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Abstract 

Plug-in Hybrid Electric Vehicles (PHEVs) are the new generation of automobiles being developed by 

automakers.  They can be run not only on the energy from gasoline but also from electric outlet. These vehicles 

use electric outlet supply hence, they can significantly reduce the consumption of costly gasoline while vehicles 

can be run on cheaper renewable and non renewable sources of energies.  They reduce the green house gases, 

and may even be part of smart home supply and grid energy system in future.   

In this paper a simplified powertrain of power split PHEV is modeled.  The main objective of the study is to 

increase the fuel economy of the PHEV.  So to achieve this goal gradient free optimization algorithm Particle 

Swarm Optimization (PSO) technique is implemented using the aforementioned simplified model.  Then an 

optimization problem is formed with Equivalent Fuel Consumption Minimization (EFCM) as the main 

objective function along with some constraints to be satisfied.  This problem is solved using PSO and optimum 

results are finally run in Argonne National Labs simulation software PSAT.  The results are then compared 

with PSAT control strategy and significant improvements are mentioned. 

Keywords: Plug-in Hybrid Electric Vehicle, Optimization, Particle Swarm Optimization. 

 

1 Introduction 

Hybrid electric vehicles have a long history until 
now.  It came into existence in 1899 [1] by a young 

engineer Dr. Ferdinand Porsche.  After him many 
manufactures made several cars on the similar 
concepts until 1920. After these early developments 
in this technology further advancement almost 
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diminished until 1960s and 1970s.  But in 1990s the 
research and development of these Hybrid Electric 
Vehicles (HEVs) have been subjected to 
comprehensive research.  Due to its potential of 
producing highly efficient fuel and low emissions 
vehicles many researchers and manufacturers have 
carried out extensive research in this field and kept 
on improving them.   

Plug-in Hybrid Electric vehicle (PHEV) is in close 
resemblance to Hybrid Electric vehicle (HEV) and 
hence it has all the advantages of an HEV.  But in 
addition, it has a large battery pack compared to 
HEV.  This large battery pack can be charged either 
by an onboard engine, regenerative braking of 
motor or external electric supply. The battery pack 
is charged to its maximum by the external electric 
supply and then used to drive the vehicle so lesser 
fuel is used by PHEVs compared to HEVs.  In 1969 
GM developed first experimental plug-in hybrid 
electric vehicle [2] XP-883 using lead acid batteries. 
In the last decade the research and development for 
these PHEVs have significantly increased because 
of increasing cost of petroleum products.  Due to its 
potential to dramatically reduce the fuel 
consumption by charging its battery from domestic 
supply many manufacturers are taking large interest 
in the development of these PHEVs.   

In the past lot of research is done on PHEVs and 
HEVs.  As it has two sources, i.e. engine and battery, 
many researchers have presented several energy 
management strategies and also optimized them 
using various optimization techniques.  Dominik 
Karbowski [3] investigated control strategy for pre-
transmission parallel PHEV using global 
optimization technique based on Bellman principle.  
Its main objective was to reduce the losses in 
engine, motor and battery.  Then he compared his 
results with the default control strategy of PSAT for 
different distances travelled by PHEV. Aymeric and 
Sylvain [4] used DIRECT algorithm to obtain some 
optimized parameters for rule-based control strategy 
of pre-transmission parallel PHEV.  They also 
analyzed the impact of distance travelled by PHEV 

on these parameters.  Both papers showed   that 
drive cycle and distance travelled impact their 
results significantly.  

In [5] Qiandong validated PSAT model for Toyota 
Prius PHEV and implemented control strategies to 
reduce the ON/OFF frequency of engine by tuning 
some parameters and also made engine to operate in 
more efficient region in charge depletion (CD) state.  
Xiaolan [6] used Particle Swarm Optimization 
(PSO) to optimize certain parameters of parallel 
PHEV for different distances.  The fuel economy 
was the target objective for the problem along with 
performance and other constraints but he solved the 
problem as unconstrained PSO.  Qiuming Gong [7] 
used dynamic programming along with intelligent 
transport system GPS, Geographical Information 
System (GIS) and advanced traffic flow modeling 
technique to obtain an optimized power 
management strategy for a parallel PHEV.   

In [8] Yimin Gao presented various rule-based 
strategies for PHEV passenger cars and analyzed 
them for fuel consumptions.  Similarly Liqing sun 
[9] proposed the rule-based control strategy for 
parallel PHEV bus model which showed better 
performance and higher engine efficiency. 

