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Abstract

This paper describes a long term SOC-prediction method using topographic informations to enhance the

fuel saving capability of parallel hybrid cars. There are a lot of approaches to determine the torque or

power split in a parallel hybrid drive train. This prediction method can be adapted to all of these approaches

if they use the SOC as a guideline for the use of electric driving energy. The impact of these long-term

prediction method on two different torque split strategies is represented in this paper.
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1 Introduction

There are a lot of different approaches to
calculate good operation points for parallel
hybrid drive trains. Most strategies take only in-
car-data into there calculations. Therefore it is
just possible to minimise the fuel consumption
for one calculation step. These local minima do
not lead to a global minimum of fuel
consumption. The global minimum can only be
calculated with the full knowledge of the driving
conditions of a given route after the drive is
finished.

But if there is information about the route ahead
the car, like the altitude profile and speed zones,
one can improve the strategies to push the fuel
consumption closer to the global minimum.

This paper describes how this information can
be used to improve the fuel saving capacity.
The impact of this method on two different
analytical operational strategies is
demonstrated.

2 Long term prediction method

With a global optimisation tool for a given route
the absolute minimum of fuel consumption can be
calculated afterwards. As a side result the optimal
state of charge (SOC) profile for this route is also
determined.

In Figure 2.1 the SOC calculated with a Bellmann
algorithm is compared to the SOC as generated by
an on-line operational strategy for a specific
driving cycle containing up- and downhill stretches
with altitudedifferences of up to ??? m. Two
different effects can be seen. In area 1 of Fig. 2.1
the on-line strategy avoids to discharge the battery
to a level as deep as the off-line algorithm does.
That happens because the on-line algorithm does
not know the altitude conditions of the drive. The
off-line algorithm knows that at a distance of
8000 m a long decline starts and that a lot of
energy can be regenerated. So the necessary
energy balancing of the on-line algorithm avoids a
deeper discharge. In area 2 a fast discharge can be
seen with the on-line strategy. After the
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regeneration of downhill energy the SOC has a
high level and the energy balancing of the on-line
strategy leads to this discharge with the aim to
avoid an overcharge of the battery at the one
hand and to keep charging capacities for further
recuperations on the other hand.
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Figure 2.1: Difference between on-line and oft-line
calculated SOC

Here, too, the limited knowledge of the future
driving conditions leads to a suboptimal behavior
of the on-line strategy. The optimal behavior of
the off-line algorithm gives a deeper discharge in
area 1 and a slower discharge in area 2. The
reason for this is the total knowledge of the
driving conditions on the route.

But the complete knowledge of the driving
conditions ahead of the car is not necessary to
determine an SOC curve close to the optimal
SOC curve in Figure 2.1. The altitude
characteristic in Figure 2.2 belonging to the SOC
curve in Figure 2.1 demonstrates an inverse
correlation between the SOC and the momentary
altitude.
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Figure 2.2: Altitude level belonging to the SOC
characteristic of Figure 2.1

So obviously the average SOC depends strongly
on the altitude characteristic of the route.

It has been found that by feeding the Bellman
algorithm with just the altitude curve and the
average speed of a route the SOC curve created
comes near to the off-line SOC curve in Figure
2.1 [3]. By adding more information to the speed

input on the Bellmann algorithm the SOC curve
comes even closer to the optimal SOC curve. For
example, the speed limits on a route are an
additional information for the possible speed of the
car on this route. An SOC curve calculated with
this additional information approximates close to
an optimal SOC curve calculated with he full
information from a drive in the past. Because of
the dependence between SOC curve and altitude
characteristic other optimal SOC curves on the
same route but for different drives (i.e. at different
velocities) can also be approximated by a general
SOC curve created only with speed limits and
altitude information. This approximated SOC
curve can be used to guide the on-line operational
strategy and so the differences between the off-
line optimisation and the on-line algorithm from
figure 2.1 can be minimised.

