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Abstract

The design of a full electric vehicle (or battergatric vehicle (BEV)) requires the development and
optimization of a complete electric powertrain, lirting battery, power electronics, electric machine
sensors and control system.

When designing an electrical platform, from theyieginning of the V-cycle, it is mandatory to rely
modelling and simulation tools in order to drive thnain choices and then to optimize the systens Thi
paper presents an electric powertrain simulati@ifgm developed with Matlab-Simulink, dedicated to
multiphysic optimization of the system.

As an example, the basic electrical powertrainigecture first considered in this paper includdsatery,

an inverter, a dc-dc buck converter supplying mataluctor and a wound rotor synchronous machine
(WRSM). The purpose is to show how simulation taala help in comparing different powertrain control
strategies.

The present simulation platform is also usefulttmyg physics architecture. To illustrate this ppariother
electrical architecture is also presented, inclgdindc-dc boost converter between battery and tewer
This structure must be considered here as an eraompy in order to show how to optimize control faw
taking into account various criteria, including latecture ones. Simulation results are comparedddin

architectures in terms of powertrain performancesrange.

Keywords: Electric powertrain, simulation platforppwertrain control strategies, architecture optiatipn

1 Introduction models and equations are described in order to
introduce different optimization strategies with
criteria on performances and on powertrain losses
in section 3. Optimization is performed with a
powertrain architecture with three degrees of
freedom. As the aim is to expose methodologies
and to show typical results, the results preseimted
this paper are related to typical study cases, and
not to an industrial one.

When designing an electrical platform, from the

very beginning of the V-cycle, it is mandatory to

rely on modeling and simulation tools in order to

drive the main choices and then to optimize the
system.

The paper is organised as follows. The section 2
presents an electrical powertrain simulation

platform developed with Matlab-Simulink. Main
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Section 4 presents an architecture optimization
introducing a fourth degree of freedom, specially
used when battery is partially discharged.
Finally, we draw concluding remarks in

section 5.

2 Simulation Platform of an
Electric Vehicle Powertrain

2.1 Power system iensiay  WBsaulaions
mainly constituted by battery, converters, motor These models can be split in three categories

and control structure (Flgl) depending on the frequency SCE]?.
Inverter
The first category implements analytical
T, A expressions of losses, range, cost, etc. used in a
Bustfary _——_i’ fL{:é Vehicle global approach, for example for the synthesis of
: r(é(- - control laws. The second category deals with
! Driver “ ” . -
T e average” models dedicated to driving cycle
transistors LE:‘D‘CTD}:‘.—:-: sl simulations (e.g. NEDC) on wider time horizons.
R Finally, the third category deals with short time
Low-level High-level switching and fast variation of currents, voltages,
control forque control pedal press it H
speed torque, etc. For example, it is possible to observe
electric resonances on the network and torque
Figure 1: Simplified representation of a typicaattic oscillations on the drive shaft.
powertrain

In order to understand powertrain control methods
presented in section 3t is important to detalil
converters and motor models.

High-voltage battery has to supply with energy
not only traction motor, but also high power
loads like air-conditioning or heating as well as

the low-voltage network. 23 Electric motor model

2.2 Simulation platform The three-phase Motor considered in this paper is a
' L . Wound Rotor Synchronous Machine (WRSM),
The powertrain simulation platform used for

optimization includes the following models represented in Park coordinate (a,b.c)d,q).
Fig.2)[1] [2]: Indeed, WRSM presents more degrees of freedom
(Fg.2)(1] [2]: than Permanent Magnet Machine, as it will be
* A dynamic battery model 9 ’

. Two three-phase AC-DC converter models explained in section 3.1. It is why it has been

supplying WRSM stator: one model for fast ﬁ'hosen fotrh the \t/;:or; Idesc_rlbed_tln thlst_lpapeg
transients including switch models and one owever, the methodology 1S guite versatiie an

model for quasi-static transients (first harmonic can also be applied to any other type of motor

only) with voltage and current average signals. (Permanent Magnet, Induction, etc.)
These models make it possible to simulate fast

phenomena over short times (dynamic Motor notations and symbols:

behaviour of the powertrain) and driving Vg4,V Stator voltages (V)
cycles lasting many minutes (e.g. NEDC) as it o
is explained at the end of this section. lq,14: Stator currents (A)

* Two dc-dc converter models supplying WRSM
rotor (fast transient / quasi-static transient).

