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Abstract
This paper describes a long term SOC-prediction method using topographic informations to enhance the 

fuel saving capability of parallel hybrid cars. There are a lot of approaches to determine the torque or 

power split in a parallel hybrid drive train. This prediction method can be adapted to all of these approaches 

if they use the SOC as a guideline for the use of electric driving energy. The impact of these long-term 

prediction method on two different torque split strategies is represented in this paper.
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1 Introduction
There  are  a  lot  of  different  approaches  to 
calculate  good  operation  points  for  parallel 
hybrid drive trains. Most strategies take only in-
car-data  into  there  calculations.  Therefore  it  is 
just  possible  to  minimise  the fuel  consumption 
for one calculation step. These local minima do 
not  lead  to  a  global  minimum  of  fuel 
consumption. The global minimum can only be 
calculated with the full knowledge of the driving 
conditions  of  a  given  route  after  the  drive  is 
finished.
But if there is information about the route ahead 
the car, like the altitude profile and speed zones, 
one can improve the strategies to push the fuel 
consumption closer to the global minimum.
This paper describes how this information can 
be used to  improve  the  fuel  saving capacity. 
The  impact  of  this  method  on  two  different 
analytical  operational  strategies  is 
demonstrated.

2 Long term prediction method

With a global optimisation tool for a given route 
the absolute minimum of fuel consumption can be 
calculated afterwards. As a side result the optimal 
state of charge (SOC) profile for this route is also 
determined. 

In Figure 2.1 the SOC calculated with a Bellmann 
algorithm is compared to the SOC as  generated by 
an  on-line  operational  strategy  for  a  specific 
driving cycle containing up- and downhill stretches 
with  altitudedifferences  of  up  to  ???  m.  Two 
different effects can be seen. In area 1 of Fig. 2.1 
the on-line strategy avoids to discharge the battery 
to a level as deep as the off-line algorithm does. 
That happens because the on-line algorithm does 
not know the altitude conditions of the drive. The 
off-line  algorithm  knows  that  at  a  distance  of 
8000 m  a  long  decline  starts  and  that  a  lot  of 
energy  can  be  regenerated.  So  the  necessary 
energy balancing of the on-line algorithm avoids a 
deeper discharge. In area 2 a fast discharge  can be 
seen  with  the  on-line  strategy.  After  the 
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regeneration of downhill energy the SOC has a 
high level and the energy balancing of the on-line 
strategy  leads to this discharge with the aim to 
avoid  an  overcharge  of  the  battery  at  the  one 
hand and to keep charging capacities for further 
recuperations on the other hand. 

Here, too,  the limited knowledge of the future 
driving conditions leads to a suboptimal behavior 
of  the on-line strategy. The optimal behavior of 
the off-line algorithm gives a deeper discharge in 
area  1  and   a  slower  discharge  in  area  2.  The 
reason  for  this  is  the  total  knowledge  of  the 
driving conditions on the route. 
But  the  complete  knowledge  of  the  driving 
conditions ahead of  the car  is  not  necessary to 
determine  an  SOC  curve  close  to  the  optimal 
SOC  curve  in  Figure  2.1.  The  altitude 
characteristic in Figure 2.2 belonging to the SOC 
curve  in  Figure  2.1 demonstrates  an   inverse 
correlation between the SOC and the momentary 
altitude. 

So obviously the average SOC depends strongly 
on the altitude characteristic of the route. 
It  has been  found that  by feeding  the Bellman 
algorithm  with  just  the  altitude  curve  and  the 
average speed of a route the SOC curve created 
comes near to the off-line SOC curve in Figure 
2.1 [3]. By adding more information to the speed 

input on the Bellmann algorithm the SOC curve 
comes even closer  to the optimal SOC curve. For 
example,  the  speed  limits  on  a  route  are  an 
additional information for the possible speed of the 
car on this route.  An SOC curve calculated with 
this additional  information approximates close to 
an  optimal  SOC  curve  calculated  with  he  full 
information from a drive in the past.  Because of 
the dependence between SOC curve and altitude 
characteristic  other  optimal  SOC  curves  on  the 
same route but for different drives (i.e. at different 
velocities) can also be approximated by a general 
SOC  curve  created  only  with  speed  limits  and 
altitude  information.  This  approximated  SOC 
curve can be used to guide the on-line operational 
strategy  and so the differences between the off-
line optimisation  and the on-line algorithm from 
figure 2.1 can be minimised. 

