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Abstract 

Internal resistance is usually calculated by EIS (Electrochemical Impedance Spectroscopy) method, which 

gives unrealistic low internal resistance values.  In this paper internal resistance will be calculated from the 

voltage drop with FreedomCAR method where the validation of the results is much better (99%) than EIS 

method[1][12].  Batteries are often tested per cell.  But in most cases more than one single cell is needed 

for an application and the characteristics of a module of cells is not the same.  In other cases the whole 

module is examined as one big cell, without looking on the individual cells.  But the weakest cell affects 

the performance of the whole module.  This research goes deeper than the module approach on batteries: 

the behavior of individual cells is examined while they are working together in a module.  The battery 

model consists in most researches of an ideal voltage source and a simple internal resistance[2].  In this 

work the advanced FreedomCAR battery model, created by Idaho National Laboratories (USA), is used: 

the cell is represented by an ideal voltage source with two internal resistances and two capacitors.  Usually 

batteries are tested with very low constant currents (till 5% of the nominal current value) to show a high 

capacity value to the customer, while the customer needs the characteristics of the battery in real 

conditions.  Here the parameters are calculated by testing the battery packets in high pulse conditions.  The 

matching between the predicted and the measured voltage is proportional with the quality of the model.  

This was 99% (+-0.9%) in the tests.  This means that the model is very close to the reality.  Three types of 

Lithium-ion battery packets with 6-7 cells were tested. 
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ABBREVIATIONS 
OCV Ideal battery voltage [V] 
C Capacity [Ah] 
Ich,max Maximum charge current [A] 
Idch Discharge current [A] 
IL Battery load current [A] 
IP Current through polarization resistance [A] 
OCV’ Variation of OCV per exchanged capacity [V/As] 
Ri Internal resistance (general, total) [Ω] (=Rp+Ro) 

Ro Battery internal "ohmic" resistance [Ω] 
Rp Battery internal "polarization" resistance [Ω] 
SOC State of Charge [As] 
V Voltage [V] 
Vcc Closed circuit voltage 
VL Battery terminal voltage [V] 
Voc Open circuit voltage 
τ Polarization constant  =Rp * C [s] 
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1 Introduction 
The evolution of the cell parameters are 
determined as a function of the number of cycles 
and as a function of SOC.  The parameters are 
calculated at the package level and at the cell 
level.  Three types of lithium batteries are listed 
in Table 1.  Six (seven for type 2) cells are placed 
in series.   
 
   Type 1   Type 2   Type 3  

 V  
 3.3V 
(2…3.6V) 

 3.2V 
(2.5…3.65V) 

 3.2V 
(2.1…3.65V) 

 C   2.3Ah   3.2Ah   10Ah  
 70A cont.   12A cont.   120A cont.   Idch, 

max   120A 10s   28A 30s   140A 18s  
Ich,max  10A to 3.6V   3.2A to 4.1V  30A 

 8 mΩ (1kHz 
AC)  

 <19mΩ (1kHz 
AC)  

 6mΩ  
Ri  10 mΩ (10A 

1s DC)  
    

   >1000 cycles    >1000 cycles 
M  70g   82g   400g  

     66-26-26 mm   65-26-26 mm  
 138-40-40 
mm  

Table 1: Datasheet of the batteries 

2 Battery model 
The FreedomCAR linear battery model  is shown 
on Fig. 1.  A high pulsing current IL (Fig. 2), has 
to be loaded according to this model [3][4][5]. 
 