Various hybrid electric vehicle configurations are 
possible like series hybrid, parallel hybrid and 
series/parallel hybrid.  Both series and parallel 
hybrid configurations are having their own pros and 
cons.  But these cons can be overcome by using the 
combined series/parallel (power split) hybrid 
configuration.  Muta Koichiro [10] showed the 
potential of power split hybrids in improving the 
performance notably. 

In [11] Scott Moura used stochastic Dynamic 
Programming (DP) technique to obtain optimal 
power management of a power split PHEV.  He 
implemented it for both blended fuel use strategy 
and charge depletion/charge sustaining modes and 
studied the impact of battery size on these control 
strategies.  His results showed that blending strategy 
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is significantly better for smaller batteries but its 
effect diminishes for large batteries.   

In this paper power split hybrid configuration 
PHEV powertrain is modeled.  Then optimization 
problem is formed with main objective to reduce the 
fuel consumption by the engine while satisfying 
performance constraints and other constraints. This 
optimization problem is then optimized using 
particle swarm optimization technique.   

 

2 Modeling 

The power split PHEV model configuration is 
shown in Fig 1.  In this model planetary gear set is 
used whose sun gear is connected to the generator 
and the carrier gear is connected to the engine.  The 
output of this planetary gear set is connected to the 
motor through a torque coupler which gives its 
output to final drive and wheels.   

 

Figure 1: PHEV power split schematic 

To implement this model in controller a simplified 
model is developed.  The planetary gear 
relationships are used to obtain the generator speed 
and torque. 

௚߱ ൌ  ݇ଵ߱௘ െ ݇ଶ߱௥ (1) 
            ߬௚ ൌ   ݇ଷ ߬௘   (2) 
In equations [1] and [2] constants ݇ଵ, ݇ଶ and ݇ଷ are 
the gear ratios corresponding to the planetary gear 
set, ߱௘ and ߬௘ are the engine speed and engine 

torque respectively and ߱௥  is the speed that is 
demanded at the ring gear. 

The motor torque ߬௠  and speed ߱௠  relations are 
according to the equations [3] and [4] mentioned 
below. 

߬௠ ൌ ߬௥ െ ሺߚଵ߬௚ ൅  ଷ (3)ߚ/ଶ߬௘ሻߚ
߱௠ ൌ ߱௥ (4) 
 

Where, ߬௚ is generator torque and constants ߚଵ, ߚଶ  
and ߚଷ   are derived from the dynamics of the 
planetary gear set [12].  Here ߬௥  and ߱௥  are the 
torque and speed that are demanded at the ring gear 
respectively of planetary gear depending on the 
drive cycle.  They are calculated using the following 
equations. 

 

߬௥ ൌ
݁ିఈ௧

ॆ ൫߬௥௘௤ ൅ ߬௟൯ 
(5) 

߱௥ ൌ
ॆ
ं  ߥ

(6) 

 

In the equation [5] α is the delay time of the driver 
model, ॆ is final drive ratio, ߥ is vehicle speed, ं is 
wheel radius, ߬௥௘௤ is calculated using a PI controller 
as shown in the equation [7] below to model the 
driver response and ߬௟ is calculated by the equation 
[8]. 

߬௥௘௤ ൌ ௣ࣵܭ ൅  (7) ߥ௜ܭ
߬௟ ൌ ंሺࣾ݃ sinሺՅሻሻ ൅ ଴݂ ൅ ଵ݂ߥ ൅ ଶ݂ߥଶ (8) 

 

௣ܭ  and ܭ௜  are the PI controller gains and ࣵ  is 
acceleration in equation [7].  In equation [8] Յ is the 
grade, ࣾ is vehicle mass, ݃ is gravity and ଴݂, ଵ݂, ଶ݂ 
are the vehicle curve fit losses. 

The losses occurring in the motor and generator are 
obtained using lookup tables.  The losses in inverter 
are neglected.  The engine fuel consumption is also 
estimated using lookup table. 
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The battery here is modeled as an open circuit 
voltage source in series with the internal resistance 
of the battery.  Its equivalent circuit diagram is 
shown in Fig 2.  The open circuit voltage and its 
internal resistance are functions of State of Charge 
(SOC) and they are calculated using lookup tables 
that are obtained from the battery manufacturer. 

