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Abstract

Plug-in Hybrid Electric Vehicles (PHEVs) are the new generation of automobiles being developed by
automakers. They can be run not only on the energy from gasoline but also from electric outlet. These vehicles
use electric outlet supply hence, they can significantly reduce the consumption of costly gasoline while vehicles
can be run on cheaper renewable and non renewable sources of energies. They reduce the green house gases,

and may even be part of smart home supply and grid energy system in future.

In this paper a simplified powertrain of power split PHEV is modeled. The main objective of the study is to
increase the fuel economy of the PHEV. So to achieve this goal gradient free optimization algorithm Particle
Swarm Optimization (PSO) technique is implemented using the aforementioned simplified model. Then an
optimization problem is formed with Equivalent Fuel Consumption Minimization (EFCM) as the main
objective function along with some constraints to be satisfied. This problem is solved using PSO and optimum
results are finally run in Argonne National Labs simulation software PSAT. The results are then compared

with PSAT control strategy and significant improvements are mentioned.

Keywords: Plug-in Hybrid Electric Vehicle, Optimization, Particle Swarm Optimization.

1 Introduction engineer Dr. Ferdinand Porsche. After him many

manufactures made several cars on the similar
Hybrid electric vehicles have a long history until concepts until 1920. After these early developments
now. It came into existence in 1899 [1] by a young in this technology further advancement almost
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diminished until 1960s and 1970s. But in 1990s the
research and development of these Hybrid Electric
Vehicles (HEVs) have been subjected to
comprehensive research. Due to its potential of
producing highly efficient fuel and low emissions
vehicles many researchers and manufacturers have
carried out extensive research in this field and kept
on improving them.

Plug-in Hybrid Electric vehicle (PHEV) is in close
resemblance to Hybrid Electric vehicle (HEV) and
hence it has all the advantages of an HEV. But in
addition, it has a large battery pack compared to
HEV. This large battery pack can be charged either
by an onboard engine, regenerative braking of
motor or external electric supply. The battery pack
is charged to its maximum by the external electric
supply and then used to drive the vehicle so lesser
fuel is used by PHEVs compared to HEVs. In 1969
GM developed first experimental plug-in hybrid
electric vehicle [2] XP-883 using lead acid batteries.
In the last decade the research and development for
these PHEVs have significantly increased because
of increasing cost of petroleum products. Due to its
reduce the fuel
consumption by charging its battery from domestic
supply many manufacturers are taking large interest
in the development of these PHEVs.

potential to  dramatically

In the past lot of research is done on PHEVs and
HEVs. As it has two sources, i.e. engine and battery,
many researchers have presented several energy
management strategies and also optimized them
using various optimization techniques. Dominik
Karbowski [3] investigated control strategy for pre-
PHEV using global
optimization technique based on Bellman principle.

transmission  parallel
Its main objective was to reduce the losses in
engine, motor and battery. Then he compared his
results with the default control strategy of PSAT for
different distances travelled by PHEV. Aymeric and
Sylvain [4] used DIRECT algorithm to obtain some
optimized parameters for rule-based control strategy
of pre-transmission parallel PHEV. They also

analyzed the impact of distance travelled by PHEV

on these parameters. Both papers showed that
drive cycle and distance travelled impact their
results significantly.

In [5] Qiandong validated PSAT model for Toyota
Prius PHEV and implemented control strategies to
reduce the ON/OFF frequency of engine by tuning
some parameters and also made engine to operate in
more efficient region in charge depletion (CD) state.
Xiaolan [6] used Particle Swarm Optimization
(PSO) to optimize certain parameters of parallel
PHEV for different distances. The fuel economy
was the target objective for the problem along with
performance and other constraints but he solved the
problem as unconstrained PSO. Qiuming Gong [7]
used dynamic programming along with intelligent
transport system GPS, Geographical Information
System (GIS) and advanced traffic flow modeling
technique to obtain an optimized power
management strategy for a parallel PHEV.

In [8] Yimin Gao presented various rule-based
strategies for PHEV passenger cars and analyzed
them for fuel consumptions. Similarly Liqing sun
[9] proposed the rule-based control strategy for
parallel PHEV bus model which showed better
performance and higher engine efficiency.

Various hybrid electric vehicle configurations are
possible like series hybrid, parallel hybrid and
series/parallel hybrid. Both series and parallel
hybrid configurations are having their own pros and
cons. But these cons can be overcome by using the
combined series/parallel (power split) hybrid
Muta Koichiro [10] showed the
potential of power split hybrids in improving the

configuration.

performance notably.