Figure  2.3 shows the already known blue and red 
SOC characteristics of Figure 2.1: in blue the SOC 
from the unmodified on-line strategy and in  red 
the  SOC  calculated  by  the  Bellman  algorithm 
representing the global optimum for this drive. The 
black line marks the SOC characteristic that was 
generated by feeding the Bellman algorithm with 
the speed limits  and the altitude characteristic of 
the route.  If this characteristic is used to guide the 
on-line strategy the result is the green SOC line. 
From  distance  7500 m  to  15000 m  the  average 
speed of  the car was near  the speed limit  of  the 
route and therefore the green, black and red SOC 
characteristic  are  close  to  each  other.  From 
distance 2500 m to 7500 m the speed limit and the 
average speed of the car was different. That leads 
to  a  bigger  difference between the  optimal  SOC 
(red) and the approximated SOC (black). 
The green SOC following the approximated SOC 
avoids the two discrepancies marked in Figure 2.1: 
the discharge does not stop like in area 1 and the 
fast discharge in area 2 is also avoided.
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Figure 2.2: Altitude level belonging to the SOC 
characteristic of Figure 2.1

Figure 2.3: Comparison between different SOC 
characteristics

Figure 2.1: Difference between on-line and off-line 
calculated SOC



For the approximation of any SOC curve to an 
SOC  curve  that  is  optimal  for  a  given  route 
different methods can be used. The method used 
for the approximation in Figure  2.3 uses speed 
limits and altitude levels. But it is also possible to 
generate  a  reference  SOC  curve  just  with  he 
average  speed  of  the  route  ahead.  Then  the 
difference between the optimal and the reference 
curve is of course bigger than with the method 
used  for  Figure  2.3.  The  best  results  can  be 
achieved when the route has been driven at least 
three or four times in the past. For each drive the 
optimisation algorithm can calculate an optimal 
SOC curve; after e.g. four drives an average SOC 
curve can created from these four optimal SOC 
curves.   Because  this  average  SOC  curve 
contains the typical  speed characteristics of the 
route  it  gets  better  with  every  additional  drive 
(similar  driving  conditions  assumed).  So  the 
guidance comes closest to the optimum. 

Figure 2.4 shows the difference between the SOC 
approximation  with  average  speed  and altitude 
information (black) and the approximation using 
the average SOC of former optimised drives. The 
use  of  optimised  SOC  (blue)  to  generate  an 
average SOC (red) leads to the best fuel economy 
because  the  average  SOC  curve  contains  the 
most information about the route.
Independent  of  the  method  that  was  used  to 
generate the approximate SOC curve this curve is 
just a guidance for the on-line strategy. The on-
line strategy should never follow them exactly. 
Figure  2.3 shows  the  difference  between  the 
guided  (green)  and  the  approximated  (black) 
SCO  characteristic.  The  reason  for  this 
differences  that  the  approximated  (black)  SOC 
characteristic is no a fixed reference variable, it 
rather marks the centre of a tolerance band. If the 
real  SOC is  within the tolerance band it  is not 
necessary to intervene. If it leaves the tolerance 