*« A WRSM model with consideration of
magnetic  saturation, using Park (d,q)

transformation. i - Rotor current (A)
« Sensor models (currents, rotor position ...).

®,, P, Stator magnetic fields (Wb)

V; : Rotor voltage (V)

@, : Rotor magnetic field (Wb)
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Q : Motor speed (rad/s)
C.: Motor torque (N.m)

Parameters:
p : Pole-pair number

R;, R; : Stator and rotor resistances)(
L,, Lq, L, : Stator and rotor inductances (H)

M : Mutual inductance (H)

The electrical equations of stator and rotor are
given in[3].
Motor torque equation is as follows:

Torque:C, =3'—2p.(iq.(13d —id.CDq) (1)

Magnetic saturations are taken into account:
Ld,Lq,Lf,Mf depend on stator and rotor
currents through non-linear complex equations.
Each inductance parameter is function of three
currents(iOI ,iq,if ) To determine these relations,

we use steady-state maps of magnetic fields
dDd,qu,CDfdepending o(id,iq,if).

Figure 3 shows magnetic fiel®, according to

(d ,| ) for different constant values of :

Phiy, = fn {id,ig) for different constant values of if

Figure 3: Stator magnetic field on axe d according
stator current (units = p.u.)

NB : Most figures in this paper are presented
with per-unit axes (between 0 and 1).

To include magnetic saturation in Park equations,
we proceed as follows:

e a map of L (d, q,| ) is obtained by
dividing @ (d, Il )byl

« equatiorP, =L i, +M,l,is
modified as follows:

D, =Lyig +M i + LM, (2
with:
0 Ld(id’iq’if):cpd(ldi,lq’lf)
d
(0] Mf(id,|q.f):—q)d(lc;'lqllf)
f
_de—Ld.id—Mf.if
o LM(iyipis)= »

The methodology is the same for rotor field
@ (igioni

q’

In addition to electrical equations, the mechanical

part can be modelled by the following
equation4]:
Q
d =C,-C, -C, 3
Tdt
with:  J: Motor Inertia (kg.m?)

C, : Resistive torque (N.m)

C,: “Losses” torque (N.m)

A resistive torque C,is added to classical

Q
mechanical equation].d— =C,—-C, to take
dt '

into account some motor losses, such as core
losses and mechanical losses. Losses expressions
are presented in section 3.3.

To determine CI expression, we solve the
following equation with steady state relations:
I:)in - Pout = I:)TOT (4)

with:

3 : . S
n —E.(vd.ld +Vq.lq)+vf I¢ Dinput
electric power

« P, =C..Q :output mechanic power

Pooor = Pooooer * Poore * P

motor Copper Core Mec *

(cf. section 3.3).

. motor losses
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24 Converters models currents iy,i, (hypothesisi, +i, +i, =0) and

rotor currenti, .

Let us briefly describe the powertrain control
The inverter converts DC-voltage from battery to  structure. From the motor torque referer(&ae)

AC-voltage in order to supply stator of electric
motor. This converter is made of six switches, €€ currents reference%;d ref 1l por o ref) are

Our model considers simplified IGBT/diode defined. Three controllers achieve currents

Three-phaseinverter

ref

switches (Fig.4). regulation. Finally, controllers outputs are
transformed in open / close switching positions for
Idc inverter (Space vector PWM is used) and for dc-dc

buck convertef6]:
Vdc_mTh - la - b - o P —— id".?.&‘fr-'::'r:-‘f'.f:r!'."fz'. _____________________________
pose g L g—
- & = i
n Va Vb Ve :
Idc

Figure 4: Three-phase inverter

1L

Switching parameters are series resistors and
threshold voltages for both IGBT and diodes. Figure 5: Electric Powertrain Control System

