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Abstract

In the design and development process of battery packs, single cell models are particularly important
for tasks ranging from battery simulation up to model-baseddesign of sophisticated battery management
systems. In the literature a variety of modelling approaches have been proposed, which can be distin-
guished according to their resulting model structure and the method of model parameterization. The
objective of the present work is to develop a systematic and efficient procedure for the coupled electric
and thermal modelling of a lithium ion cell. The drawback of higher model complexity is compensated
by a dedicated parameter estimation algorithm. Finally, the accuracy of the proposed model is shown by
the comparison of simulation results with real measurements of a given cell.
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1 Introduction

Typically the design process of battery packs
starts with a mathematical characterization of a
single cell as it is the basic unit of the battery. The
resulting model is then used for different tasks
which include

A1: the simulation of the battery pack behaviour
(e.g. non-uniformity in state-of-charge and
the influence of contact resistances in a se-
rial/parallel/matrix connected battery struc-
ture or the cooling power and coolant flow
rate necessary to maintain proper thermal
conditions),

A2: the design of diagnostic and monitoring sys-
tems (e.g. for real-time calculation of the
state-of-charge, the state-of-health or the in-
ternal temperature of the cells), and

A3: the design of model-based energy man-
agement controllers and predictive cooling
strategies for the battery pack.

For this aim, a macroscopic description of the
coupled electrical and thermal behaviour of the
battery cell turns out to be adequate. The in-
puts of that model are the electric currentI and

the cooling conditions characterized by the flow
speedv and temperatureϑ0 of the coolant. The
overvoltageU and cell temperatureϑ are the state
variables. The terminal voltageU , the electric
chargeQ =

∫
Idt and a subvector ofϑ are the

outputs. In generalU andϑ are vectors.

Electric Model

Thermal Model

U̇ = fU (U , Q, ϑ, I)

U = fu(U , Q, ϑ, I)

ϑ̇ = fϑ(Q,ϑ, I, ϑ0, v)

I

ϑo, v

U

Q

ϑ

Figure 1: Battery model structure

Different approaches to the modelling of batter-
ies have been proposed in the literature. Physics-
based models [2, 1], presumably offering high
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accuracy, are not suitable for commercial cells
because they require detailed knowledge of in-
ternal processes and material properties that are
often not available. Empirical models are offer-
ing a relatively low order and easier identifica-
tion. Electro-impedance spectroscopy is often
applied to obtain frequency domain data for the
estimation of model parameters [4, 3]. Since this
method assumes stationary conditions (i.e.Q and
ϑ are nearly constant) during the experiments, it
is difficult to identify large time constants. More-
over AC excitation has to be small compared to
typical battery currents [3], so that for large cur-
rentsI the model accuracy cannot be guaranteed.
These drawbacks can be avoided by the use of
models in the time domain, even though param-
eter estimation is numerically more complex for
these models [5]. Another aspect regarding the
achievable model accuracy is the incorporation
of couplings between electrical and thermal be-
haviour of the cell.

2 Systematic modelling approach

In the following section the developed approach
for the modelling of lithium ion cells is pre-
sented. A model structure is proposed that was
formulated in order to obtain a precise simulation
of system behaviour over a wide range of oper-
ational conditions. Interpretations of structural
components and their dependence on different
parameters like temperature and state of charge
(SOC) are discussed. Furthermore it is shown
that the proposed complex nonlinear model for-
mulated in state space equations covers several
other model approaches often reported in the lit-
erature.

Regarding operational conditions, high power
applications put high demands on batteries. For
instance, in hybrid electric vehicles, large power
peaks (during acceleration and braking of the ve-
hicle) as well as high energy transfer (when driv-
ing up and downhill) can occur. In these applica-
tions the current, the electric charge and the tem-
perature of the battery undergo large variations
and can reach the limits of the cells operational
range. Therefore, the battery model is required
to be valid in the whole feasible operational re-
gion.

