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Abstract

Optimization routines for battery, supercap and fuel cell stack in a fuel cell based propulsion system face

two problems: the tendency to cycle beating and the necessity to maintain identical amounts of stored

energy in battery and supercap at the start and end of the driving cycle used in the simulation. A method is

proposed to reduce these problems. The proposed method characterizes driving cycles and generates

alternative cycles with an arbitrary length from an existing cycle, based on the characteristics of the

original. The method is demonstrated with an existing driving cycle for buses and validated with

measurements from a trolley bus in the region of Arnhem, the Netherlands.
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1 Introduction

A significant number of fuel cell bus prototypes
and first series have been built today [1, 2]. Still
there seems no consensus on the size of
components like the fuel cell stack, battery
and/or supercap. Some buses are essentially
battery dominant vehicles [2, 3], while others
have a fuel cell stack power rating comparable to
that of the electric motor [2]. The robust
approach sizes the components of the propulsion
line on assumed extreme conditions. Although
this results in a propulsion line capable to deal
with virtual all circumstances, it will not provide
the most fuel efficient solution for normal
conditions. A definition of these ‘normal
conditions’ is most useful, but as Daimler AG
convincingly demonstrated, even the same
vehicle is operated very differently depending on
traffic environment and culture [4].

A driving cycle is a useful definition of the
conditions to be expected. From literature,

standardized driving cycles as the ETC cycle, the
WHTC test and the JEOS cycle are available [5].
Although such cycles are primarily designed for
emission tests, they are helpful in designing fuel
efficient hybrid propulsion systems [6, 7]. When
sizing components using optimization techniques
as DP (Dynamic Programming [9]) or variations
on ECMS (Equivalent Consumption Minimization
Strategy [8, 9]), the driving cycles chosen strongly
influence the resulting component sizes.

Although the use of driving cycles as definition for
the expected traffic conditions increases the quality
of the design, it also introduces some limitations:

» Sizing components on one driving cycle tends
to cycle beating: the fuel efficiency of the
propulsion system is best for the given cycle,
but suboptimal for, or not robust against, other
conditions.

* Energy management system design is based on
simulations of the propulsion system including
batteries and/or supercaps [8]. To enable
comparison between energy management
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systems, the amount of stored energy at the
start and end of a simulation is forced to be
equal [9]. As most cycles only cover a period
up to 30 minutes [5], this is a restrictive and
unrealistic condition. A comparison between
simulations with more cycles of different
lengths partly covers this problem.

Therefore, it would be convenient to optimize a
hybrid propulsion system based on a number of
cycles with comparable characteristics, but
different in length and time sequence. This article
proposes a method to characterize driving cycles
and to generate alternative driving cycles from an
existing predefined or measured cycle, to reduce
the limitations mentioned.

2 Method
2.1 Objective

The speed of a vehicle depends on the previous
speed of the vehicle and the response of the
driver on the traffic circumstances. This can be
expressed as:

V(k) :f(Xk_l,Qk) (1)

where v(k) represents the current speed and vy ;
represents the speed history of the vehicle: vy | =
[v(k-1) v(k-2) .. v(k-n)], where n is the number of
samples back in time, relevant to the K" sample.
The associated sample time is small enough to
include the longitudinal vehicle dynamics. The
traffic environment is expressed as ey, observed
(measured) by the driver and through gas throttle
and brake influencing the speed of the vehicle.

Function f(.) includes both the vehicle dynamics
and the response of the driver. Ideally, f(.) is
known and ey is available as time series, enabling
a direct estimation of driving cycle v.
Unfortunately, the traffic circumstances which
resulted in a driving cycle are not available as
time series. Therefore a direct time series
prediction is not possible. To cover this, traffic
circumstances are considered random (white)
noise, influencing the speed of the vehicle.
Although prediction is not possible, when f(.) is
available, it enables emulation of driving cycles.
These alternatively generated driving cycles
should resemble their original in terms of

frequency spectra and speed distribution.
Therefore the objective is reduced in defining
function f(.) such that emulation of driving cycles
with frequency spectrum and speed distribution
equal to the original cycle is possible.