Concerning inverter control, we use a classical

Space Vector PWM: switches closed and open Electric powertrain global optimization is
positions are deduced from a reference voltage considered at three levels: the first step is the
vector[5]. currents reference determination

(Idref,lqref,lf ref), the second step deals with

To simulate complete driving cycles, we use a . i
controllers coefficients and the third step deals

slow-transient model of inverter (or *“first X e . X
harmonic” model). Inputs are three-phased with switching control. This paper mainly focuses

voltage references, AC current and DC voltage. on the first step: {iy o ,iq . 0¢ ) triplet
Outputs are AC voltage and DC current. To take

into account converter losses, output DC current
is modified according to losses map inside
Simulink model.

optimization.
Many control strategies can be studied,
considering one main objective (following torque

motor reference(C ) ) and three main degrees

DC-DC converters of freedom( i ) Optimization methods can

d? ql
A classical buck converter is used between high-
voltage battery and machine rotor. Both fast-
transient and slow-transient models are realized torque constraint with ~ vehicle range and

in the same way as AC-DC converter. performances objectively], [8], [9]. Constraints
on maximal voltages and currents in battery,

converters and machine must also be taken into
account.

thus be applied on varlable@d, | ) under

3 Control Optimization

Figure 6 shows an example of simulation results
31 Low-level control structure obtained with a losses minimization control
strategy (see section 3.3 for more details abasit th
Powertrain architecture, presented in Figure 5, strategy):
provides three degrees of freedom: two stator
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Control strategy : Losses minimization
T T

T T T I I
i i Output
Reference

S T

Motor speed (rpm)

Motor torque for different values of | = sqn(id2+iq2), if=if

MOTOR TORQUE
o

Figure 6: Example of power system simulation with a
losses minimization control strategy: machine terqu

and speed (typical study case)

Two control strategies

explained and compared in following sections.

3.2 Torquemaximization

In a first time, we consider motor inductance
parameters as constant. According to torque

equation (3), to maximizeC_,, we set rotor

current at its maximum value ; =i, .
max

Concerning stator current, andi are linked by

the relation| = /i, +iq2 . The idea is to find

(id ,iq) that maximizeC, for any value ofl .

Considering constant inductance parameters, we

computeC, partial derivatives:

aC. 3p . g
C=—IM. i, +\L,-LNiy—— 1| 5
o= (Mt thi -1 ©
a_ce “0 .
i,
i =—|\/|f.if+\/|\/|f2.if2+8.(|_d—Lq)2.|2 ©
‘ 4lL, - L)
If Ly =L, (round  rotor  machine),

(id,i )I(O,I) corresponds to a maximum of

torque equation.
To illustrate these results, we pld€, for

different values ofl (Fig.7).

with  criteria  on
performances (“torque maximization strategy”)
and range (“losses minimization strategy”) are

Figure 7: Motor torque according to stator curifent
maximum rotor current (units = p.u.)

Torque maximization control strategy consists in
finding the curve for Whic(Ce)ref =(Ce)
Optimal operating points corresponding to torque

maximum values are represented with stars (see
Figure 7).

max "

Figure 8 shows maximum motor torque versus

(id ,iq). For a given value o(Ce)ref corresponds

a triplet(id gl max) maximizing torque.

MAXIMUM MOTOR TORQUE, if =if
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Figure 8: Maximum motor torque according to stator
current (units = p.u.)

If we take into account magnetic saturation, result
are similar, but the method is slightly different:

partial derivatives ofC, equation cannot be easily
calculated as previously. We use a gradient-based
optimization method to findC, maximum value

for each wvalue of |. The relation

i, =i, _remains unchanged.
max
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Optimization problem:
* cost function to minimize:

3'—2p.(Mf-if-iq +(Ld - Lq)'id'icq (7)

J

opt =

 variables i, ,iq

+ constraint:l =,/1;" +1,

We use a classical SQP (Successive Quadratic
Procedure) to solve this optimization. Results are
plotted on Figures 9 and 10.

