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Abstract  

The paper is concerned with the energy design of a fuel cell supply system for electric bicycle. A suitable 

architecture for the supply system is at first arranged. Besides the fuel cell, it includes an hydrogen tank and 

a supercapacitor bank directly connected to the dc link of the propulsion system. After selecting the fuel 

cell and illustrating its operation, the hydrogen tank and the supercapacitor bank are designed, respectively 

to meet the specifications for the range (100 km) of the bicycle and for the regulation of the dc link voltage. 

Then, the fuel cell supply system is set up, fitted up in a bicycle and tested. The test results corroborate the 

design procedure.  
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1 Introduction 
Electrically power assisted bicycles, shortly electric 
bicycles, are viable vehicles of personal travel for 
neighboring distances. Compared to human-
powered bicycles, they give an average cyclist the 
chance of increasing the travel speed and range; 
compared to fuel-propelled vehicles, they abate 
pollution and traffic congestion in the towns; 
furthermore, they have the merits of not requiring 
any administrative fulfillment like registration, 
licensing and insurance [1]. 
According to the European Directive [2], an electric 
bicycle is a two-wheel vehicle “with an auxiliary 
electric motor having a maximum continuous rated 
power of 250W, the output of which is 
progressively reduced and finally cut off as the 
vehicle reaches a speed of 25km/h, or sooner, if the 
cyclist stops pedaling”.  
Nowadays, the electric bicycles are powered by 
batteries that make the travel range limited and the 
recharge outage long. A solution of the mentioned 
problems is to power the electric bicycles with fuel 
cells (FCs) [3]; this solution is about to become 
practical due to the fall of the costs and the 

improvement in the energy performance of the FCs 
and the hydrogen storage devices.  
In this paper, a FC supply system for electric 
bicycle is designed and set up. Besides the FC, the 
supply system includes an hydrogen tank, a dc-dc 
converter interposed between the FC and the dc link 
of the propulsion system and a supercapacitor bank 
directly connected to the dc link. The FC supply 
system has been fitted up in a commercial electric 
bicycle in place of the battery.  
The paper is organized as follows. Section 2 
presents the electric bicycle utilized as a case study 
and the architecture of the arranged FC supply 
system. Section 3 deals with the selection of the fuel 
cell and its operation. Section 4 determines the 
energy consumed to cover a typical urban cycle and 
designs the hydrogen tank. Section 5 outlines the 
dc-dc converter and its control. Section 6 designs 
the supercapacitor bank. Section 7 describes the set 
up of the FC supply system and gives the results of 
some tests on the FC-powered bicycle. Section 8 
concludes the paper. 
 

2 FC supply system  
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constant-speed stretch travelled at the nominal 
speed (time length of 118s, distance of 790m) and a 
deceleration stretch (time length of 4s, distance of 
10m).  
To design the hydrogen storage, the energy 
consumption to cover the cycle is at first calculated. 
The calculation proceeds in two steps: a) 
formulation of the resistance forces, and b) 
calculation of the energy consumption by time 
integrating the instantaneous power demand along 
the first two stretches since the deceleration stretch 
is obtained by mechanical braking. The calculation 
is carried out by assuming smooth road and no 
wind.  
For a ground speed vgr and an acceleration a, the 
instantaneous power demand is  

( )genaddrolldgr amFFFvP +++=  (1) 

where Fd is the air drag force, Froll is the rolling 
resistance force, Fadd is the additional friction force, 
and mgen is the generalized mass of the vehicle, 
comprehensive of the masses of the bicycle and the 
cyclist, and of the inertial effects of the wheels. The 
air drag force is expressed as 

2
grfairdd vAC

2
1F ρ=  (2) 

where Cd and Af are the drag coefficient and the 
frontal area of the electric bicycle and the cyclist, 
and ρair is the air density. The rolling resistance 
force is expressed as  
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where g is the gravitational acceleration, m is the 
total mass of the electric bicycle and the cyclist, and 
p is the tire pressure. All the quantities in (3) are in 
SI units, apart from the tire pressure that is in bar. 
The coefficients in (3) depend on the tires and road 
characteristics and are taken from [7]. It is worth to 
note that Froll decreases by rising the tire pressure 

and varies with the square of the speed, like the air 
drag force. The additional friction force is due to 
bearing losses and is supposed to be constant and 
equal to 1N.  
Eq. (1) has been verified by riding the electric 
bicycle at different speeds on an asphalt road with 
no wind. The measurements of the electric power 
delivered by the battery as a function of the speed 
are reported in Fig.6 and substantiate the equations 
(1)÷(3), if only the proper values are assigned to the 
involved quantities and to the traction drive 
efficiency.  
With a cyclist of 80kg and a mass of the FC-
powered bicycle approximately equal to the battery-
powered bicycle, the mechanical energy necessary 
developed to cover the cycle of Fig.5 is calculated 
in 6.61W·h. Being the distance travelled at the end 
of the cycle equal to 1000m, the requirement for the 
mechanical energy to get a range of 100km is 100 
times that of a single cycle, i.e. 661W·h. With an 
efficiency of 0.65, the electric energy delivered by 
the FC stack must be of 1017W·h.  