In [11] Scott Moura used stochastic Dynamic
Programming (DP) technique to obtain optimal
power management of a power split PHEV. He
implemented it for both blended fuel use strategy
and charge depletion/charge sustaining modes and
studied the impact of battery size on these control
strategies. His results showed that blending strategy

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2



is significantly better for smaller batteries but its
effect diminishes for large batteries.

In this paper power split hybrid configuration
PHEV powertrain is modeled. Then optimization
problem is formed with main objective to reduce the
fuel consumption by the engine while satisfying
performance constraints and other constraints. This
optimization problem is then optimized using
particle swarm optimization technique.

2 Modeling

The power split PHEV model configuration is
shown in Fig 1. In this model planetary gear set is
used whose sun gear is connected to the generator
and the carrier gear is connected to the engine. The
output of this planetary gear set is connected to the
motor through a torque coupler which gives its
output to final drive and wheels.

Gene-ator
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Figure 1: PHEV power split schematic

To implement this model in controller a simplified
model is developed. The planetary gear
relationships are used to obtain the generator speed

and torque.
Wy = kiwe — kyw, (1)
Ty = k3T, 2)

In equations [1] and [2] constants k4, k, and k5 are
the gear ratios corresponding to the planetary gear
set, w, and 7, are the engine speed and engine

torque respectively and w, is the speed that is
demanded at the ring gear.

The motor torque 7,, and speed w,, relations are
according to the equations [3] and [4] mentioned

below.
Tm = Tr — (ﬁng + B27e) /B3 3)
Wy = Wy 4)

Where, 7, is generator torque and constants 3, 8,
and f; are derived from the dynamics of the
planetary gear set [12]. Here 7, and w, are the
torque and speed that are demanded at the ring gear
respectively of planetary gear depending on the
drive cycle. They are calculated using the following

equations.
e—(xt (5)
T, = ?(‘creq + ‘l,'l)
8 6
o -5, ©6)
P

In the equation [5] a is the delay time of the driver
model, & is final drive ratio, v is vehicle speed, 7~ is
wheel radius, 7,4 is calculated using a PI controller
as shown in the equation [7] below to model the
driver response and 1, is calculated by the equation

[8].

Treq = Kpa + K;v @)
7, = r(mgsin(R)) + fo + fiv + fLv* )

K, and K; are the PI controller gains and a is
acceleration in equation [7]. In equation [8] X is the
grade, m is vehicle mass, g is gravity and fy, f1, f2
are the vehicle curve fit losses.

The losses occurring in the motor and generator are
obtained using lookup tables. The losses in inverter
are neglected. The engine fuel consumption is also
estimated using lookup table.
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The battery here is modeled as an open circuit
voltage source in series with the internal resistance
of the battery. Its equivalent circuit diagram is
shown in Fig 2. The open circuit voltage and its
internal resistance are functions of State of Charge
(SOC) and they are calculated using lookup tables
that are obtained from the battery manufacturer.

f .
P —r
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> forbattary charging
0

Figure 2: Simplified battery model

The power required (P;) by the battery is calculated
from electrical power demanded by both the motor
and generator. The current (i) drawn from the
battery is obtained using the following equation.

i:]/C)C_V]/L)ZC_4Rbe (9)
2R,
where V,. is open circuit voltage of battery, R is

resistance of battery.

The output voltage (V) of the battery is obtained
from the simplified battery model using Equation
[10] mentioned below.

V =V,, — Ryi (10)

The State of Charge (SOC) of the battery is
calculated by integrating the current on the time
interval. The SOC value corresponding to the
optimum set of operating point would then be
recorded as previous SOC value for the next time
interval. Below is the equation that is used to
calculate SOC for each time interval.

1 t=k ] (11)
Vi = J idt + yr—1
t

Cmax =k-1

Where y is SOC, Cpqy 1S maximum ampere hour
capacity of battery, k is time interval.

The various constant parameters used in the model
are defined in Table 1.

Table 1: Model Parameter values

Parameters Values
Final Drive Ratio &
PI controller gains
K, 1000
K; 0.5
Driver model time delay 0.2
a (s)
Vehicle curve fit losses
fo 88.6
fi 0.14
fo 0.36
Mass of vehicle m (Kg) 1449
Radius of wheel (m) 0.2898

Maximum capacity of 25
battery Cj,qx (Ah)

3 Problem Formulation

The power split configuration has a planetary gear
set which can provide infinite gear ratios. Hence
the engine can be operated at any speeds and torque
while satisfying the required torque and speed by
the vehicle to follow the drive cycle. So engine can
be operated in the proximity of its most efficient
operating range, thus the fuel economy of the
vehicle can be improved while satisfying the
required performance.