 

Figure 2: Simplified battery model 

The power required ( ௕ܲ) by the battery is calculated 
from electrical power demanded by both the motor 
and generator.  The current ( ݅ ) drawn from the 
battery is obtained using the following equation. 

݅ ൌ ௢ܸ௖ െ ඥ ௢ܸ௖
ଶ െ 4ܴ௕ ௕ܲ

2ܴ௕
 (9) 

where ௢ܸ௖  is open circuit voltage of battery, ܴ  is 
resistance of battery.  

The output voltage (ࣰ) of the battery is obtained 
from the simplified battery model using Equation 
[10] mentioned below. 

ࣰ ൌ ௢ܸ௖ െ ܴ௕݅ (10) 
 

The State of Charge (SOC) of the battery is 
calculated by integrating the current on the time 
interval.  The SOC value corresponding to the 
optimum set of operating point would then be 
recorded as previous SOC value for the next time 
interval. Below is the equation that is used to 
calculate SOC for each time interval.   

  

௞ߛ ൌ
1

ࣝ௠௔௫
න ݅dݐ

௧ୀ௞

௧ୀ௞ିଵ
൅  ௞ିଵߛ

                        (11) 

  
Where ߛ is SOC , ࣝ௠௔௫  is maximum ampere hour 
capacity of battery, ݇ is time interval. 

The various constant parameters used in the model 
are defined in Table 1. 

Table 1:  Model Parameter values 

Parameters Values 
Final Drive Ratio ॆ  
PI controller gains 

 ௣ܭ 
 ௜ܭ 

 
1000 
0.5 

Driver model time delay 
α  (s) 

0.2 

Vehicle curve fit losses 
 ଴݂ 
 ଵ݂ 
 ଶ݂ 

 
88.6 
0.14 
0.36 

Mass of vehicle ࣾ (Kg) 1449 
Radius of wheel (m) 0.2898 
Maximum capacity of 
battery  ࣝ௠௔௫ (Ah) 

25 

 

3 Problem Formulation 

The power split configuration has a planetary gear 
set which can provide infinite gear ratios.  Hence 
the engine can be operated at any speeds and torque 
while satisfying the required torque and speed by 
the vehicle to follow the drive cycle.  So engine can 
be operated in the proximity of its most efficient 
operating range, thus the fuel economy of the 
vehicle can be improved while satisfying the 
required performance.     

To find this best engine operating point the 
optimization problem is defined.  The main 
objective of the study is to increase the fuel 
economy of the vehicle while satisfying the 
performance required by the vehicle.   
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The objective or fitness function for the optimal 
energy management system is defined as equation 
[12] 

 

,ሺ߬௘ ߴ   :݊݅ܯ ߱௘ሻ (12) 
 

The equivalent fuel consumption (ߴ) is obtained in 
equation [13]. 

,ሺ߬௘ ߴ ߱௘ሻ ൌ  න ݉௘ሶ ሺ߬௘, ߱௘ሻ
௧ୀ௞

௧ୀ௞ିଵ
dݐ

൅  ௞ሻߛሺߪ 
(13) 

 

This equivalent fuel consumption is the sum of fuel 
consumed by the engine to drive the vehicle and 
SOC equivalent fuel ( ߪ ) which is defined to 
evaluate energy consumption from the battery.  This 
SOC equivalent fuel (ߪ) is evaluated approximately 
in  equation [14]. 

௞ሻߛሺߪ ൌ െ߰ ൈ ࣰ ൈ ࣝ௠௔௫  ൈ  ሺߛ௞ െ  ௞ିଵሻ (14)ߛ
In equation [14] ߰ is average fuel consumption by 
engine which is 250 g/Kwh obtained from engine 
Brake specific Fuel Consumption (BSFC) map, ࣰ is 
voltage of battery, ߛ௣௥௘ is previous SOC and ࣝ௠௔௫  
is the maximum capacity of the battery.  The SOC 
equivalent fuel is positive if battery is supplying the 
power otherwise it’s negative.  