band then the on-line strategy must be influenced 
in  such  a  way as  to  bring  back  the  actual  SOC 
value  to  the  designated  band.  The  way  to 
influence the strategy depends on the algorithm 
that is used to calculate the operation points. The 
only  requirement  every  strategy  must  fulfil  is 
that the SOC is the central and direct parameter 
for the decision how the battery energy is used. 
Two different strategies with different ways  to 
connect energy usage and SOC are presented in 
the next section.
The  strategy  which  calculates  the  operation 
points  of  the  drive  train  components  can  and 
must  have  the  possibility  to  react  on  actual 
driving situations. The approximated SOC curve 
can  not  include  information  about  driving 
situations ahead of a car on an new route. It can 
only  be  an  average  SOC reference  because  it 
includes no prediction of the speed details of a 
route . The handling of the speed details must be 
done by the on-line strategy.
One  of  the  effects  of  a  guidance  of  the  SOC 
value  is the difference between maximum SOC 
and  minimum  SOC,  see  Figure2.3.  With 
guidance the  difference increases  by 2 %.  The 
increase  of  the  SOC  difference  is 
disadvantageous for  the  lifetime  of  the battery 
[4]. With different test cycles it has been shown 
that  the  difference  between  minimal  and 
maximal  SOC  correlates  with  the  amount  of 
energy that is regenerated during uninterrupted 
downhill driving. Because of this correlation the 
increase  of  the  maximum  SOC  difference  on 
these test cycles has not risen above 3 %. So it 
can be said that  guidance of the on-line strategy 
has just little effect on the ageing of the battery.
The potential of the long-term prediction method 
to  improve  fuel  economy depends strongly on 
the implementation of the on-line algorithm that 
is used to calculate the operation points. In the 
next  section  the  impact  of  prediction  on 
analytical strategies is demonstrated.

3 Cost function based operational 
strategies

Every  hybrid  drive  train  needs  an  operational 
strategy.  This  strategy  has  to  determine  the 
operation  points  of  the  drive  train  components. 
This can be done by experience-based strategies or 
by  analytical  methods.  In  this  paper  we  go  into 
detail  only  with  analytical  methods.  These 
strategies  are  called  analytical  because  they 
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Figure 2.4: Comparison between different methods of 
SOC approximation 



calculate  the  operation  points  of  the  internal 
combustion engine (ICE) and the electric motor 
based on actual information. The power demand 
of  the  driver  and  the  rotational  speed  of  the 
engine  and  the  electric  motor  are  the  input 
information.  The  calculation  provides  the  gear, 
the  torque  of  the  combustion  engine  and  the 
torque of the eclectic motor. 
The  analytic  equation  (1)  here  is  called  a  cost 
function.  Every possible power combination of 
electric  motor  power  and  combustion  engine 
power that sum up to the power demand of the 
driver is tested for its cost.
Every  operation  point  belongs  to  a  specific 
power  and  has  its  own  efficiency.  The 
efficiencies are included in cost factors (2) and 
(3)  where  the  cost  factor  kICE handles  the 
efficiency  of  the  combustion  engine  the  cost 
factor kB includes the electrical efficiencies of the 
battery and the electric motor.

˙K tot=k ICE⋅P ICEk B⋅PE (1)

k ICE=
k ICE0

 ICEn , M 
(2)

k B=
k B0

E⋅B
(3)

By using all possible values for the electric motor 
torque at a given rotational speed every possible 
combination of engine powers and efficiencies is 
tested  for  cost  efficiency.  The  power 
combination with the lowest cost will be set up 
for the drive train.
The influence of the SOC on the cost calculation 
is represented by the battery base cost value  kB,0. 
The function of this value is to take care of the 
energy balance in the battery. If the SOC in the 
battery  is  low  it  is  not  advisable  to  take  out 
further energy.  If the SOC is high it  is a good 
idea to increase the energy output. The value kB 

can be calculated with different  methods. It even 
can  be  set   equal  to  1  if  the  power  values  in 
equation (1) are normalised to the power demand 
of the driver. In the next paragraphs two different 
ways to determine the battery base cost value are 
introduced.