0.8 T —
— online
— offline
guided
0.75 + ...— aproximated

SOC

033, 2500 5000 7500 10000 12500 15000
distence [m]
Figure 2.3: Comparison between different SOC
characteristics

Figure 2.3 shows the already known blue and red
SOC characteristics of Figure 2.1: in blue the SOC
from the unmodified on-line strategy and in red
the SOC calculated by the Bellman algorithm
representing the global optimum for this drive. The
black line marks the SOC characteristic that was
generated by feeding the Bellman algorithm with
the speed limits and the altitude characteristic of
the route. If this characteristic is used to guide the
on-line strategy the result is the green SOC line.
From distance 7500 m to 15000 m the average
speed of the car was near the speed limit of the
route and therefore the green, black and red SOC
characteristic are close to each other. From
distance 2500 m to 7500 m the speed limit and the
average speed of the car was different. That leads
to a bigger difference between the optimal SOC
(red) and the approximated SOC (black).

The green SOC following the approximated SOC
avoids the two discrepancies marked in Figure 2.1:
the discharge does not stop like in area 1 and the
fast discharge in area 2 is also avoided.
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For the approximation of any SOC curve to an
SOC curve that is optimal for a given route
different methods can be used. The method used
for the approximation in Figure 2.3 uses speed
limits and altitude levels. But it is also possible to
generate a reference SOC curve just with he
average speed of the route ahead. Then the
difference between the optimal and the reference
curve is of course bigger than with the method
used for Figure 2.3. The best results can be
achieved when the route has been driven at least
three or four times in the past. For each drive the
optimisation algorithm can calculate an optimal
SOC curve; after e.g. four drives an average SOC
curve can created from these four optimal SOC
curves.  Because this average SOC curve
contains the typical speed characteristics of the
route it gets better with every additional drive
(similar driving conditions assumed). So the
guidance comes closest to the optimum.
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Figure 2.4: Comparison between different methods of
SOC approximation

Figure 2.4 shows the difference between the SOC
approximation with average speed and altitude
information (black) and the approximation using
the average SOC of former optimised drives. The
use of optimised SOC (blue) to generate an
average SOC (red) leads to the best fuel economy
because the average SOC curve contains the
most information about the route.

Independent of the method that was used to
generate the approximate SOC curve this curve is
just a guidance for the on-line strategy. The on-
line strategy should never follow them exactly.
Figure 2.3 shows the difference between the
guided (green) and the approximated (black)
SCO characteristic. The reason for this
differences that the approximated (black) SOC
characteristic is no a fixed reference variable, it
rather marks the centre of a tolerance band. If the
real SOC is within the tolerance band it is not
necessary to intervene. If it leaves the tolerance

band then the on-line strategy must be influenced
in such a way as to bring back the actual SOC
value to the designated band. The way to
influence the strategy depends on the algorithm
that is used to calculate the operation points. The
only requirement every strategy must fulfil is
that the SOC is the central and direct parameter
for the decision how the battery energy is used.
Two different strategies with different ways to
connect energy usage and SOC are presented in
the next section.

The strategy which calculates the operation
points of the drive train components can and
must have the possibility to react on actual
driving situations. The approximated SOC curve
can not include information about driving
situations ahead of a car on an new route. It can
only be an average SOC reference because it
includes no prediction of the speed details of a
route . The handling of the speed details must be
done by the on-line strategy.

One of the effects of a guidance of the SOC
value is the difference between maximum SOC
and minimum SOC, see Figure2.3. With
guidance the difference increases by 2 %. The
increase of the SOC  difference is
disadvantageous for the lifetime of the battery
[4]. With different test cycles it has been shown
that the difference between minimal and
maximal SOC correlates with the amount of
energy that is regenerated during uninterrupted
downhill driving. Because of this correlation the
increase of the maximum SOC difference on
these test cycles has not risen above 3 %. So it
can be said that guidance of the on-line strategy
has just little effect on the ageing of the battery.
The potential of the long-term prediction method
to improve fuel economy depends strongly on
the implementation of the on-line algorithm that
is used to calculate the operation points. In the
next section the impact of prediction on
analytical strategies is demonstrated.

