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Abstract 
In multiple series lithium secondary batteries, the cell with the smallest capacity determines the 

rechargeable and dischargeable capacities when individual cell capacities and SOC (state of charge) vary, 

since the current flow remains the same.  As a result, the capacity as an assembled battery becomes lower 

than that of the sum of all the individual batteries, reducing use efficiency.  To solve this problem, it is 

necessary to reduce the loss as much as possible and control the balance using a regenerative, 

cell-balance-correcting circuit.  There are two kinds of regenerative, cell-balance-correcting circuits: those 

that use a transformer and those that use a converter.  Circuits with a converter, which surpass those with 

a transformer in terms of power conversion efficiency and accuracy of voltage, are anticipated for practical 

application.  In the simple converter method, however, another problem arises where the circuit continues 

to consume power after balance control has been achieved.  In this study, we will report the development 

of a new converter method control logic that automatically turns off the circuit once balance control has 

been accomplished. 
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1 Introduction 
As seen in Fig. 1, the lithium battery 
power system for HEVs has the 

characteristic of using lithium secondary 
batteries in dozens of series [1][2].  In this 
system, the batteries cannot be used as 
assembled batteries if the capacity of 
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individual cells and SOC vary.  This 
necessitates the control of cell balance.  
Table 1 shows the type and characteristics 
of balance correcting circuits.  Cell 
balance control using a converter[3], which 
surpass other methods in terms of power 
loss and accuracy of voltage, are 
anticipated for practical application in the 
future. 

2 Current Issues 
Fig. 2 shows a balance correcting circuit 
using a converter, where the high side 
switch Q1 and the low side switch Q2 are 
turned on alternately for the same 
duration. The inductor current iL flows 

from cells with high voltage to those with 
lower voltage, correcting the voltage 
balance.  (1) indicates the relational 

expression between the voltage E applied 
to the inductor and the current iL.  The 
balance accuracy of E1 and E2 are 
determined by the duty accuracy of 
switching.  Since there is no need to 
measure the voltage, a reference voltage is 
not necessary, thereby low cost and high 
accuracy can be expected.  However, this 
behavior is not enough to stop the 
switching behavior after a balance has 
been achieved, and power loss from both 
high-frequency currents and from the drive 
currents of Q1 and Q2 occurs. 

3 Technology Developed 
We have developed a control system where 
the ON times of Q1 and Q2 automatically 
get shorter once a balance has been 

achieved, and the circuit is turned off.  Fig. 
3 shows the circuit we have developed, while 
Fig. 4 indicates the behavior waveform. 
With the cycle fixed, first turn on the switch 
element on the cell with the higher voltage 
for the amount of time that corresponds to 
the voltage differential to an upper limit of 
duty 50%.  Then turn on the opposite side 
switch element for the same duration.  
After that, switch off both elements for the 
remainder of the time. Since E1 is almost 
equal to E2 in the discontinued mode, where 
the inductor current passes intermittently, 
synchronous rectification always occurs by 
driving Q1 and Q2 at the same and 
continuous pulse width.  This circuit 
configuration can be varied by connecting 
two one-shot multivibrators in series, and 
basing the pulse width on the absolute value 
of the results of the cell voltage comparison.  
Which of Q1 or Q2 should be turned on first 
is determined based on the results of the cell 
voltage comparison.  This way, the control 

Fig. 2  SOC equalization circuit
(converter method)
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signal is produced easily and reliably. 

4 Efforts for Practical Use 
The balance correcting circuit with a 
converter is capable of combining voltages 
of two adjacent cells.  To support multiple 
series battery systems, converter circuits 
numbering as many as the total of all 
series minus 1 are necessary.  Therefore, 
the converter circuits will have to be 
extremely small for practical use.  Main 
components are an IC (integrated circuit) 
with Q1 and Q2, and an L (inductor), the 
only component affecting the size being the 
inductor.  Fig. 5 shows a structure of a 
converter module. The inductance value 
needed for the converter is inversely 
proportional to the conversion frequency.  
Our experiments revealed that an 
extremely small inductor of about 150W/cc 
could be created when a multi-layer power 
inductor operated at a high conversion 
frequency of 3 to 5 MHz. 
As the frequency goes higher, some 
modification must be made to the inductor 
to be used.  Fig. 6 through 8 show the 
winding structure of the improved 
multi-layer inductor.  In Fig. 6, the 
magnetic field that occurs perpendicular to 
the normal magnetic path is weakened.  A 
magnetic gap has been created so that 
magnetic flux does not go around on the 
inside of the laminated magnetic layers. In 
Fig. 7, the magnetic path has been shut off, 
so that the magnetic field appearing in the 
drawer part of the winding does not cause 
unnecessary magnetic flux.  In Fig. 8, the 
magnetic field appearing at the rising edge 
of the winding layer has been shut off.  
Each example shows a countermeasure to 
the fact that usually trivial factors become 
predominant ones when the number of 
coils decreases due to higher frequencies.  
With this method, an inductor with a small 
number of coils can perform well with 
multiple-series systems. 
Additionally, with the converter method 
comes the issue of reduced efficiency when 
the control process utilizes many 
converters if balance control becomes 
necessary between separate cells. In such 
cases, balance out several series cells with 

the converter method to configure the 
battery module, and combine two or more of 
these modules to configure a battery pack.  
Control of balance between battery modules 
can be achieved efficiently in a short period 
of time by performing it using the 
transformer method shown in Table 1. 
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×
×

×
×

×

Fig. 6  Decrease in vertical magnetic field to 
magnetic pass

×
×
×

×
×

×

Fig. 6  Decrease in vertical magnetic field to 
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Fig. 8 Magnetic field reduction in 
volume line layer conversion part
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5 Results and Discussions 

Fig. 9 shows a simulated result of our 
experiment using the converter method, 
cell-balancing circuit we have developed.  
The application used for simulation was 
SPICE (simulation program with 
integrated circuit emphasis).  In this 
experiment, a 100 μ F capacitor was 
substituted for batteries in order to 
shorten analysis time, with the conversion 
frequency set at 250kHz.  The results 
showed that a voltage differential as small 
as 38mV was achieved in 300 μsec by 
having the 4.2V and 2.8V cells balanced at 
1A regeneration.  If we translate this to a 
10Ah correction of batteries, the balancing 
action would complete in about 20 hours 
because half the inductor current would be 
used for correction. 
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