2.2 Linear approach

Considering the traffic circumstances as random
(white) noise and as input of a linear system with
the speed of the vehicle as output, makes an
ARMA model estimation [10] of this system
possible:

v =29 o). ©)

A(q)

Polynomials C(q) and A(q) are respectively
numerator and denominator of the LTI transfer
function between noise input and output. These
polynomials also define the function f(.), more
explicitly (ap = 1 and order m < n):

v(k)=—a,v(k-D+..—a, v(k—n)+
+cye(k)+..+c e(k—m)

With e(k) white random noise, the polynomials
A(q) and C(q) directly relate to the frequency
spectrum of the output of the ARMA model. This
enables an accurate match between the spectrum of
the emulated driving cycle and the frequency
spectrum of the original driving cycle.
Disadvantage of the LTI model with random
(white) noise as input is that the relation between
the probability distribution of the noise and the
probability distribution of the output is poor [11].
It is demonstrated that for stable LTI transfer
functions and different probability distributions of
the noise, the differences in probability distribution
at the output reduce as the time of exposure to the
excitations increases and the system reaches the
stationary state [12]. For the emulation of driving
cycles, an accurately defined speed distribution is
important, which makes the ARMA model a less
suitable choice.

An extension to non-linear filters enables
stationary random processes with the same spectral
density but with different probability distributions.
Differential equations of the It6 type [13] have
drift and diffusion coefficients that determine the
spectral density and probability density of the filter

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2



output [14]. The use of these non-linear filters for
load charachterization is proposed before [15].
Among others, the main disadvantage of these
non-linear filters for emulating driving cycles is
the inability to exactly match desired boundaries
in the probability distribution of the output. For
instance, for driving cycles an accurate lower
boundary of 0 m/s is important. To realize both
accurate frequency spectra and accurate speed
distributions, the next method is proposed.

2.3 Proposed method

The method tries to extend the linear approach
with a definition of the speed distributions
directly at the output of the filter. Again the
traffic circumstances are considered random
white noise. As the ARMA model estimations
show an order m of the numerator equal to one
suffices for the driving cycles examined, it is also
assumed that the drivers’ response is dominantly
the result of his last observation e(k). Traffic
circumstances e(k) is stated to equal random
white noise sample & uniformly distributed
between 0 and 1. With this assumption,
characterization f(.) (1) reduces to:

vk) =f(v,_,8). )

When the function f(.) is derived from an
existing cycle, a new driving cycle is generated
as:

V&) =f(,.,8). Q)

This relation states that the new speed sample in
the emulated driving cycle depends on a limited
speed history and an independent random
variable & The definition of function f(.)
determines the resemblance in frequency
spectrum and speed distribution between the
resulting emulated driving cycle and the original
cycle.

Based on an existing driving cycle v, probability
density function F is defined as:

F(v,v,)= { pivk)sv | v, } ©)

This probability density function F indicates the
probability p the next speed v(k) is equal to or
smaller than variable v, given n previous

velocities vi.;. The history taken into account and
defined by n is based on the amount of correlation
between sample v(k) and sample v(k-n).

With the definition of the conditional probability
density function F, a new driving cycle with
characteristics comparable to its original is
generated using:

vk)=v | Fv,¥_)=¢. ©)

Figure 1 illustrates one dimension of the
probability density function F, given ¥, , , and
how to derive a new speed sample from it.
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Figure 1: Probability density function F(v, ﬁk_l )

for one combination of V, _, .

3 Algorithm

The algorithm to derive alternative driving cycles

consists of two steps:

1. The construction of the conditional probability
density function F from an original driving
cycle v (characterization).

2. The simulation of an alternative driving cycle

Vfrom the conditional probability density
function F (generation).