3.1 Cost function with real cost calcu-
lation

This  method  works  like  a  marketplace  for 
electrical  energy.  The  battery  has  stored  an 

amount  of  energy  and  the  energy  has  a  specific 
price like €/kWh.  kB0 represents this price for the 
algorithm.  Energy  is  bought  to  store  it  in  the 
battery when the generation price is lower then kB0. 
That  could  happen  if  the  energy  comes  from 
regenerative  braking  where  a  cost  of  zero  is 
assumed because no fuel has to be spent for this 
energy. It can also happen because of a high value 
of kB0. According to equation (3) a high  kB0  means 
a high kB. This leads to a high value for electric 
power costs  in  equation (1).  But if  kICE is  lower 
than  kB equation  (1)  generates  a   lower  cost  by 
multiplying  kB with  a  negative  power.  Negative 
power  means   charging  of  the  battery  and  an 
enhanced load on the ICE. 
The  price  kB0 is  calculated  continually.  For 
charging equation (6) is used. If electric energy is 
generated by using the combustion engine kICE has 
an  according  value  depending  on  the  operation 
point of the engine. It is used to calculate the value 
of the new amount of energy stored in the battery. 
Dividing it by the new amount EB,n+1 gives the new 
specific price of the  electric energy.  
Regenerated  energy  would  come  for  free  and 
therefore kICE  in equation (6) should become zero. 
But then the new amount of energy only affects the 
price over the increase of  EB,n+1. This could lead to 
balance problems between the amount of  energy 
and its price. If  regenerated energy comes for no 
cost its value is also zero. In equation  (5) this is 
realised by a kICE of 0. By this equation (5) turns to 
equation  (4)  The  recuperated  energy  ΔEE now 
affects the base cost factor only by its presence in 
equation (6)

k B0 , n1=
k B0 , n⋅E B , n⋅B, n

E B , n1
(4)

Therefore the regenerated energy pushes the price 
to slow so that the price after a recuperation is to 
high for the now to big supply. Too little energy 
will be sold at this price. To solve this problem an 
average  kICE over the last 100 seconds could be 
calculated and used instead of zero in equation (6).
As the price is regulated by supply and demand it 
will  rise  while  the battery is  discharged.   Again 
equation (6) is used to determine the rising price. 
kICE in equation (6) represents the price that would 
have to be paid if the electric energy uld have to be 
provided from the combustion engine. That works 
fine as long as the power demand of the driver can 
be satisfied just by the combustion engine. But if 
the combination of both engine and electriv motor 
is needed then kICE can not be determined exactly 
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and has to be approximated as a plausible value.

E E ,n=M E , n⋅2nE⋅E , n⋅B, n⋅ t
E B, n1=E B , n−E E , n

(5)

k B0 , n1=
k B0 , n⋅E B , n

E B, n⋅k ICE

E , n⋅B , n

E B , n1

(6)

If  the  long-term  prediction  as  described  in 
section  2 is  used  to  generate  an  SOC 
characteristic  for  the  route  ahead   this 
characteristic could be used to guide the cost 
function algorithm. In Figure 3.1 the green line 
shows  the  fuel  consumption  of  the  guided 
algorithm.  The  blue  line  shows  the  fuel 
consumption  of  the  unguided  algorithm  and 
the red line  marks  the global  minimum.  The 
decrease in fuel consumption is significant: the 
unguided strategy needs about 6 % more fuel 
then the guided strategy.

For  different  test  cycles  a  decrease  in  fuel 
consumption of between 3 % and 6 % can be 
achieved. Merely motorway cycles can hardly 
be improved by guidance of the SOC because 
the  benefit   from  hybrid  drivetrains  is  very 
small for this kind of cycles.
The guiding of the algorithm is realised just by 
an  addition  of  an  SOC-dependend  value  to 
equation (6). 