3 Cost function based operational
strategies

Every hybrid drive train needs an operational
strategy. This strategy has to determine the
operation points of the drive train components.
This can be done by experience-based strategies or
by analytical methods. In this paper we go into
detail only with analytical methods. These
strategies are called analytical because they
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calculate the operation points of the internal
combustion engine (ICE) and the electric motor
based on actual information. The power demand
of the driver and the rotational speed of the
engine and the electric motor are the input
information. The calculation provides the gear,
the torque of the combustion engine and the
torque of the eclectic motor.

The analytic equation (1) here is called a cost
function. Every possible power combination of
electric motor power and combustion engine
power that sum up to the power demand of the
driver is tested for its cost.

Every operation point belongs to a specific
power and has its own efficiency. The
efficiencies are included in cost factors (2) and
(3) where the cost factor kicg handles the
efficiency of the combustion engine the cost
factor kg includes the electrical efficiencies of the
battery and the electric motor.
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By using all possible values for the electric motor
torque at a given rotational speed every possible
combination of engine powers and efficiencies is
tested for cost efficiency. The power
combination with the lowest cost will be set up
for the drive train.

The influence of the SOC on the cost calculation
is represented by the battery base cost value kgy.
The function of this value is to take care of the
energy balance in the battery. If the SOC in the
battery is low it is not advisable to take out
further energy. If the SOC is high it is a good
idea to increase the energy output. The value kg
can be calculated with different methods. It even
can be set equal to 1 if the power values in
equation (1) are normalised to the power demand
of the driver. In the next paragraphs two different
ways to determine the battery base cost value are
introduced.

3.1 Cost function with real cost calcu-
lation

This method works like a marketplace for
electrical energy. The battery has stored an

amount of energy and the energy has a specific
price like €/kWh. kg, represents this price for the
algorithm. Energy is bought to store it in the
battery when the generation price is lower then kgo.
That could happen if the energy comes from
regenerative braking where a cost of zero is
assumed because no fuel has to be spent for this
energy. It can also happen because of a high value
of kgo. According to equation (3) a high kg, means
a high kg. This leads to a high value for electric
power costs in equation (1). But if kicr is lower
than kg equation (1) generates a lower cost by
multiplying ks with a negative power. Negative
power means charging of the battery and an
enhanced load on the ICE.

The price kgo is calculated continually. For
charging equation (6) is used. If electric energy is
generated by using the combustion engine kicg has
an according value depending on the operation
point of the engine. It is used to calculate the value
of the new amount of energy stored in the battery.
Dividing it by the new amount Eg,.; gives the new
specific price of the electric energy.

Regenerated energy would come for free and
therefore kicg in equation (6) should become zero.
But then the new amount of energy only affects the
price over the increase of Egy+i. This could lead to
balance problems between the amount of energy
and its price. If regenerated energy comes for no
cost its value is also zero. In equation (5) this is
realised by a kicg of 0. By this equation (5) turns to
equation (4) The recuperated energy AEr now
affects the base cost factor only by its presence in
equation (6)

KgowEp Mg,
Ko ni1= ’E ' ’ “4)
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Therefore the regenerated energy pushes the price
to slow so that the price after a recuperation is to
high for the now to big supply. Too little energy
will be sold at this price. To solve this problem an
average kicg over the last 100 seconds could be
calculated and used instead of zero in equation (6).
As the price is regulated by supply and demand it
will rise while the battery is discharged. Again
equation (6) is used to determine the rising price.
kice in equation (6) represents the price that would
have to be paid if the electric energy uld have to be
provided from the combustion engine. That works
fine as long as the power demand of the driver can
be satisfied just by the combustion engine. But if
the combination of both engine and electriv motor
is needed then kicg can not be determined exactly
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and has to be approximated as a plausible value.
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If the long-term prediction as described in
section 2 is used to generate an SOC
characteristic for the route ahead this
characteristic could be used to guide the cost
function algorithm. In Figure 3.1 the green line
shows the fuel consumption of the guided
algorithm. The blue line shows the fuel
consumption of the unguided algorithm and
the red line marks the global minimum. The
decrease in fuel consumption is significant: the
unguided strategy needs about 6 % more fuel
then the guided strategy.
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Figure 3.1: Comparison of fuel consumption guided,
unguided and optimal operation strategy

For different test cycles a decrease in fuel
consumption of between 3 % and 6 % can be
achieved. Merely motorway cycles can hardly
be improved by guidance of the SOC because
the benefit from hybrid drivetrains is very
small for this kind of cycles.

