRx module reusable in a wide
range of contexts, by the definition of a proper
configuration file describing the encoding style
of the expected information. The DataSend mod-
ule will read the information contained in the sta-
tus vector issues located in the shared memory
segment, like the DataRec and Dashboard mod-
ules. The DataSend module will be in charge of
transmitting the status vector information over a
range of possible channels (GPRS, WiFi LAN,
etc...) for telemetry and VANet (Vehicular Ad-
hoc Network) applications. In order to imple-
ment the DataSend module, information has to
be acquired concerning the features of the differ-
ent wireless technologies and the programming
interfaces used to communicate with the relative
hardware controllers.
After the first implementation, modules have to
undergo an accurate optimization step. In fact,
the limited resources available on embedded sys-
tems like the GPX21 require a high level of com-
puting efficiency. The preliminary tests carried
out on the CanRx and DataRec modules show
that the time requested by the steps performed by
the processes (information decoding, disk writ-
ing, memory access, etc...) can be very difficult
to control in presence of limited resources (CPU,
memory, etc...) and in absence of accurate code
optimization. Achieving the best efficiency is
thus necessary in order to make possible a strict
time scheduling of the processes. Each module
will be optimized and different configurations in-
cluding from two to five modules running simul-
taneously will be thoroughly tested. In order to
carry out the tests, an USB-to-CAN interface for
PC will be employed. By using this device, it
is possible to feed the GPX21 running the mod-
ules with a stream of known CAN messages sent
from a PC. This way, the capability of processing
high quantities of incoming data and to report ac-
curate time stamp information will be carefully
measured and analyzed.
The signals elaboration system described so far
will be mounted and tested in the Polo per la Mo-
bilità Sostenibile prototypes. The most imminent
project is the realization of a formula SAE vehi-
cle (7) build to compete in the formula SAE Ital-
ian race. This prototype will be equipped with a
Honda CBR motor and a Walbro ECU which of-
fers communication through RS232 communica-
tion port. The most important quatity to monitor
in race vehicles is the engine rotational frequency
which need to be visulized in a flashy fashion to
give an importatn feedback to the driver. An-
other important quantity to be dispalyed is the
vehicle speed. Besides these classical informa-
tion a few uncommon quantities need to be dispa-
lyed, namely, the engine water temperature, the
battery voltage, the exhaust oxigen sensor, the
opening time of the cylinder injector and the ad-

vantage ignition angle of the cylinder. A screen-
shot of the dashboard designed for the formula
SAE vehicle is shown in Fig. 5. Another proto-

Figure 5: Digital dash board for formula SAE gener-
ated using the Dashboard module.

type under development which will be equipped
with the proposed system is the Bizzarrini P538
Eco Targa Florio. This prototype is a LPG-gas
electric hybrid-propulsion reissue of the Italian
sports car Bizzarrini Livorno P538 (originally is-
sued in 1967). All the devices mounted on the
P538 prototype (thermal and electric engine, Bat-
tery Management System, ECU) communicate
through CAN bus. More precisely, the vehicle
will mount an Alfa Romeo Tehrmic engine, a
permanet magnet electric motor by CIS and a
Kokam battery pack with MIRMU Battery Man-
agment System (BMS). The real-world applica-
tion of the proposed system to the mentioned pro-
totypes will provide valuable information for fur-
ther development and improvement.

References

[1] A. Puschnig, R. T. Kolagari,Requirements en-
gineering in the development of innovative au-
tomotive embedded software systems, in Re-
quirement Engineering Conference, 2004. Pro-
ceeding 12th IEEE International, pp. 328-333.

[2] M. Rodelgo-Lacruz, F. J. Gil-Castineira, F. J.
Gonzalez-Castano, J. M. Pousada-Carballo, J.
Contreras, A. Gomez, M. V. Bueno-Delgado, E.
Egea-Lopez, J. Vales-Alonso, J. Garcia-Haro,
Base technologies for vehicular networking ap-
plications: review and case studies, in IEEE In-
ternational Symposium on Industrial Electron-
ics, ISIE 2007, pp. 2567-2572.