Motor torque for different values of | = sqrt(id2+iq2), if= ifmax

T T T T T
¥ TORQUE MAXIMUM VALUES
- MAGNETIC SATURATION MODEL -

o
=)

MOTOR TORQUE
o o
> w

Figure 9: Motor torque according to stator curifent
maximum rotor current with a magnetic saturation
model (optimal operating points = stars) (units.e=)p

MAXIMUM MOTOR TORQUE, if =if
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Figure 10: Maximum motor torque according to stator
current with a magnetic saturation model (unitsu)p.

Finally, the Motor Torque Maximization
methodology can be summarized in three steps:

l

B If’ max

|

Magnetic saturation model?

s ar 2l _ 2
I_ Myl s(e, -1 P
i 4(r,-1,)

. a__4
L=AI =1

Gradient-based
optimization algorithm

= (z'd_fq)

C.ome= S isi)

|

(jff’ j(/ ) = -f_l (Cje max )

Figure 11: Motor torque maximization method

The result is a non analytic algebraic relation
giving (id gl ) from (Ce)ref .

In order to take into account battery output
voltage, a constraint on(vd,vq) is added:

inequality 1/vd2 +vq2 <V, «Mmust be respected

for all operating point{Ce,Q).

3.3 Losses minimization

The difficulty of a losses minimization strategy
depends on the chosen approach:

» approach I to use a fine and complex model of
motor losses (e.g. through losses maps from
tests). Advantage is a high correlation between
tests and simulation results. Major drawback
concerns optimization method complexity: when
the cost function to minimize is not an explicit
function of optimization variables, simple and
fast gradient-based methods can not be applied.
More complex methods (such as heuristic
algorithms) are required, with longer
computation times.

 approach 2 to use simplified losses model, with
explicit expressions of optimization variables.
There are two advantages of this approach : first,
the use of fast optimization methods is possible;
secondly, it allows studying losses variations
with motor parameters. Drawback is advantage
of first approach (classical compromise between
precision and computation times).
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Approach 2 is used in this paper. For that
purpose, simplified losses expressions are
required.

The cost function to minimize represents global
losses in powertrain (apart from battery losses).

Converters losses:

* Conduction losses:
PCond :At'lz-l_BC'l (8)

e Switching losses:
P, = f. (A1 % + Bl +C) )

where the parameters are:
f.: switching frequency (Hz)
Ac,Bc . .
: Constant coefficients to determine
As, Bg
| : Converter current:
o Stator AC-DC converter:

L2, 2
|- 14" *l

o Rotor DC-DC converterl — i,

Motor losseg$10]:

¢ Copper losses:

R =R; -if2+g'RS'(id2+iq2) (10)

Copper

e Corelosses:
Poe = (@47 + 0,2k, Q +k,Q7) ()

Core

¢ Mechanical losses (dry friction, viscous
friction and windage losses):

I:)Dry Friction = kdf Q (12)
I:>ViscousFriction = kvf 'Qz (13)
I:>Windage = kw'§23 (14)

ki, . K. Ky . K, andk,are constant coefficients

to determine, respectively corresponding to
hysteresis, eddy current and mechanical losses.
Coefficients determination

To determine A.,B, A, Bgcoefficients for

stator and rotor converters, we apply linear

regression to data maps. These maps represent
converters global losses and motor current

measures according to torque and speed.

Linear regression consists in approximating a

linear equationY = AX with X a vector of
unknown parameters, by a least square method

(minfy - AX],),
where: ) .
Ab Stator

BC Stator

AS Stator
B

S Stator
CS Stator
AC Rotor
BC Rotor

ASROtOI’

BS Rotor

L CS Rotor B

andY andA contain data from measures.

Xcan be compute from the well known
expression:

X = (AT.A) " ATY (15)

Concerning motor losses coefficients
determination, we use the same method applied to
stator and rotor losses data with:

If stator and rotor resistance values are unknown
parameters, linear regression can provide them by

modifying Y , AandX so that:
Rf

(Using this vector is also a mean to check motor
resistance values)
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Figures 12 and 13 represent converters and motor Global losses:

Iosses_ from tests versus S|mulat|on_ result_s. Por = opper P.re * Puec * Psatorsw
Modelling error on converters losses is quasi- (16)
inexistent. Concerning motor, in low torque area, *+ Pstatorcond 1 Protorsw T Protorcond

there is up to 20% error, certainly due to losses

simplified model (e.g. stray losses are neglected). P.,;is the cost function to minimize.