3.2 Cost function with linear equation

Like  the  method  described  in  section  3.1 the 
balancing  of  the   engine  and  electric  motor  is 
done by equation (1). But the calculation of the 
base cost factor  kB0 is done with equation (7) [2].

k B0=a⋅SOCb (7)
 
The  parameter  “a”  is  always  negative  and  a 

decrease  of  “a”  will  restrict  the  use  of  electric 
power for ICE support because a small change of 
the SOC will  lead to a large change of the base 
cost factor, and according to equation (1) a large 
base cost factor makes the use of positive electric 
power expensive. The parameter b is positive and 
can be used to shift the average SOC to different 
areas. 
Figure  3.2 shows  the  dependence  of  the  fuel 
consumption  on  the  linear  rise  factor  a  and  the 
battery capacity. It can be seen that a big negative 
factor  always  results  in  the  highest  fuel 
consumption. With a big factor a the effect of just 
a  small  change  in  battery  charge  on  the  cost 
function (1) is increased  and therefore the use of 
electric energy is limited because of the fast rising 
of kB0 by just a small decrease in SOC. Contrary to 
this  a  flat  linear  equation  always  leads  to  an 
increase of electric energy turnover.  
But it can also be seen that a small battery always 
increases  the  fuel  consumption.  By  adapting  the 
linear equation to the battery size  this effect can 
be minimised. 
This really simple mapping of the SOC to the cost 
factor  solves  some  balancing  problems  of  the 
method described in section 3.1. 
The influence of  the SOC guiding at  the on-line 
algorithm here  easily  can  be  realised  just  by 
shifting the line, i.e. adjusting the parameter “b” in 
equation (7). In Figure 3.3 an example for the base 
cost factor line (blue) is shown.
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Figure 3.1: Comparison of fuel consumption guided, 
unguided and optimal operation strategy

Figure 3.2: Dependence of fuel consumption on linear 
rise factor a and battery capacity 



The dashed line marks an empirical value for the 
base  cost  factor  averaged  over  all  time.  The 
crosspoint  of  the  base  cost  factor  line  and  the 
dashed line marks the averaged SOC that should 
be  reached  by  the  strategy.  If  now  another 
averaged  SOC shall  be  reached  by  the  on-line 
strategy the blue line must be shifted in a way 
that the new crosspoint meets  the new average 
SOC. 
The guiding SOC curve now represents the new 
averaged SOC values of the approximated new 
optimal SOC line.
If the prediction method described in section 2 is 
used  to  decrease  fuel  consumption  the 
improvement  is  not  so  impressive  because  the 
unguided  algorithm  using  the  linear  equation 
produces a very low fuel  consumption already. 
Figure 3.4 shows the result. The green line again 
marks the guided operational strategy. The blue 
line  shows  the  fuel  consumption  of  the 
unmodified  strategy.  The  red  line  again 
represents  the  global  minimum.  The  fuel 
consumption advantage of the guided strategy as 
compared  to  the  unmodified  strategy  without 
SOC guidance here is just about 1%.

With an sample of test cycles the decrease in fuel 
consumption is between 0.5  and 2 %.

4 Conclusion
We have shown that it is possible to generate an 
SOC  reference  curve  from  altitude  profiles  and 
generic speed informations like the average speed 
or the speed limits of a given route. If it is possible 
to  determine  an  SCO  curve  optimised  from  a 
number  of  rides  on  the  same  route  the  guiding 
algorithm  performs  best.  This  is  of  particular 
interestand  easy  to  handle  for  e.g.  city  bus 
transport which always follows the same route.  
 The  benefit  of  guiding  the  real  SOC along  the 
reference  curve  depends  strongly  on  the 
operational strategy. 
The long-term prediction method can be used with 
any operational  strategy  that  uses  the  SOC as  a 
decision value for the way electric energy is used 
in the drivetrain.

5 Symbols
PICE = power of the ICE
PE = power of the  electric motor
ΔEB = Energy change for one calculation step
EB = Energy stored in battery
ηICE = efficiency of the ICE
ηE = efficiency of the electric motor
ηB = efficiency of the battery
Ktot = total Cost
kICE0 = base cost factor of the ICE
kB0 = base cost factor of electric energy
kICE = cost factor of the ICE
kB = cost factor for the electric power
ME = torque of electric motor
nE = speed of electric motor 
Δt = time of one calculation step
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Figure 3.4: Comparison of fuel consumption guided, 
unguided and optimal operation strategy

Figure 3.3: Shift of the base cost factor line
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