[3] I. Katramados, A. Barlow, K. Selvarajah, C.
Shooter, A. Tully, P. T. Blythe,Heterogeneous
sensor integration for intelligent transport sys-
tems, in Road Transport Information and Con-

EVS24 International Battery, Hybrid and Fuel Cell ElectricVehicle Symposium 7



trol - RTIC 2008 and ITS United Kingdom
Members’ Conference, IET, 2008, pp. 1-8.

[4] Pomos, http://www.pomos.it/, accessed on
2009-04-04.

[5] Engicam, http://www.engicam.com/, accessed
on 2009-04-04.

[6] nano-X, http://www.microwindows.org/, ac-
cessed on 2009-04-04.

[7] Formula SAE, http://students.sae.org/competi-
tions/formulaseries/, accessed on 2009-04-04.

Authors

Dr. Maurizio Paschero is a post
doctoral research associate at the
Information and Communication
Department (INFOCOM) of the
University of Rome ”La Sapienza”
since 2008. He received the Lau-
rea degree in Electronics Engineer-
ing in 2003 and the Ph.D in Infor-
mation and Communication Engi-
neering in 2006 from the Univer-
sity ”La Sapienza” of Rome and
the Ph.D. in Mechanical Engineer-
ing in 2008 from Virginia Poly-
technic Institute and State Univer-
sity. His major fields of interest in-
clude smart structure, stability of
structure, circuital modeling and
synthesis, neural networks, fuzzy
systems.

Dr. Guido Del Vescovo is a post
doctoral research associate at the
Information and Communication
Department (INFOCOM) of the
University of Rome ”La Sapienza”
since 2008. He received the Laurea
degree in Electronics Engineering
in 2004 and his Ph.D in Informa-
tion and Communication Engineer-
ing in 2008 from the University of
Rome ”La Sapienza”. His major
fields of interest include supervised
and unsupervised data driven mod-
eling techniques, neural networks,
fuzzy systems, evolutionary algo-
rithms and granular computing.

Dr. Antonello Rizzi is an As-
sistant Professor at the Informa-
tion and Communication Depart-
ment (INFOCOM) of the Univer-
sity of Rome ”La Sapienza” since
2000. He received the Laurea de-
gree in Electrical Engineering in
1995 and the Ph.D in Informa-
tion and Communication Engineer-
ing in 2000 from the University
of Rome ”La Sapienza”. His ma-
jor fields of interest include super-
vised and unsupervised data driven
modeling techniques, neural net-
works, fuzzy systems and evolu-
tionary algorithms. In particu-
lar, he is currently working on
Granular Computing and hierar-
chical reasoning. He is author or
co-author of more than 50 pub-
lications. Since 2008, he serves
as Director of the Intelligent Sig-
nal Processing and Inductive Mod-
eling Systems Laboratory of the
‘Polo per la Mobilità Sostenibile
della Regione Lazio’ (Sustainable
Mobility Research Center), INFO-
COM Department.

Prof. Fabio Massimo Frattale Ma-
scioli received the Laurea degree
in Electronic Engineering in 1989
and the Ph.D. degree in Infor-
mation and Communication Engi-
neering in 1995 from the Univer-
sity ”La Sapienza” of Rome. In
1996, he joined the INFOCOM
Department of the University ”La
Sapienza” of Rome as Assistant
Professor. Since 2000, he has
been Associate Professor of Cir-
cuit Theory at the same depart-
ment. His research interest mainly
regards neural networks and neuro-
fuzzy systems and their applica-
tions to clustering, classification
and function approximation prob-
lems. Currently, he is also working
on circuit modeling for vibration
damping, energy conversion sys-
tems and electric and hybrid vehi-
cles. He is author or co-author of
more than 70 papers. Since 2007,
he serves as scientific director of
the ‘Polo per la Mobilità Sosteni-
bile della Regione Lazio’ (Sustain-
able Mobility Research Center),
INFOCOM Department.

EVS24 International Battery, Hybrid and Fuel Cell ElectricVehicle Symposium 8