 

Fig. 1: FreedomCAR model 
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Fig. 2: The loaded FreedomCAR current profile IL for 
the three battery types 

Considering the model on Fig. 1, one can write: 
 

 
(1) 

 
 (2) 

After discretisation of equation (1), the next 
simplified equation can be written:  

 
(3) 

In (1):  
- VL, IL and t are measured 
- Ip comes from (4) 
- OCV, OCV’, Ro and Rp are calculated by 

linear regression method 
 
Discretising and solving the differential equation 
(2), with the starting condition Ip(t=0) = 0, gives 
for every sample i:  
 

 
(4) 

       
 
τ is chosen or calibrated in the model so that the 
fitting between the measured and estimated voltage 
(Fig. 3) would be optimal.  The difference between 
the measured and the estimated voltage VL in [%] 
(Fig. 3) is proportional with the quality of the 
model.  This is around 99% in the tests.   
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Fig. 3: Measured vs estimated voltage 

3 TEST RESULTS: Internal 
resistance 

3.1 Internal Resistance 
There are 205 FreedomCar tests (Fig. 2) done on 
the three battery types, which corresponds to 
685Ah.  The temperature is kept constant at 
approximately 25 °C by a fan and is also 
measured.  As mentioned in chapter 2 the 
voltages of the cells will be measured as well as 
the current and the temperature of one cell.  This 
data is filled in in a spreadsheet, where OCV’, 
Rp, Ro and OCV will be calculated.  τ is 
calibrated so that the matching between the 
measurements and model would be optimal. 
 
The result is shown on Table 2.   
 
Ri         T SOC type 1 type 2 type 3 
[mΩ][°C]   [%] min mean max min mean max min mean max 
Rp       25     100% 1,8 5 7,8 5 7,5 10 2 1,8 1,9 
Rp       25 15% 9 10 12 27 32 37 4 4,3 4,6 
Ro       25 100% 8 12 15 23 25 28 4 5,1 5,8 

Ro       25 15% 12 13 14 19 22 25 7 7,1 7,5 
Rp+Ro  100% 9,8 16 23 28 33 38 7 7,4 7,7 
Rp+Ro  15% 21 23 25 46 54 62 12 12 12 
R_producer   10     19     6   
#f.car cycli   46     37    122   

#exchanged Cap.   84     27     574   

Table 2: Internal resistance at cell level; T=25°C 

3.2 Influence of SOC 
The table shows that when the SOC decreases 
from 100 to 15% the total internal resistance Ri 
(=Rp+Ro) increases with 50-100%, especially due 
to Rp.  Rp has a more dynamic character in 
comparison with Ro which stays nearly constant. 

3.3 Comparison with the datasheets 
The calculated resistance is 50-100% higher than 
the value measured by the producer.  Type 3 has 
the lowest internal resistance and the value 

provided from the producer is much closer to the 
one which is calculated by FreedomCar model.   

3.4 Imbalance between the cells 
Type 3 has the lowest internal resistance 
imbalance between the cells.  At full SOC the 
variation of Ri between the cells was 0,7mΩ.  For 
type 1 and 2 it was 13 and 10mΩ.  That means a 
battery management system (to balance cells) is 
less needed in case of type 3 than in case of type 1 
or 2, which is an advantage of type 3. 

3.5 Cell versus pack 
Consider a pack which is capable to deliver 10Ah 
at 24V with only one type of cell by placing the 
right number of cells in parallel and/or in series, 
then the three types can be compared at package 
level (Table 3).  The combination manner is 
written at the top of the columns.  E.g. for type 1 8 
cells are placed in series and form a group; there 
are 4 such groups placed in parallel.  This is 
abbreviated as “8s4p” in Table 3.  8 cells are 
needed to get 24V and 4 groups in parallel are 
needed to reech 10Ah. For type 2 3 parallel placed 
groups contain each 8 in series placed cells (8s3p).  
The same calculation is done for a pack of 120A 
and 24V. 
 