 
4.2   Hydrogen storage  
In nominal conditions the net efficiency of the FC 
stack, i.e. the efficiency after the energy drawn by 
the FC assembly set, is 43%. Then, the hydrogen 
tank must store 2.36kW·h of energy in chemical 
form to obtain the required electric energy. Since 
the lower heating value of the hydrogen is 
2.78kW·h/Nm3, the hydrogen to be stored must 
have a volume of 0.85Nm3; it corresponds to a mass 
of 75g, being the hydrogen density of 89g/Nm3. 
This means that the calculated hydrogen 
consumption in grams is 0.75 per km. 
Hydrogen can be stored either in liquid form in 
refrigerated vessels, or in gas form in high-pressure 
bottles, or bonded with metals or metal alloys in 
low-pressure canisters. The last technology has 
been preferred [8] because it does not require a 
bulky cryogenic plant and does not pose the safety 
provisions necessary to handle high-pressure tanks; 
moreover, compared to the hydrogen storage in gas 
form, it behaves much higher energy density that, 
by definition, is the quantity of energy stored per 
unit volume of the device.  
A metal hydride canister with a capacity of 
0.750Nm3 has been acquired [9]. It has the cylinder 
shape of Fig.7, with an overall length of 47cm, a 
diameter of 63mm, and a mass of 5.3kg. The 
charging pressure is 15 bar whilst the discharge 
pressure varies from 12 to 2 bar. The canister can 
work at room temperature, but better performance 
in terms of energy density, and adsorption and 
desorption rates are obtained if it is cooled during 

 
 

Figure 6: Measured electric power-speed relation 
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the charge and heated during the discharge. 
 

5 Dc-dc converter 
The voltage of the FC stack is less than the value 
due for the dc link and changes widely with the 
current. The dc-dc converter in cascade to the FC 
stack plays the twofold task of boosting the FC 
stack voltage and regulating the dc link voltage at 
24V.  
The scheme of principle of the dc-dc converter is 
shown in Fig.8. It has been designed by reckoning 
with the specification on the dc link voltage 
regulation and the following features of the FC 
stack: a) it is unable to absorb current, and b) an 
excessive current ripple impairs its lifetime. In 
accordance to point a), an unidirectional scheme has 
been implemented for the dc-dc converter, with the 
Schottky diode D and the Mosfet transistor T 
switching at 20kHz; the diode DF is used to give a 
freewheeling path to the current of the inductance L 
under the FC stack power interrupt. In accordance 
to point b), the dc-dc converter is operated in 
continuous mode and the current ripple is set at a 
value less than 5% of the maximum FC stack 
current. From the data above, the inductance has 
been designed. The capacitance C smoothes the 
pulsating current at the output of the dc-dc 
converter; it is realized with a supercapacitor bank 
[11] and is designed in the next Section to meet the 
specification on the dc link voltage regulation under 
power transients since this condition is more 
stringent than the current smoothing action. 
The supercapacitors are able to sustain only low 

voltages, usually less than 3V, and therefore are 
connected in series to form a module with a  
workable voltage. Moreover, they have an 
equivalent series resistance (ESR) that is roughly 
inversely proportional to the capacitance.  
The control of the dc-dc converter as well as the 
management of the operation of the FC supply 
system is implemented in the FSS-ECU. The 
control is formed by an outer voltage loop closed 
around the dc link and an inner current loop closed 
around the FC stack current. The latter loop helps 
meeting limit and dynamics requirements for the FC 
stack current. The design of the control of the dc-dc 
converter and of the management of the operation 
of the FC supply system can be found in [10]. 
 

6 Supercapacitor bank design 
The supercapacitor bank partially feds the traction 
drive under a sudden power request because of the 
finite rise time of the FC stack current and fully 
feeds the traction drive during the FC stack power 
interrupt. A sudden power request occurs, for 
instance, at the standing start of the electric bicycle 
or when the road begins to go up. The maximum 
current IM that here the traction drive can draw from 
the dc link is limited by the maximum current 
generated by the FC stack. By neglecting the losses, 
the balance of the input-to-output power for the dc-
dc converter yields a value of 13A for IM. 
Two phenomena must be taken into account to meet 
the specification on the dc link voltage regulation: 
the voltage decrease across the capacitance because 
of its discharge and the voltage drop across the 
ESR.  
Let us consider at first a sudden power request. In 
the worst case, the dc link must deliver a current 
that steeply increases from 0 to IM. During the rise 
time of the FC stack current, the supercapacitor 
bank supplies the traction drive with a current that 
is the complement to IM of the FC stack current 
referred to the dc-dc converter output. For a linear 
increase of this current, the discharge of the 
supercapacitor bank C is  

rMr tI
2
1Q =  (4) 

and the voltage decrease is  

C
Qv r

dc =∆  (5) 