To find this best engine operating point the
optimization problem is defined. @ The main
objective of the study is to increase the fuel
economy of the vehicle while satisfying the

performance required by the vehicle.
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The objective or fitness function for the optimal
energy management system is defined as equation
[12]

Min: 9 (t,, w,) (12)

The equivalent fuel consumption () is obtained in
equation [13].

t=k
M, (T,, w,) dt

9 (20 ,) = jt - 03
+ a(yk)

This equivalent fuel consumption is the sum of fuel
consumed by the engine to drive the vehicle and
SOC equivalent fuel (o) which is defined to
evaluate energy consumption from the battery. This
SOC equivalent fuel (o) is evaluated approximately
in equation [14].

o(yk) = =9 XV X Chax X Yk — Yi-1) (14)
In equation [14] i is average fuel consumption by

engine which is 250 g/Kwh obtained from engine
Brake specific Fuel Consumption (BSFC) map, V is
voltage of battery, Ve is previous SOC and Cpqx
is the maximum capacity of the battery. The SOC
equivalent fuel is positive if battery is supplying the
power otherwise it’s negative.

Since the energy management system of the power
split configuration is very complex. The objective
function defined here is also subjected to several
constraints. These constraints are as follows:

0<7 <7, .x(@e) (15)
Wemin < We < Wemax (16)
—Wgmax < Wy < Wogmax (17)
_Tgmax(wg) < Tg < Tgmax(wg) (18)
—Wmmax < Wm < Wmmax (19)
_Tmmax(wm) <Tp < Tmmax((‘)m) (20)
Ymin <V < 1 (21)

—Pc(y) <Py <Pp(y) (22)

Along with all these constraints, performance
constraints in equations [1] and [2] are also included
so that vehicle would always achieve the desired
performance. All of these constraints must be
satisfied to have feasible solution to the problem.
All the variables including generator speed (wy ),
generator torque (7,4), motor speed (w,), motor
torque (T,,), power required from battery (P,) and
SOC (y) can be calculated using the equations in
Section 2 for the given engine speed (w,) and
engine torque (7,). The limits on these variables are
either obtained using lookup tables or constant
values obtained from the component specifications.
In equation [22] P, is the charge limit and Py, is the
discharge limit of the battery, respectively.

The optimization problem can be solved using
gradient based algorithms. But since these
algorithms depend on the gradients to find the
optimum solution they don’t always give the global
minimum or maximum as the solution. So to find
the global minimum solution derivative free
algorithms such as Genetic Algorithm (GA),
DIRECT, Dynamic Programming, Particle Swarm
Optimization (PSO), etc can be used which don’t
depend on gradients to find the solution. Hence
they provide the global solution to the optimization
problem. Here, PSO is introduced to the
optimization problem and find its global minimum
solution.

Particle Swarm Optimization (PSO) was developed
by James Kennedy and Russell Eberhart [13]. It is
based on the social behavioral model of society. In
PSO a group of particles is randomly initialized
with its own position and velocity in the
multidimensional space. The fitness function is
evaluated for each particle and an update is made to
the best global solution. Then these particles are
flown towards the optimal solution for the current
iteration using the equations defined by PSO which
are as follows:

Vik+1) =w.V(k)+c.1y. (pBest(k) — x(k)) +
cp.15. (gBest(k) — x(k)) (23)
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xtk+1)=x(k)+V(k+1) (24)

The equation [23] is the velocity of the particle for
next iteration and equation [24] is the particle
position for next iteration. Here ¢, is the cognition
learning rate, ¢, is social learning rate of particle
and w is the inertial weight which enhances the
performance of PSO in various applications [14]. r;
and r, are random numbers between 0 and 1.
pBest is the particles own best position and gBest
is the global best position determined by comparing
the pBest of all particles. The particles will be
updated using these equations iteratively until the
optimal solution is obtained.

This  PSO
unconstrained optimization problems. However

technique was developed for
different versions of PSO technique have been
developed in the past which can be used for
In [15]
Gregorio proposed a PSO approach with variation

constrained optimization problems.

in velocity computation formula, turbulence
operator and different mechanism to handle the
constraints. The penalty function approach as
shown by Konstantinos [16] is another approach
used for solving constrained optimization problems
with PSO. Here an additional penalty function is
added to the fitness function and then the problem is

solved as unconstrained problem. .