Rp+Ro 100% 19,6 33 46 75 87 100 56 59 62

Rp+Ro ~15% 41 46 51 123 143 164 94 96 98

20 51 48

Rp+Ro 100% 39,2 65 91 22 26 30 56 59 62

Rp+Ro ~15% 82 92 102 37 43 49 94 96 98

40  15  48  

8s3p 8s1p

8s2p 8s10p 8s1p

Pack 24V 10Ah

Pack 24V 120A

8s4p

R_producer

R_producer

 
Table 3: Internal resistance of a pack: calculated from 

Table 2 

The internal resistance increases with approx. 50% 
when the SOC decreases from 100% to 15% for 
both (10Ah and 120A) packs.  The internal 
resistance value on the datasheets is the half of the 
one from the FreedomCar model.  Now it is type 1 
which has the lowest internal resistance value 
because of many parallel placed cells (4 parallel 
groups of cells, each containing 8 cells in series).  
Putting so many cells in a pack asks for a good 
battery management, which is a disadvantage.   

3.6 Influence of resting cells 
Fig. 4, Fig. 5 and Fig. 6 show Rp, Ro and OCV’ of 
type 1 as a function of SOC in case when the cells 
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have rested for 1 day (“1 day of no load time”) 
and in case when the cells have already done 5 
non-stop discharge cycles and have only rested 
for half an hour (“30min. of no load time”). 
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Fig. 4: Rp = f(SOC): after resting 1day (left) and 
30min. (right) 
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Fig. 5: Ro = f(SOC): rested and less rested 

When the parameters are measured before and 
after 5 discharge cycles, Rp and Ro increase with 
approx. 20%.   
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Fig. 6: OCV' = f(SOC) 

OCV’  (Fig. 6) is the decrease of the cell voltage 
per discharged As.  It decreases with 40% when 
the SOC decreases from 100% to 33% and it 
increases with 15% in case when the batteries have 
not rested.   

3.7 Influence of current 
Changing the load profile does increase the 
internal resistance of a battery, even if the new 
profile is less heavy than the previous one.   Fig. 7 
shows Rp for type 3.  The FreedomCar tests are 
done at 120A until 509Ah, also written in red on 
the figure.  From 509 Ah to 556 Ah the tests are 
done at 60A.  From 556 Ah on the tests are done at 
40A.   
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Fig. 7: Rp as a function of the exchanged capacity 

When the cycle profile changes for the first time 
from 120A to 60A Rp increases with 25%.  But 
after a few cycles it comes back to the original 
value. 
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4 Influence on discharge time 

4.1 Influence of exchanged capacity on 
discharge time 

When the exchanged capacity increases, the 
battery can deliver the maximum current for 
shorter time (Fig. 8).    
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Fig. 8: Discharge time as a function of the exchanged 
capacity 

4.2 Influence of SOC on discharge 
time 

When the SOC of the battery decreases, the 
battery provides the requested current during a 
shorter time (Fig. 9). 
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Fig. 9: Discharge time = f(SOC) 

5 Temperature and ageing 
The temperature increases with 2°C when several 
tests are done continuously with less pause 
despite of the fan.  This has the same effect as 
decreasing the SOC: Rp and Ro increases with 
the increasing temperature. 
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Fig. 10: Temperature[°C] as a function of time[h:min] 
for type3 
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Fig. 11: Temperature [° C] and capacitye as a function 
of time [h : min] for type 3 

Fig. 11 shows that the decrease of the capacity at 
high discharge currents is not only due to the high 
current but also due to the high temperature, which 
increases up to 45°C [6].  The fan was not 
sufficient to cool the battery when it was 
discharging with 80A CC until he was empty.  The 
temperature increased till 45°C. No ageing test 
were performed neither was the influence of 
temperature analysed at the moments. This will be 
carried out in future work.  But the producer did a 
ageing test for type 1 (Fig. 12).   
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Fig. 12: Ageing test for type 1 cell[6] 

6 Energy and efficiency 

6.1 Energy 
Fig. 13 show the energy imbalance between the 
cells for type 3 cells.  Cell 5 and 3 got the lowest 
energy input because of their little higher internal 
resistance in comparison with other cells.  The 
efficiency of cell 3 and 5 is also low on Fig. 15.   
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Fig. 13: Energy imbalance between the cells=f(t); t in 
[h : min] 

6.2 Efficiency 
Fig. 14 and Fig. 15 show the efficiency of type 1 
and type 3 cells. 
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Fig. 14: Charge and discharge energy and efficiency of 
type 1 cell as a function of current 
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Fig. 15: Efficiency of type 3 cell at 10 A CC discharge 

The efficiency of type 3 cell is much higher at 
reasonable currents. 