The first step starts with a quantization of the
speed samples in the original driving cycle. This
quantization is based on a sample time t; and a
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max Vmin

speed interval Av = where Vg

and vy, represent the maximum and minimum
vehicle speed on the given driving cycle,
respectively. The driving cycle is now
represented by M discrete speed classes. Every
speed falls in a class i, where i€ {1,..,M}. Next,
a transition summation matrix T is built. This

square matrix T (€ 9{"“) with M rows/columns
represents how often a combination of transitions
between discrete speeds v(k), v(k-1), .., v(k-n)
occurs in the original driving cycle

u.)eXM} Tio).imy = (8)

N
Z( V(K) =V AVK=D = vy A AVK=D) =V, )

k=n+1

with v, € {o, AV,...,Vmax} and N representing the

number of observations in the original driving
cycle.

As example, for the situation with n=1 the
transition summation matrix T reduces to the
next (2-dimensional) transition matrix (where #
stands for the number of transitions in the
original driving cycle)

#foo-n= VAR = vy }oefa-n= VAV = vy } #fac-n = vy A VO = vy }

wlvac-n - vy AV = vy } oofoa-n - vy AV = vy }

Tw=

- = Vi A V) = vy }

C))

#fa-n= Vi AV = vy }

To generate an alternative driving cycle with a
length different from its original, the transition
summation array T is normalized to the number
of samples and multiplied with the desired length
of the driving cycle to be generated.

Based on the transition summation array of
expression (8), given the previous n samples, the
probability the next speed sample is less than a
certain value is derived as:

i(0)

Tj,i(l),..,i(n)

i(')e\{Y"M} F(Vig)» Vi) = J:O— . (10)
ZTj,i(l),“,i(n)
=0

with Vi1 = [ Vi(l) Vi(2) v Vi(n) ]

The second step is the generation of alternative
cycles as given by expression (7)

V(k)=v | Fv,¥,,)=E. (7)

As probability density function F is based on the
original driving cycle, the distribution of speeds in
the alternative cycles will approach asymptotically
to the original distribution for long alternative
driving cycles. If during generation the original
transition summation array T is adjusted according
the simulated transition, the distribution of the
generated pattern also resembles the original
distribution for limited lengths of the alternative
driving cycle. In that case, given the generated

sample  ¥(k) =v,, based on the previous
transition V(k—1 =v,, .. , V(k-n)=vy,,
transition summation array T is updated according:

T T.

1(0),i(n) — Li(0),.i(n) -1 an

Based on this updated transition summation array
T, also probability density function F(viq),vi.1) is
recalculated.

As every number in the transition summation array
T stands for a transition in velocity, updating
according (11) is called ‘pick without return’.
Omitting the update (11) is referred to as ‘pick
with return’. Advantage of ‘pick without return’ is
both a frequency spectrum and a speed distribution
of the generated driving cycle equal to the original
driving cycle. Disadvantage is the possibility of an
unsolvable situation for the next transition
simulated, as the remaining combinations T may
result in an update of T, in) below zero. At that
point the algorithm stops. This appears no practical
limitation and useful driving cycles are produced
still.

4 Results

Method and algorithm are only useful if the
generated  driving  cycles  resemble  the
characteristics of the original driving cycle. This
needs a definition of what is a good alternative
driving cycle. As it is already concluded that time
series prediction of a driving cycle is not possible
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due to the random behaviour of the traffic

environment, this qualification is based on:

e A statistical comparison of original and
generated time series, using histograms,

* A spectral comparison of original and
generated time series, using power spectra.
Although also other choices are possible, the
comparisons discussed will be limited to the

mentioned above.
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Figure 2: Relation between current velocity and
previous velocity (1, 3 and 10 seconds in past).