: Optimization variables ai‘g,iq g
e Constraint to respect concerns motor torque
) (eq.3):C, =(C.),.;-
| 02 For each coupl(Ce,Q), we find (id ,iq,i f) that
" roRave U minimizeR,o;, verifying torque expression and

i respecting following constraints:

T T T
MOTOR LOSSES [0 1

RN e R N R S 06 2 2
E w4 ‘\[Vd +Vq sVmax

02 2 - 2

U " g ST e 7)

TORQUE 1
<
. Iy = ! f max
B
IRRE To achieve computation, we use as previously a

i 10 SQP procedure.

To understand the importance of taking into
S04 s s 0l ° account both losses in motand converters for
optimization (instead of motor losses only for
Figure 12: Motor losses measures vs. simulation example), we compare global efficiency with two
results (units = p.u.) control strategies (Fig.16)1]:
a. motor losses minimization (Fig.14)

i S — ! b. (motor+converters) losses minimization
RTERS LOSSES [0 1] - MEASURES .
e 08 (F|g15)
g 0.6
o Strategy (a) - MOTOR LOSSES MINIMIZATION
e 04 1 —r————
e e | &I CONVERTERS-MOTOR EFFICIENCY ([0.1]) |
I 0.9 pefr-nnmmi-mo-- -t i s e
05 05 0 1 H H H H | H H H 0.9
TORQUE
L 0385
0.8
[m)]
Q 0.6 E 03
5 0s 5
02 0.75
0
07
2 S S i i = S 065
0.6 01 02 03 04 05 06 07 08 08
a 0s TORQUE
E 04
? e Figure 14: Powertrain efficiency with a strategy of
o motor losses minimization (units = p.u.)
02 03 04 05 06
TORQUE

Figure 13: Converters losses measures vs. simalatio
results (units = p.u.)
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Strategy (b) - (CONVERTERS + MOTOR) LOSSES MIMIMIZATION

1 T T T T T T T

| ¢COII\ ERTERS-MOTOR EFFICIENCY I[G 1)
0.9 p=dt
g 09
0.8 f=ri-
0.85
@
i} 08
[
@
075
07

01 02 03 04 05 06 07 08 09
TORQUE

Strategy - MOTOR TORQUE MAXIMIZATION
1 — : —
||°COH\ERTERSHOTOR EFFIC\EIICY\[O 1] e
0.7
0.6
[m]
w
w
o
[2]
05
04
0.3
01 02 03 04 05 06 07 08 09
TORQUE

Figure 15: Powertrain efficiency with a strategy of
global losses minimization (units = p.u.)

Figure 17: Global efficiency with a strategy of toeq
maximization (units = p.u.)

STRATEGIES (a) - (b}

1 T

| QEFFICIENCIES DIFFERENCE \[0 1| 0,005
-l k<]

-0.01
-0.015

-0.02

SPEED

-0.025

-0.03

-0.035

0.04

I R

01 02 03 04 05 06 07 08 09
TORQUE

-0.045

Figure 16: Powertrain efficiency gain with a strategy

of global losses minimization vs. motor losses
minimization (units = p.u.)

Efficiency gain does not exceed 5%. Indeed, in
this study case, converter efficiency is much

higher then motor efficiency.

3.4 Strategiescomparison

Figure 17 shows a global efficiency map
obtained with torque maximization strategy
(previously presented and frequently used in

literature[6]).

This strategy is compared with losses

minimization strategy (Fig.18).

EFFICIENCIES DIFFEREMCE ([0.1])
1 T I I I I I I
o STR’&T‘cr:us Max ~ STR’&TLcaasa Min
09 oy T T T 01
08 ~
015
0.7 Bsr=t--------
0.2
o 06
i 0.25
0.5 gy e
04 03
03 -0.35
B e R e e EEEEEL EEEEEL EEREED 04
0.1 e O e ore
01 02 03 04 05 06 07 e
TORQUE

Figure 18: Global efficiency gain with a stratedy o
losses minimization vs. motor torque maximization
(units = p.u.)