By (4) and (5), the discharge phenomenon imposes 
a value of C greater than 8.2F. Instead, the voltage 
drop across the ESR is  

 

 
 

Figure 7: Metal hydride canister 

 

 
 

Figure 8: Dc-dc converter 
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Mdc IESRv ⋅=∆  (6) 

By (6), the voltage drop phenomenon imposes a 
value of ESR less than 92mΩ.  
The catalog of a supercapacitor manufacturer has 
been consulted to find out the proper component 
[12]. Two equal supercapacitor modules have been 
selected, each of them with a capacitance of 58F, a 
maximum voltage of 15V and an ESR of 19mΩ, 
and have been connected in series to sustain the dc 
link voltage. Then, the dc link sees a capacitance of 
29F and an ESR of 38mΩ. Note that the resultant 
capacitance is somewhat greater than the value 
calculated by (5), thus facilitating the regulation 
task.  
The behavior of the dc link voltage following a 
sudden power request has been analyzed by 
simulation. The dc link has been steeply loaded 
from 0 to 10A at t=0.5 s and the voltages across the 
dc link and the capacitance have been traced in 
Fig.9 with the continuous and dashed lines, 
respectively. The traces show that at t=0.5 s there is 
a jump down of the dc link voltage due to the drop 
across the ESR. After that, the dc link voltage is the 
sum of two terms: the voltage drop across the ESR 
that linearly decreases in the same way as the 
capacitance current, and the voltage across the 
capacitance that also decreases but in the quadratic 
way due to the capacitance discharge. At about 
t=1.2 s the FC stack generates a current greater than 
the one drawn by the load and the capacitance 
begins to be recharged. As a result of Fig.9, the 
regulation of the dc link voltage is well within the 
specification. 
The behavior of the dc link voltage following the 
FC stack power interrupt is still given, with good 
approximation, by the trace of Fig.9 going from 
0.5s to 0.52s since there the contribution of the FC 
stack current is negligible.   
The supercapacitor modules are equipped with an 
active circuitry that maintains an even distribution 
of the voltages across the single supercapacitors to 
prevent any dangerous overcharging of them. The 

current supplying the circuitry is drawn by the 
supercapacitors and, therefore, their voltage 
appreciably decreases along the time if their charge 
is not replaced.  

 

7 Set-up and tests 
At first, the FC supply system has been set up on the 
workbench and tested to verify its performance in 
terms of regulation of the dc link voltage and control 
of the FC stack current. Fig.10 reports these two 
quantities measured in response to a step current of 7A 
drawn from the dc link. The traces show that the dc 
link voltage is well regulated and that the FC stack 
current rises in the established time.  
Afterwards, the FC supply system has been fitted up 
in the bicycle. A picture of the FC-powered bicycle 
is shown in Fig. 11. The hydrogen canister has been 
mounted over the top tube whilst the FC assembly 
set, the dc-dc converter and the FSS-ECU have 
been packed on the rear carrier. Outdoors tests have 
been carried out to measure the consumption of 
hydrogen and to verify the range of the bicycle. The 
results of three tests are given in Tab.1. Column D 
reports the travelled distance, column C the 
hydrogen consumption measured in grams using a 
precision balance, column C/D the hydrogen 
consumption in grams per km, and column R the 
range of the bicycle for a canister of 0.85Nm3. In 
the last row of the table, columns D and C give the 
total distance covered and the total hydrogen 
consumed during the three tests. From them, 
average values are obtained for C/D and R. The 
results corroborate the design procedure. Indeed, the 
predicted hydrogen consumption is in good 
agreement with the prediction and the range of the 
FC-powered bicycle fulfills the specification.  
 

Table 1: Measured data  
 

 D 
[km] 

C 
[g] 

C/D 
[g/km] 

R 
[km] 

Test 1 2.3 1.85 0.8 94 
Test 2 2.5 1.75 0.7 107 
Test 3 3.4 2.40 0.7 107 
Total 8.2 6.00 0.73 103 

 

8 Conclusions 
The paper has presented the design of a FC supply 
system for an electric bicycle. A particular attention 
has been paid to the design of the energy storage 
devices, such as the metal hydride canister and the 
supercapacitor bank, to meet the specifications for 
the range of the FC-powered bicycle and for the 
regulation of the dc link voltage of the propulsion 

 

Figure 9: Dc link and capacitance voltages 
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