Since the energy management system of the power 
split configuration is very complex.  The objective 
function defined here is also subjected to several 
constraints.  These constraints are as follows: 

0 ൏ ߬௘ ൏ ߬ ௘ ୫ୟ୶ሺ߱௘ሻ (15) 
߱௘௠௜௡ ൏ ߱௘ ൏ ߱௘௠௔௫ (16) 

െ ௚߱௠௔௫ ൏ ௚߱ ൏ ௚߱௠௔௫ (17) 
െ߬௚௠௔௫ሺ ௚߱ሻ ൏ ߬௚ ൏ ߬௚௠௔௫ሺ ௚߱ሻ (18) 

െ߱௠௠௔௫ ൏ ߱௠ ൏ ߱௠௠௔௫ (19) 
െ߬௠௠௔௫ሺ߱௠ሻ ൏ ߬௠ ൏ ߬௠௠௔௫ሺ߱௠ሻ (20) 

௠௜௡ߛ ൏ ߛ ൏ 1 (21) 
െ ஼ܲሺߛሻ ൏ ௕ܲ ൏ ஽ܲሺߛሻ (22) 

 

Along with all these constraints, performance 
constraints in equations [1] and [2] are also included 
so that vehicle would always achieve the desired 
performance.  All of these constraints must be 
satisfied to have feasible solution to the problem.  
All the variables including generator speed ( ௚߱ ), 
generator torque (߬௚ ), motor speed (߱௠ ), motor 
torque (߬௠), power required from battery ( ௕ܲሻ and 
SOC (ߛ) can be calculated using the equations in 
Section 2 for the given engine speed ( ߱௘ ) and 
engine torque (߬௘).  The limits on these variables are 
either obtained using lookup tables or constant 
values obtained from the component specifications.  
In equation [22] ஼ܲ is the charge limit and ஽ܲ is the 
discharge limit of the battery, respectively. 

The optimization problem can be solved using 
gradient based algorithms.  But since these 
algorithms depend on the gradients to find the 
optimum solution they don’t always give the global 
minimum or maximum as the solution.  So to find 
the global minimum solution derivative free 
algorithms such as Genetic Algorithm (GA), 
DIRECT, Dynamic Programming, Particle Swarm 
Optimization (PSO), etc can be used which don’t 
depend on gradients to find the solution.  Hence 
they provide the global solution to the optimization 
problem.  Here, PSO is introduced to the 
optimization problem and find its global minimum 
solution. 

Particle Swarm Optimization (PSO) was developed 
by James Kennedy and Russell Eberhart [13].  It is 
based on the social behavioral model of society.  In 
PSO a group of particles is randomly initialized 
with its own position and velocity in the 
multidimensional space.  The fitness function is 
evaluated for each particle and an update is made to 
the best global solution.  Then these particles are 
flown towards the optimal solution for the current 
iteration using the equations defined by PSO which 
are as follows: 

ܸሺ݇ ൅ 1ሻ ൌ .ݓ ܸሺ݇ሻ ൅ ܿଵ. .ଵݎ ൫ݐݏ݁ܤ݌ሺ݇ሻ െ ሺ݇ሻ൯ݔ ൅
ܿଶ. .ଶݎ ൫݃ݐݏ݁ܤሺ݇ሻ െ  ሺ݇ሻ൯                                   (23)ݔ
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ሺ݇ݔ ൅ 1ሻ ൌ ሺ݇ሻݔ ൅ ܸሺ݇ ൅ 1ሻ                             (24) 

The equation [23] is the velocity of the particle for 
next iteration and equation [24] is the particle 
position for next iteration.  Here ܿଵ is the cognition 
learning rate, ܿଶ  is social learning rate of particle 
and ݓ  is the inertial weight which enhances the 
performance of PSO in various applications [14].  ݎଵ 
and ݎଶ  are random numbers between 0 and 1.  
 ݐݏ݁ܤ݃ is the particles own best position and ݐݏ݁ܤ݌
is the global best position determined by comparing 
the ݐݏ݁ܤ݌  of all particles.  The particles will be 
updated using these equations iteratively until the 
optimal solution is obtained.   

This PSO technique was developed for 
unconstrained optimization problems. However 
different versions of PSO technique have been 
developed in the past which can be used for 
constrained optimization problems.  In [15] 
Gregorio proposed a PSO approach with variation 
in velocity computation formula, turbulence 
operator and different mechanism to handle the 
constraints.  The penalty function approach as 
shown by Konstantinos [16] is another approach 
used for solving constrained optimization problems 
with PSO.  Here an additional penalty function is 
added to the fitness function and then the problem is 
solved as unconstrained problem.  .     