To cover all relevant parameters and their depen-
dencies, this paper proposes the model formu-
lated in a state space representation according to
equations (1a) and (1b).

xi[k] = ai xi[k − 1]+

µ̄∑

µ=1

ν̄∑

ν=0

κ̄∑

κ=0

b+

i,µ,ν,κ I+[k]µ Q[k]ν ϑ[k]κ

+

µ̄∑

µ=1

ν̄∑

ν=0

κ̄∑

κ=0

b−i,µ,ν,κ I−[k]µ Q[k]ν ϑ[k]κ

(1a)

(i = 1, . . . , n)

U [k] =
n∑

i=1

xi[k]+

µ̄∑

µ=0

ν̄∑

ν=0

κ̄∑

κ=0

d+
µ,ν,κ I+[k]µ Q[k]ν ϑ[k]κ

+

µ̄∑

µ=0

ν̄∑

ν=0

κ̄∑

κ=0

d−µ,ν,κ I−[k]µ Q[k]ν ϑ[k]κ

(1b)

The electrical behaviour of the battery can be
classified by different components. The SOC,
which can be estimated based on the open cir-
cuit voltage (OCV), is one of the most important
parameter. Its static characteristic is described by
the equation

OCV [k] =

n∑

ν=0

d0,ν,0 q[k]ν . (2)

Furthermore the dependence on several opera-
tional parameters is modelled, including SOC
and current direction. The latter can be illustrated
by the data plotted in Fig. 2, which shows a se-
quence of current pulses, that were performed in
different SOC regions and the resulting voltage
profiles. The data was experimentally gathered
from a high energy lithium ion cell, which was
also used for parameter estimation in section 4.
For a decreasing SOC an increasing overvoltage
as well as an increasing asymmetry of charge and
discharge behaviour can be seen. The model cap-
tures the illustrated effect by the inputQ[k] and
the distinction of current by

I+[k] = max {0, I[k]}

I−[k] = min {0, I[k]}.

Moreover the model structure comprises a non-
linear behaviour regarding the battery current.
The existance of such a nonlinearity is shown
in Fig. 3. During the cell test a current pro-
file with pulses of different current rates but the
same length were performed. Since the normal-
ized voltage characteristics∆U do not coincide
there must be a nonlinear relation between cur-
rent and terminal voltage.
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Figure 2: Results of cell tests analysing dependence
of electrical behaviour on SOC

The proposed model (1a) and (1b) covers several
other model approaches discussed in the litera-
ture.
A simplified model, as it is described in [9], is
shown in Fig. 4. Unlike the proposed model it
differentiate only between the series resistances
Rc andRd for charge and discharge respectively.
Usually, the diffusion and double layer phenom-
ena in the battery are realized by a distributed cir-
cuit model which consists of infinite RC ladder
elements [4, 8] as shown in Figure 5. This se-
ries connected RC ladder circuit needs to be sim-
plified. The determination of the number of ele-
mentsn requires a trade-off between achievable
model accuracy and processing power.

The proposed model also incorporates tempera-
ture dependent effects by introducingϑ in the
state-space representation. To avoid the costly
measurement of temperatures, the thermal be-
haviour is modelled using the following equation

ϑ[k + 1] = ath(ϑ[k] − ϑ0) + bthPth[k] . (3)

Hereinϑ denotes the cell’s temperature,ϑ0 the
temperature of the coolant andPth the generated
thermal dissipation loss. For the model shown in
Fig. 5 the thermal dissipation loss can be calcu-
lated utilizing the power loss of the resistances
R0, . . . , Rn, thus obtaining

Pth[k] = I[k]2R0 +
n∑

i=1

xi[k]2

Ri

. (4)

To determine the thermal dissipation loss for the
model proposed in Eq. (1), the summations in
Eq. (1a) are rearranged to




µ̄∑

µ=1

ν̄∑

ν=0

κ̄∑

κ=0

b±i,µ,ν,κ I±[k]µ−1 Q[k]ν ϑ[k]κ




︸ ︷︷ ︸
:=b±

i

× I±[k] .
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Figure 3: Results of cell tests analysing nonlinear be-
haviour regarding the current

I

UU0C0

C1

Rc

Rd

R1

Figure 4: Simple equivalence model,Rc andRd are
the series resistances,R1, C1 describe diffusion and
double layer phenomena