In [14] Xiaohui and Eberhart suggested a method
with some modification in the PSO algorithm used
for unconstrained optimization problem so that it
can be used for constrained optimization problems.
They suggested two changes in the PSO algorithm.
Firstly, all the particles have to be reinitialized until
they are initialized in the feasible space. Secondly,
when updating the gBest and pBest variables for
each iteration only the feasible points are assigned
as gBest and pBest. So the PSO algorithm always
starts with all the particles in the feasible solution
space. Even if some particles go into unfeasible
solution space while it is running they always return
to the feasible solution space region because the
gBest and pBest which influence the motion of

particles in the space are always in the feasible
solution space.

For this constrained optimization problem the most
efficient operating point of engine are determined
using PSO. All these optimum points always satisfy
the performance constraints and other constraints
using modified algorithm suggested by Xiaohui and
Eberhart after accounting for the losses in the
powertrain. The PSO parameters w, ¢; and c, are
defined as suggested by Xiaohui in [14].

Find mwewr ghest oot oF all
phest deboed

¥
Find new position and
welocity Bor each particle

No Is stopping

Figure 3: Flow chart constrained PSO Algorithm

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 6



The PSO algorithm flowchart for constrained
optimization is as shown in Fig 3.

4 Simulation Results

This constrained optimization problem is solved
using the above algorithm of PSO. For PSO the
simplified model as discussed in section 2 is used to
get the optimum operating points of engine for
entire drive cycle. The results of this PSO which
are optimum operating points of engine are then
given to the more complex PSAT model for better
analysis and study. These simulation results are
then compared with PSAT control strategy.

For simulation the model is built in PSAT with
configurations as mentioned in table 2 below.

Table 2: Model components details

Component Model

Generator 30 kW PM Motor

Energy Storage 5 kW Li Ion Battery

Motor 50 kW PM Motor
Gearbox Planetary Gear
Engine 57 kW Prius Engine

The same model components are used for both
control strategies to have legitimate comparisons of
the control strategies. Both the control strategies
are driven for UDDS drive cycle. The UDDS drive
cycle is of 7.45 miles and 1369 seconds duration.
Other characteristics of UDDS drive cycle are given
in the table 3 below.

Table 3: UDDS characteristics

Maximum Average Standard
Deviation
Speed(mile/h) 56.7 19.57 14.69
Acceleration 1.4752 0.505 0.45

(n/s?)

The figure 4 below shows the Urban Dynamometer
Drive Schedule (UDDS) drive cycle used for
simulation.

60
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w
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=
o

o
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Figure 4: UDDS drive cycle

For this given drive cycle the vehicle followed the
drive cycle while satisfying the performance
completely. The Figure 5 shows the output vehicle
speed for both the strategies which follows UDDS
drive cycle exactly.
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Figure 5: Vehicle output speed for PSAT and PSO
strategies.

During this drive cycle the engine is operated at
optimum operating points obtained from PSO for
PSO Strategy.
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Figure 6: Engine torque for PSAT and PSO strategies

The Figure 6 shows that the engine torque is
consistently near the maximum engine torque which
is more efficient operating region for the engine.

The Fig 7 shows the engine’s operating speed for
both PSAT and PSO strategies. It can be seen that
the engine is operating at lower speeds for PSO
strategy compared to PSAT strategy. Hence the
fuel consumption also be reduced
significantly for the drive cycle. The engine speed
also has some negative values which occur while

would

engine is off. When engine is off the generator
rotates because of planetary gear coupling so the

engine rotates at minor speeds of about 5 rad/sec in
the reverse direction.
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Figure 7: Engine speed for PSAT and PSO strategies
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Figure 8: SOC of Battery for PSAT and PSO Strategies

The Fig 8 shows the SOC of battery for both
strategies. Both the strategies have initial SOC as
98 %. And the ending SOC is also almost same for
both strategies with a minor difference of 0.75%.
The SOC usage for PSAT strategy is more
consistently reduces. = Whereas SOC for PSO
strategy depletes very rapidly between 200 and 350
seconds because of the sharp demand of speed in
the drive cycle between that period. But this SOC is
almost maintained between 450 and 775 rad/sec as
engine provides the power and by recovering more
regenerative braking.
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Figure 9: Motor torque for PSAT and PSO strategies
The figure 9 shows that the motor torque is more
negative between 400 and 750 seconds of drive
cycle. For the same the battery current is also
negative in figure 10. So more regenerative energy
is stored to the battery for PSO strategy compared to
PSAT strategy. In addition to it between 200 and
350 seconds of drive cycle the current is more
positive. Meanwhile motor torque is also positive
for PSO strategy compared to PSAT strategy for
that duration. Hence comparatively motor provides
higher power at higher vehicle speeds to satisfy the
positive power which vehicle demands for PSO
strategy.