The method is applied on an existing driving cycle
for a bus, the Braunschweig cycle [5]. Figure 2
relates the current speed to the velocity 1, 3 and 10
seconds in the past. From a straight line, this
relation shifts to a scatter plot between zero and
the maximum velocity. Based on this correlation,
the method is applied with a sampling time of 1
second and a history of 3 seconds. The speed is
quantized with 17 discrete values for the velocity
(M=17). Figure 3 shows the results. The first and
second graph show the time series of the original
and generated cycle, respectively. A first
observation shows that the nature of the generated
cycle resembles its original, except for the
quantized values for the velocity in the generated
cycle. The histogram illustrates that the occurrence
of speed values in the original and alternative
cycles match closely, although the variant ‘pick
with return’ is used. The power spectra of both
cycles are comparable, except for high frequency
levels, where the sampling in amplitude results in
quantization noise above 0,2 Hz in the generated
driving cycle.

Figure 3 shows the ability of the method to
characterize a driving cycle and generated
alternatives. To conclude on the practical value of
the method, in cooperation with Connexxion/TSN
measurements are taken from a bus with an electric
propulsion system, a trolley bus in the city of
Arnhem, the Netherlands. On the same day a bus
route is driven several times in both directions.
One of the measured speed profiles is used as input
to the proposed method. The resulting speed
distributions and power spectra are compared with
those of another measured driving cycle. The
results are shown in figure 4. Measurements are
resampled to a sample time of one second and
quantized to 37 speed classes. Again the method
correlates the current speed sample with 3 samples
in the past and ‘pick with return’ is used, providing
the fastest software implementation but possibly
deviations in the speed distributions.

Again the nature of the original and generated
driving cycles resembles. The difference in speed
distribution between the original cycle (blue) and
the generated cycle (red) lays within the deviation
between the two measured cycles along the same
route (blue and green). The speed distribution of
the generated cycle notably resembles the original
cycle more than the alternative measured cycle.
Also the spectrum for the generated cycle
resembles the spectra of both measured cycles,
except for the quantization noise.
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Figure 3: Original and generated driving cycle compared on speed distribution and power spectra.
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Figure 4: Measured (blue) and generated (red) driving cycle compared on speed distribution and power spectra
with an additional measured driving cycle (green).

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 6



5 Discussion

Figure 3 and 4 demonstrate the proposed method
is able to characterize a driving cycle and that
new alternative cycles can be generated from this
characterization. These alternative driving cycles
resemble the original in terms of their frequency
spectrum and speed distribution. This generation
of alternative cycles is useful in optimization
routines, to reduce the effect of cycle beating and
to overcome the effects of the constraint the
stored energy at the start and end of a simulation
should equal. These problems are specific to
optimization procedures.

The observation an emulated driving cycle
resembles its original more than two driving
cycles measured on the same day along the same
route, illustrates the accuracy of the proposed
method in terms of frequency spectrum and
speed distribution.

The method does not extend the information
enclosed in the original driving cycle. Already
two measured driving cycles on the same day
along the same route may differ more in terms of
speed distribution than an emulated driving cycle
based on the characterization of one measured
driving cycle compared to this original cycle.
More explicitly, a city bus originally designed on
a city cycle as the Manhattan bus cycle [5], will
with the aid of the proposed method not
transform in a coach able to operate between
Stavanger and Oslo.

Sizing fuel cell stack, battery and/or supercap
directly on the conditional probability density
function as characterization of an original driving
cycle is subject of further study.

6 Conclusions

Driving cycles are an important specification of
what is expected from a fuel cell based power
train for a vehicle such as a fuel cell bus. Still
component sizing based on one or two driving
cycles tends to suboptimal solutions, due to risk
of cycle beating and the restrictive constraint that
energy stored in the system should be equal at
the start and end of a simulation. A
characterization of the driving cycle and the

generation of alternative cycles with a considerable
longer time span would reduce these problems of
suboptimality.

Apart from the time series representation, a driving
cycle can be represented by its frequency spectrum
and probability density function. The proposed
method explicitly uses these representations. It
creates alternative driving cycles comprising the
same information as the original driving cycle in
terms of frequency spectrum and speed
distribution, but with a user defined length. Using
both the original driving cycle and the emulated
driving cycles in optimization procedures reduces
the risk of cycle beating and limits the effect of the
constraint concerning the stored energy on the
resulting optimal component sizes.
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