After transforming the model’s discrete time pa-
rametersai and b±i to continuous time parame-
tersãi andb̃±i respectively, the quotients−b̃±i /ãi

are equivalent to resistances̃R±

i , which are de-
pendent on SOC, temperature and current. The
resistancesR̃±

0
are obtained in the same man-

ner by rearranging Eq. (1b). Finally, the thermal
dissipation loss for the nonlinear model can be
calculated utilizing the power loss produced by
R̃±

0
, . . . , R̃±

n .
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Figure 5: Simple equivalent circuit diagram of a bat-
tery. U and I are the terminal voltage and battery
current,U0 is the open circuit voltage,R0 is the se-
ries resistance,R1, C1, ..., Ri, Ci describe diffusion
and double layer phenomena

3 Parameter estimation with the
SNLLS algorithm

In order to apply parameter estimation algo-
rithms, the model introduced in Section 2 is usu-
ally written asy = h(x, p), where the compo-
nents of the vectorsx andy are the time-discrete
model inputs (I, ϑo and v) and model outputs
(U and a subset of the components ofϑ) respec-
tively. The vectorp consists of the linear param-
etersbi,µ,ν,κ, dµ,ν,κ, xi[0] and the nonlinear pa-
rametersai. Parameter estimation is often done
by fitting the model outputh(x̃, p) resulting from
the input measurements̃x to the output measure-
mentsỹ in the least-squares sense. That means,
p is determined by the solution of the problem

‖ỹ − h(x̃, p)‖2 → min
p

. (5)

Due to the large data sets emerging from experi-
ments that cover a wide operational region (cur-
rent rate, SOC, temperature) as well as a variety
of battery characteristics with different time con-
stants, the vectors̃x andỹ may consist of105 to
108 components. Moreover the number of pa-
rameters can be large, e.g. defining the upper
bounds of summations̄µ = ν̄ = κ̄ = 3 al-
ready leads to a total number of parameters of
49n + 2n + 64. Numerical solution of the re-
sulting large-scale nonlinear estimation problems
causes difficulties for standard least squares algo-
rithms.
In order to apply more efficient methods, al-
gorithms for separable nonlinear least-squares
problems (SNLLS) [6] are adopted. The specific
structure of the model is used to rewriteh in the
separated form

y = F (x, α, β) :=

n∑

i=1

αi fi(x, β),

where the vectorsα and β represent the linear
and the nonlinear parameters respectively. Ifβ
was known, then the optimal linear parameters
α∗(β) could be obtained by simply solving a lin-
ear least-squares problem. Therefore, the prob-

lem (5) can be replaced by

‖ỹ − F (x̃, α∗(β), β)‖ → min
β

. (6)

This leads to a significant decrease of the num-
ber of parameters. Referring to the above men-
tioned example the calculated number of param-
eters49n + 2n + 64 for Eq. 5 is reduced ton pa-
rametersβ = (a1, . . . , an) for the problem for-
mulation in (6).
The reduction of the parameter space does not
only decrease the processing power and memory
requirements necessary to solve the parameter
estimation problem. Moreover, no initial guesses
are necessary for the linear parameters which im-
proves the reliability of convergence. It has been
shown that the algorithm converges in fewer iter-
ations and is numerically more stable [6].
Within the SNLLS algorithm the matrix

Φ(β) = [f1(x̃, β) . . . fm(x̃, β)]

and its Moore–Penrose generalized inverse
Φ

+(β) is defined. Using the functional

α∗(β) = Φ
+(β)ỹ (7)

and the substitution

G(β) := (I − Φ(β)Φ+(β))ỹ (8)

leads to the nonlinear optimization problem

‖G(β)‖2 → min
β

. (9)

Gradient-based optimization methods for the so-
lution of (10) require the JacobianG′(β) for the
determination of a descent step direction. In or-
der to avoid time-consuming numerical calcula-
tion of the Jacobian, an analytical form ofG′(β)
is given in [6]. In that reference it is also dis-
cussed how a further increase in efficiency of the
procedure can be obtained by using an approx-
imated Jacobian (so-called Kaufman model) in-
stead ofG′(β).

For the proposed model (1a) and (1b) it turned
out that the initial value ofβ has significant influ-
ence on speed of convergence and quality of ap-
proximation. With the following sequential strat-
egy an appropriate definition of initial values for
β is provided in step (i).