In [14] Xiaohui and Eberhart suggested a method 
with some modification in the PSO algorithm used 
for unconstrained optimization problem so that it 
can be used for constrained optimization problems.  
They suggested two changes in the PSO algorithm.  
Firstly, all the particles have to be reinitialized until 
they are initialized in the feasible space.  Secondly, 
when updating the ݃ݐݏ݁ܤ  and ݐݏ݁ܤ݌  variables for 
each iteration only the feasible points are assigned 
as ݃ݐݏ݁ܤ and ݐݏ݁ܤ݌.  So the PSO algorithm always 
starts with all the particles in the feasible solution 
space. Even if some particles go into unfeasible 
solution space while it is running they always return 
to the feasible solution space region because the 
ݐݏ݁ܤ݃  and ݐݏ݁ܤ݌  which influence the motion of 

particles in the space are always in the feasible 
solution space.    

For this constrained optimization problem the most 
efficient operating point of engine are determined 
using PSO. All these optimum points always satisfy 
the performance constraints and other constraints 
using modified algorithm suggested by Xiaohui and 
Eberhart after accounting for the losses in the 
powertrain.  The PSO parameters ݓ, ܿଵ  and ܿଶ  are 
defined as suggested by Xiaohui in [14]. 

 

Figure 3: Flow chart constrained PSO Algorithm 
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The PSO algorithm flowchart for constrained 
optimization is as shown in Fig 3. 

 

4 Simulation Results 

This constrained optimization problem is solved 
using the above algorithm of PSO.  For PSO the 
simplified model as discussed in section 2 is used to 
get the optimum operating points of engine for 
entire drive cycle.  The results of this PSO which 
are optimum operating points of engine are then 
given to the more complex PSAT model for better 
analysis and study.  These simulation results are 
then compared with PSAT control strategy. 

For simulation the model is built in PSAT with 
configurations as mentioned in table 2 below. 

Table 2: Model components details 

Component Model 

Generator 30 kW PM Motor 

Energy Storage 5 kW Li Ion Battery 

Motor  50 kW PM Motor 

Gearbox Planetary Gear 

Engine 57 kW Prius Engine 

 

The same model components are used for both 
control strategies to have legitimate comparisons of 
the control strategies.  Both the control strategies 
are driven for UDDS drive cycle.  The UDDS drive 
cycle is of 7.45 miles and 1369 seconds duration.  
Other characteristics of UDDS drive cycle are given 
in the table 3 below. 

 

 

 

 

Table 3: UDDS characteristics 

 Maximum Average Standard 
Deviation 

Speed(mile/h) 56.7 19.57 14.69 

Acceleration 
(m/s2) 

1.4752 0.505 0.45 

 

The figure 4 below shows the Urban Dynamometer 
Drive Schedule (UDDS) drive cycle used for 
simulation. 

 

Figure 4: UDDS drive cycle 

For this given drive cycle the vehicle followed the 
drive cycle while satisfying the performance 
completely.  The Figure 5 shows the output vehicle 
speed for both the strategies which follows UDDS 
drive cycle exactly. 
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Figure 5: Vehicle output speed for PSAT and PSO 
strategies. 

During this drive cycle the engine is operated at 
optimum operating points obtained from PSO for 
PSO Strategy.  

 

Figure 6: Engine torque for PSAT and PSO strategies 

The Figure 6 shows that the engine torque is 
consistently near the maximum engine torque which 
is more efficient operating region for the engine. 

The Fig 7 shows the engine’s operating speed for 
both PSAT and PSO strategies.  It can be seen that 
the engine is operating at lower speeds for PSO 
strategy compared to PSAT strategy.  Hence the 
fuel consumption would also be reduced 
significantly for the drive cycle.  The engine speed 
also has some negative values which occur while 
engine is off.  When engine is off the generator 
rotates because of planetary gear coupling so the 

engine rotates at minor speeds of about 5 rad/sec in 
the reverse direction. 

 

Figure 7: Engine speed for PSAT and PSO strategies 

 

Figure 8: SOC of Battery for PSAT and PSO Strategies 

The Fig 8 shows the SOC of battery for both 
strategies.  Both the strategies have initial SOC as 
98 %.  And the ending SOC is also almost same for 
both strategies with a minor difference of 0.75%.  
The SOC usage for PSAT strategy is more 
consistently reduces.  Whereas SOC for PSO 
strategy depletes very rapidly between 200 and 350 
seconds because of the sharp demand of speed in 
the drive cycle between that period.  But this SOC is 
almost maintained between 450 and 775 rad/sec as 
engine provides the power and by recovering more 
regenerative braking.   
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Figure 9: Motor torque for PSAT and PSO strategies 

The figure 9 shows that the motor torque is more 
negative between 400 and 750 seconds of drive 
cycle.  For the same the battery current is also 
negative in figure 10.  So more regenerative energy 
is stored to the battery for PSO strategy compared to 
PSAT strategy.  In addition to it between 200 and 
350 seconds of drive cycle the current is more 
positive. Meanwhile motor torque is also positive 
for PSO strategy compared to PSAT strategy for 
that duration.  Hence comparatively motor provides 
higher power at higher vehicle speeds to satisfy the 
positive power which vehicle demands for PSO 
strategy.  