6.3 Energy loss 
 
Energy loss of the considered packs (§3.5) is 
calculated by their internal resistance from Table 
3.  The current and the time is taken from the 
capacity tests.   

 
(5) 

The energy loss due to the internal resistance is 
between 4 kWs and 33 kWs.  Type 1 has the 
lowest loss.  The percentages are also calculated, 
referred to the maximum energy that the packs 
contain. 
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E[kWs] SOC type 1 type 2 type 3 

   [%] min mean max min mean max min mean max 

Pack 24V 10Ah 8s4p 8s3p 8s 

E_loss=RI²t 100% 2,9 4,8 6,7 17 19 22 19 20 21 

E_loss[%] 100% 0,4 0,7 0,9 2,1 2,4 2,8 2,6 2,7 2,9 

E_loss=RI²t ~15% 6,0 6,7 7,4 27 32 36 32 33 34 

E_loss [%] ~15% 0,8 0,9 1,0 3,4 3,9 4,5 4,4 4,4 4,5 

E_loss_prod    0,72    11    16   

E_loss [%]     0,1     1,4     2,2   

           

Pack 24V 120A 8s2p 8s10p 8s 

E_loss=RI²t 100% 0,4 0,6 0,8 0,2 0,2 0,3 0,5 0,5 0,6 

E_loss[%] 100% 0,3 0,5 0,8 0,2 0,2 0,3 0,5 0,5 0,5 

E_loss=RI²t ~15% 0,4 0,6 0,8 0,2 0,2 0,3 0,5 0,5 0,6 

E_loss[%] ~15% 0,3 0,5 0,8 0,2 0,2 0,3 0,5 0,5 0,5 

R_producer    0,4   0,1   0,4   

E_loss[%]     0,3     0,1     0,4   

Table 4: Energy loss in [kWs] and in [%] for packs 

7 Capacity 
Fig. 16, Fig. 17 and Fig. 18 show the capacity for 
the three cell types.  They are in the order of 
what is written on the datasheet, except type 2.  It 
has a lower capacity than on the datasheet 
because the cells were charged to 3.55V instead 
of 3.65V in order to be safe. 
  

 
Fig. 16: Capacity of type 1 cell 
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Fig. 17: Capacity of type 2 cell  
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Fig. 18: Charge and discharge capacity of type 3 cell as 
a function of current 

Fig. 18 shows the capacity decrease as a function 
of the current for type 3.   

8 Voltage imbalance 
Voltage imbalance between the cells is maximum 
0,2V (Fig. 19).  It decreases when the cells are 
charged with a low current.   
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Fig. 19: Cell voltages= f(t) ; t in [h : min] 
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9 CONCLUSION 
The internal resistance is 50-100% higher than 
the value on the producers’ datasheet.  Moreover 
it increases with 50-100% when the battery gets 
empty.  Furthermore it increases with 20% when 
the cells have not rested for long time.   
 
Type 3 cell has the lowest internal resistance and 
shows also that the producers can provide the 
realistic value for internal resistance. 
 
The internal resistance imbalance is lowest for 
type 3 cell.  This can be correlated with the 
voltage imbalance.  If the voltage imbalance is 
low, then there is less need for a battery 
management or the energy system is less 
dependent from a battery management system. 
 
Decreasing the load current increases the internal 
resistance for few cycles.  After few cycles the 
internal resistance drops down to the original 
value.  So it is only the change of the load profile 
that increases the internal resistance in this case. 
 
The temperature only increases with 2°C during 
one FreedomCar test.   
 
The energy loss is calculated from the internal 
resistance value. 
 
The efficiency of the cells are around 88%.   
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