PARAMETER ESTIMATION ALGORITHM FOR
MODEL EQUATIONS (1a)AND (1b)

(i) Define mutually different time constants
Ti (i = 1, . . . , r) by using a priori informa-
tions (e.g. preliminary tests). TheTi should
cover the expected dynamic electrical be-
haviour of the battery. UsingTi determine
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the initial values for the polesai of the dis-
cretized model

xi[k] = ai xi[k − 1] + bi u[k] (i = 1, . . . , r)

y[k] =

n∑

i=1

xi[k] + du[k]+

+ c3 q[k]3 + c2 q[k]2 + c1 q[k] + c0

(10)

and fit this model to the experimentally
gathered data. Eliminate all multiple-order
poles that can emerge from an overpa-
rameterization and form the vectorβ =
(â1, . . . , ân) from the remaining poleŝai.

(ii) Accomplish the parameter estimation algo-
rithm for model equations (1a) and (1b) us-
ing the initial valuesβ = (â1, . . . , ân).

Due to the reduced order of the model according
to Eq. 10 depicted in Fig. 5, parameter estima-
tion acquires less processing power compared to
the model equations (1a) and (1b). The resulting
initial valuesβ provide a basis for optimizing the
nonlinear model parameters in step (ii).

4 Application example

In this section, the practicability and the im-
proved characteristics of the proposed approach
will be illustrated by applying it to a 40Ah
lithium ion planar cell as an example of a cell
which is designed for use in traction batteries.
During cell tests only moderate current rates
where used that caused no significant change in
temperature. Hence temperature is modelled as a
constant input variableϑ = const. and the model
equations (1a) and (1b) are simplified as follows

xi[k] = ai xi[k − 1] +

µ̄∑

µ=1

ν̄∑

ν=0

bi,µ,ν u[k]µ q[k]ν

(i = 1, . . . , n)

y[k] =
n∑

i=1

xi[k] +

µ̄∑

µ=0

ν̄∑

ν=0

dµ,ν u[k]µ q[k]ν .

(11)

To cover a wide range of operational regions,
the performed cell tests comprise a sequence of
constant-current pulses and rests with different
length in random order within a SOC region of
nearly100%.

The models to be compared are the following

• Model A: resulting from step (i) of the algo-
rithm in section 3

Table 1: Simulation results

n=1 n=4
Model A
Tc,i (s) 685 28,117,1574,7746

‖G(β)‖2 (mV) 5.65 4.80
∆U (mV) 7.20 6.05
Model B

‖G(β)‖2 (mV) 3.46 1.43
∆U (mV) 4.45 1.89
Model C
Tc,i (s) 575 28, 120, 1556, 8179

‖G(β)‖2 (mV) 3.43 1.42
∆U (mV) 4.51 1.88

• Model B: according to Eq. (11), where the
nonlinear parametersai are equal to those of
model A and the linear parameters are opti-
mized according to Eq. (7)

• Model C: according to Eq. (11), where the
nonlinear parametersai are optimized ac-
cording to step (ii) of the algorithm in sec-
tion 3 and the linear parameters are opti-
mized using Eq. (7)

Table 1 summarizes the results of parameter es-
timation for the models A, B and C. Using
the polesai the related time constants for the
continuous-time model representation are calcu-
lated with the sample timeTs by

TC,i =
Ts

− ln ai
. (12)

The model performance is evaluated by the value
of the target function (9) as well as the mean de-
viation ∆U between measured terminal voltage
and the model output. Between model A and B
a significant performance jump can be seen. Fur-
thermore time constants in model A are already
close to their optimal values, indicated by the
value of target function (9) that is not improved
as much.
Comparing models A and C (Fig. 6), perfor-
mance of model C is improved especially at the
boundary of the SOC region. Fig. 7 shows the
model error of both models for the entire data set.

5 Conclusion

This paper presents a procedure that is practical
for the modelling of lithium ion cells. The us-
age of a complex coupled electrical and thermal
model allows for a high accuracy. By introduc-
ing the SNLLS algorithm, which is applied to
parameterize the reduced electrical model in the
previous section, it is possible to deal with large
measurement data sets as well as a large number
of parameters in an efficient way. The proposed
methods are a promising approach for the extrac-
tion of battery models with a high accuracy in an
extended operational region.
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