Losses minimization strategy allows increasing
efficiency, especially for low torques area, whare
maximal rotor current is not necessary.

4  Architecture Optimization

When dealing with powertrain performances, it is
mandatory to take into account the way battery
voltage changes with respect to the state of charge
This voltage value has a direct impact on

Iy ,Iq, ) optimization.
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GLOBAL EFFICIENCY ([0.1]) - Strategy of Global Lasses Minimization 41 DC-DC Boost converter

08 The electrical architecture of the powertrain may
have a great influence on battery voltage variation
impact. For example, introducing a dc-dc converter
between the battery and the inverter can change the
behaviour of the system. The function of this
converter is to stabilize as much as possible the

SPEED

inverter dc voltage whatever the battery state of
be charge i412].
g 035 To study the efficiency of this architecture, adic-
& 03 boost converter model with IGBT has been
o integrated in the simulation platform (Fig. 21).

01 0.2 0.3 04 05 0.6 0.7 0.8 09 1
TORQUE

T T T T T
o> battery almost completely discharged

SPEED

Figure 19: Global efficiency with losses minimization - ‘
strategy for different battery voltages (units &.p. uSs0sofs,  JJsgulators,
Figure 21: Electric Powertrain with dc-dc boost
__ OPERATING POINTS LIMIT converter

I I T I I I
X —F— battery completely charged
--| —¥— battery partially discharged
—E— battery almost completely discharged

B I I A —

4.2 Low-leve control with four degrees
of freedom

SPEED

With this new powertrain architecture, four
degrees of freedom are now potentially available:

R U PR SRS SO . - -~V WP, - | (Id,lq,lf) currents as previously presented and

dc-dc voltage reference. When optimizing
T =S powertrain  control, output battery voltage
01 02z 03 04 05 06 07 08 09 A constraints can thus be partly relaxed (especially
when the battery state of charge is low).

01
0

Figure 20: Operating points limits for different teay
voltages (units = p.u.)
4.3 Architectures comparison
Figure 19 shows powertrain efficiencies
according to battery state of charge. Results are
obtained by losses minimization for three

different constraints mﬁ/UI WV ) .

Figure 22 shows various results with and without
dc/dc converter.

As well as global efficiency differences, we
observe variations of operating points limit due
to optimization constraints (Fig.20). Battery
voltage has an impact on both efficiency and
performances.

EVS24 International Battery, Hybrid and Fuel Cekdtic Vehicle Symposium 10



Battery partially discharged

Battery voltage (V)

i
300

Time (s)

NEDC 600s
4000 T

3000

2000

Iotor speed {rpm)

1000

300 400 500
Time (s)

0 100 200

I |

AR

| i i
100 200 300

Mator torque (M.m}

i i
400 500

Time (s)

4000

Motor speed (rpm}

Mlatar torgue (N.m)

2000

1000

NEDC 800s

2000 -

100 200 300
Time (g)

50

-50

AL

I i i i i
100 200 300 400 500
Time (s)

NEDC - 600s — without Boost converter

NEDC - 600s — with Boost converter

Figure 22: Example of simwatiresults comparison with and without dc-dc baosiverter
(typical case study)

5 Conclusion
A platform for Electric Vehicle Powertrain has

and traction motor are modelled with the
intention of optimizing performances and
powertrain efficiency (highly linked with vehicle
range). Consequently, models are as much
simplified as possible. Further, explicit
formulations depending on degrees of freedom
are preferred.

In a second step, we have presented two
powertrain control strategies resulting from a
“software” optimization: we have used a classic
electric powertrain architecture and shown how
performances and efficiencies can be different
depending on control laws.

Finally, we have studied an example of
“hardware” optimization by introducing an
additional degree of freedom with a dc-dc boost
converter between battery and inverter.
Comparison results have been obtained with the
simulation platform. This platform has proven its
efficiency and has brought much than
satisfactory results for the deep understanding of
proposed optimized control laws and
architectures.
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