 

Figure 10:  Battery Current for PSAT and PSO strategies 

These simulation results are post processed by 
PSAT software are shown in Table 4.  The results 
show higher mileage for PSO strategy 192.8 

mile/gallon as compared to 160.7 mile/gallon for 
PSAT strategy.  Because the SOC for both the 
strategies is same for initial values and final values 
along with almost same electrical consumption so 
the mile/gallon results are comparable. 

 

Table 4: Simulation post processed data comparison for 
PSAT and PSO strategy 

 PSAT 
Strategy 

PSO 

Strategy 
Unit 

Fuel 
Consumption 

160.7 192.8 mile/gallon 

Electrical 
Consumption 

114.64 119.10 Wh/mile 

Mass of Fuel 
to travel 320 
miles 

5.65 4.71 Kg 

Powertrain 
Bidirectional 
Path 
Efficiency 

49.53 53.72 % 

Powertrain 
Closed Loop 
Gain 

0.73 0.8 - 

Percentage 
Energy 
Recovered at 
Battery 

34.29 61.92 % 

Absolute 
average 
difference on 
vehicle speeds 

0.4 0.38 mile/h 

 

Since this is a kind of blended mode strategy where 
both engine or/and battery can be used to power the 
vehicle if the vehicle travels 320 miles distance on 
the same UDDS drive cycle.  The results show PSO 
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strategy will use only 4.71 Kg of fuel whereas 
PSAT strategy will use 5.65 Kg of fuel which is 
significant.   
 

We can also see from the Table 4 that the overall 
bidirectional path efficiency for PSO strategy is also 
increased significantly to 53.72 as compared with 
49.53 percent for PSAT strategy.  Similar results are 
also found for powertrain closed loop gain which is 
increased to 0.8 for PSO strategy.  The Table 4 also 
shows that percentage of energy recovered at 
battery due to regeneration is also increased notably 
to 61.92 % as compared with the 34.29 % for PSAT 
strategy.  This fact can be verified from the motor 
torque figure 9 and battery current figure 10 from 
simulation results between 400 to 800 seconds 
where large negative torques and negative currents 
are recovered and stored in battery.  In the same 
table the comparison of absolute average difference 
between vehicles output speeds and demanded drive 
cycle speed is calculated.  It also shows that the 
performance of vehicle is improved for PSO 
strategy compared to PSAT strategy. 

5 Conclusions 

Here the gradient free algorithm particle swarm 
optimization was used to improve the fuel economy 
of the vehicle.  So a simplified model of the power 
split hybrid electric vehicle powertrain was 
developed.  This model was used along with PSO to 
obtain the optimum operating points of engine while 
satisfying various component physical constraints as 
well as vehicle performance constraints.  The 
resulting optimum operating points of engine were 
then given as inputs to PSAT model.  The results 
from PSAT model were compared with PSAT 
default strategy for similar power split hybrid 
electric vehicle. 

The results show significant improvement in the 
miles/gallon for the vehicle with PSO strategy while 
comparing with identical vehicle configuration for 
PSAT strategy for almost same electrical 

consumption.  The improvements show 
enhancement in fuel economy which was the main 
objective of the study. Meanwhile it also showed 
increase in entire powertrain bidirectional path 
efficiency of vehicle.  During the simulation it was 
also found that the performance of the vehicle is 
improved while comparing with its PSAT strategy 
counterpart. 

The operating points obtained here are only for 
blended mode strategy where both engine and/or 
battery can be used to drive the vehicle even if the 
battery has sufficient potential to drive the vehicle 
which is not desirable for short distances so 
accordingly control strategy can be defined for 
shorter distances.  The optimum operating points 
obtained for this UDDS drive cycle was done 
offline because it took significant time for PSO to 
decide the optimum point at each time interval.  
Since this offline strategy cannot be implemented 
on the real vehicle.  In future work a real time 
controller will be implemented so that the real time 
controller can be formed for the corresponding PSO 
strategy.    
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