The guiding of the algorithm is realised just by
an addition of an SOC-dependend value to
equation (6).

3.2 Cost function with linear equation

Like the method described in section 3.1 the
balancing of the engine and electric motor is
done by equation (1). But the calculation of the
base cost factor kgo is done with equation (7) [2].

k yy=a-SOC+b )
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Figure 3.2: Dependence of fuel consumption on linear
rise factor a and battery capacity

decrease of “a” will restrict the use of electric
power for ICE support because a small change of
the SOC will lead to a large change of the base
cost factor, and according to equation (1) a large
base cost factor makes the use of positive electric
power expensive. The parameter b is positive and
can be used to shift the average SOC to different
areas.

Figure 3.2 shows the dependence of the fuel
consumption on the linear rise factor a and the
battery capacity. It can be seen that a big negative
factor always results in the highest fuel
consumption. With a big factor a the effect of just
a small change in battery charge on the cost
function (1) is increased and therefore the use of
electric energy is limited because of the fast rising
of kgo by just a small decrease in SOC. Contrary to
this a flat linear equation always leads to an
increase of electric energy turnover.

But it can also be seen that a small battery always
increases the fuel consumption. By adapting the
linear equation to the battery size this effect can
be minimised.

This really simple mapping of the SOC to the cost
factor solves some balancing problems of the
method described in section 3.1.

The influence of the SOC guiding at the on-line
algorithm here easily can be realised just by
shifting the line, i.e. adjusting the parameter “b” in
equation (7). In Figure 3.3 an example for the base
cost factor line (blue) is shown.
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Figure 3.3: Shift of the base cost factor line

The dashed line marks an empirical value for the
base cost factor averaged over all time. The
crosspoint of the base cost factor line and the
dashed line marks the averaged SOC that should
be reached by the strategy. If now another
averaged SOC shall be reached by the on-line
strategy the blue line must be shifted in a way
that the new crosspoint meets the new average
SOC.

The guiding SOC curve now represents the new
averaged SOC values of the approximated new
optimal SOC line.

If the prediction method described in section 2 is
used to decrease fuel consumption the
improvement is not so impressive because the
unguided algorithm using the linear equation
produces a very low fuel consumption already.
Figure 3.4 shows the result. The green line again
marks the guided operational strategy. The blue
line shows the fuel consumption of the
unmodified strategy. The red line again
represents the global minimum. The fuel
consumption advantage of the guided strategy as
compared to the unmodified strategy without
SOC guidance here is just about 1%.
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Figure 3.4: Comparison of fuel consumption guided,
unguided and optimal operation strategy

With an sample of test cycles the decrease in fuel
consumption is between 0.5 and 2 %.

4 Conclusion

We have shown that it is possible to generate an
SOC reference curve from altitude profiles and
generic speed informations like the average speed
or the speed limits of a given route. If it is possible
to determine an SCO curve optimised from a
number of rides on the same route the guiding
algorithm performs best. This is of particular
interestand easy to handle for e.g. city bus
transport which always follows the same route.
The benefit of guiding the real SOC along the
reference curve depends strongly on the
operational strategy.
The long-term prediction method can be used with
any operational strategy that uses the SOC as a
decision value for the way electric energy is used
in the drivetrain.

5 Symbols
Pice = power of the ICE
Pr  =power of the electric motor

AEg = Energy change for one calculation step
Es = Energy stored in battery

mice = efficiency of the ICE

ne = efficiency of the electric motor

ns = efficiency of the battery

Ko = total Cost

kicro = base cost factor of the ICE

kso = base cost factor of electric energy
kice = cost factor of the ICE

ks = cost factor for the electric power
Mg = torque of electric motor

ng = speed of electric motor

At = time of one calculation step
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