250 ‘ ‘ ‘

200 ess_curr_out (PSAT Strategy)
- | - —«— - ess_curr_out (PSO Strategy)
£ 150 0
8, o |
£ 100} i ]
g bl Tt |
S sottliy (L i) man
g ‘v“ | : Yl il ! il h i\
= 0 IR PR R A, | 1 ‘\‘ d
= ! IR R R 1§ [N
@ I il ‘

50 SRR

bl
-100 | i | | | |
0 200 400 600 800 1000 1200 1400
Time [s]

Figure 10: Battery Current for PSAT and PSO strategies

These simulation results are post processed by
PSAT software are shown in Table 4. The results
show higher mileage for PSO strategy 192.8

mile/gallon as compared to 160.7 mile/gallon for
PSAT strategy. Because the SOC for both the
strategies is same for initial values and final values
along with almost same electrical consumption so
the mile/gallon results are comparable.

Table 4: Simulation post processed data comparison for
PSAT and PSO strategy

PSAT PSO .
Strate Unit
gy Strategy

Fuel

e 160.7 192.8  mile/gallon
Consumption
Electrical 11464 11910  Wh/mile
Consumption
Mass of Fuel
to travel 320 5.65 4.71 Kg
miles
Powertrain
Bidirectional

idirectiona 49.53 53.72 %
Path
Efficiency
Powertrain
Closed Loop 0.73 0.8 -
Gain
Percentage
E

nerey 34.29 61.92 %
Recovered at
Battery
Absolute
average 0.4 0.38 mile/h

difference on
vehicle speeds

Since this is a kind of blended mode strategy where
both engine or/and battery can be used to power the
vehicle if the vehicle travels 320 miles distance on
the same UDDS drive cycle. The results show PSO
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strategy will use only 4.71 Kg of fuel whereas
PSAT strategy will use 5.65 Kg of fuel which is
significant.

We can also see from the Table 4 that the overall
bidirectional path efficiency for PSO strategy is also
increased significantly to 53.72 as compared with
49.53 percent for PSAT strategy. Similar results are
also found for powertrain closed loop gain which is
increased to 0.8 for PSO strategy. The Table 4 also
shows that percentage of energy recovered at
battery due to regeneration is also increased notably
to 61.92 % as compared with the 34.29 % for PSAT
strategy. This fact can be verified from the motor
torque figure 9 and battery current figure 10 from
simulation results between 400 to 800 seconds
where large negative torques and negative currents
are recovered and stored in battery. In the same
table the comparison of absolute average difference
between vehicles output speeds and demanded drive
cycle speed is calculated. It also shows that the
performance of vehicle is improved for PSO
strategy compared to PSAT strategy.

5 Conclusions

Here the gradient free algorithm particle swarm
optimization was used to improve the fuel economy
of the vehicle. So a simplified model of the power
split hybrid electric vehicle powertrain was
developed. This model was used along with PSO to
obtain the optimum operating points of engine while
satisfying various component physical constraints as
well as vehicle performance constraints. The
resulting optimum operating points of engine were
then given as inputs to PSAT model. The results
from PSAT model were compared with PSAT
default strategy for similar power split hybrid
electric vehicle.

The results show significant improvement in the
miles/gallon for the vehicle with PSO strategy while
comparing with identical vehicle configuration for
PSAT strategy for almost same electrical

consumption. The  improvements  show
enhancement in fuel economy which was the main
objective of the study. Meanwhile it also showed
increase in entire powertrain bidirectional path
efficiency of vehicle. During the simulation it was
also found that the performance of the vehicle is
improved while comparing with its PSAT strategy
counterpart.

The operating points obtained here are only for
blended mode strategy where both engine and/or
battery can be used to drive the vehicle even if the
battery has sufficient potential to drive the vehicle
which is not desirable for short distances so
accordingly control strategy can be defined for
shorter distances. The optimum operating points
obtained for this UDDS drive cycle was done
offline because it took significant time for PSO to
decide the optimum point at each time interval.
Since this offline strategy cannot be implemented
on the real vehicle. In future work a real time
controller will be implemented so that the real time
controller can be formed for the corresponding PSO
strategy.
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