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Abstract 

Optimization routines for battery, supercap and fuel cell stack in a fuel cell based propulsion system face 

two problems: the tendency to cycle beating and the necessity to maintain identical amounts of stored 

energy in battery and supercap at the start and end of the driving cycle used in the simulation. A method is 

proposed to reduce these problems. The proposed method characterizes driving cycles and generates 

alternative cycles with an arbitrary length from an existing cycle, based on the characteristics of the 

original. The method is demonstrated with an existing driving cycle for buses and validated with 

measurements from a trolley bus in the region of Arnhem, the Netherlands. 

Keywords: Driving cycle, Component sizing, Optimization, Energy management system, Fuel cell bus 

1 Introduction 
A significant number of fuel cell bus prototypes 

and first series have been built today [1, 2]. Still 

there seems no consensus on the size of 

components like the fuel cell stack, battery 

and/or supercap. Some buses are essentially 

battery dominant vehicles [2, 3], while others 

have a fuel cell stack power rating comparable to 

that of the electric motor [2]. The robust 

approach sizes the components of the propulsion 

line on assumed extreme conditions. Although 

this results in a propulsion line capable to deal 

with virtual all circumstances, it will not provide 

the most fuel efficient solution for normal 

conditions. A definition of these ‘normal 

conditions’ is most useful, but as Daimler AG 

convincingly demonstrated, even the same 

vehicle is operated very differently depending on 

traffic environment and culture [4].  

 

A driving cycle is a useful definition of the 

conditions to be expected. From literature, 

standardized driving cycles as the ETC cycle, the 

WHTC test and the JE05 cycle are available [5]. 

Although such cycles are primarily designed for 

emission tests, they are helpful in designing fuel 

efficient hybrid propulsion systems [6, 7]. When 

sizing components using optimization techniques 

as DP (Dynamic Programming [9]) or variations 

on ECMS (Equivalent Consumption Minimization 

Strategy [8, 9]), the driving cycles chosen strongly 

influence the resulting component sizes.  

 

Although the use of driving cycles as definition for 

the expected traffic conditions increases the quality 

of the design, it also introduces some limitations: 

• Sizing components on one driving cycle tends 

to cycle beating: the fuel efficiency of the 

propulsion system is best for the given cycle, 

but suboptimal for, or not robust against, other 

conditions. 

• Energy management system design is based on 

simulations of the propulsion system including 

batteries and/or supercaps [8]. To enable 

comparison between energy management 
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systems, the amount of stored energy at the 

start and end of a simulation is forced to be 

equal [9]. As most cycles only cover a period 

up to 30 minutes [5], this is a restrictive and 

unrealistic condition. A comparison between 

simulations with more cycles of different 

lengths partly covers this problem. 

 

Therefore, it would be convenient to optimize a 

hybrid propulsion system based on a number of 

cycles with comparable characteristics, but 

different in length and time sequence. This article 

proposes a method to characterize driving cycles 

and to generate alternative driving cycles from an 

existing predefined or measured cycle, to reduce 

the limitations mentioned. 

 

 

2 Method 

2.1 Objective 

 

The speed of a vehicle depends on the previous 

speed of the vehicle and the response of the 

driver on the traffic circumstances. This can be 

expressed as: 

 

)e,v(f)k(v k1k−=  (1) 

 

where v(k) represents the current speed and vk-1 

represents the speed history of the vehicle: vk-1 = 

[v(k-1) v(k-2) .. v(k-n)], where n is the number of 

samples back in time, relevant to the k
th

 sample. 

The associated sample time is small enough to 

include the longitudinal vehicle dynamics. The 

traffic environment is expressed as ek, observed 

(measured) by the driver and through gas throttle 

and brake influencing the speed of the vehicle. 

 

Function f(.) includes both the vehicle dynamics 

and the response of the driver. Ideally, f(.) is 

known and ek is available as time series, enabling 

a direct estimation of driving cycle v. 

Unfortunately, the traffic circumstances which 

resulted in a driving cycle are not available as 

time series. Therefore a direct time series 

prediction is not possible. To cover this, traffic 

circumstances are considered random (white) 

noise, influencing the speed of the vehicle. 

Although prediction is not possible, when f(.) is 

available, it enables emulation of driving cycles. 

These alternatively generated driving cycles 

should resemble their original in terms of 

frequency spectra and speed distribution. 

Therefore the objective is reduced in defining 

function f(.) such that emulation of driving cycles 

with frequency spectrum and speed distribution 

equal to the original cycle is possible. 

 

2.2 Linear approach 

 

Considering the traffic circumstances as random 

(white) noise and as input of a linear system with 

the speed of the vehicle as output, makes an 

ARMA model estimation [10] of this system 

possible: 

 

)k(e
)q(A

)q(C
)k(v = . (2) 

 

Polynomials C(q) and A(q) are respectively 

numerator and denominator of the LTI transfer 

function between noise input and output. These 

polynomials also define the function f(.), more 

explicitly (a0 = 1 and order m ≤ n): 

 

)mk(ec..)k(ec

)nk(va..)1k(va)k(v

m0

n1

−+++

+−−+−−=
 (3) 

 

With e(k) white random noise, the polynomials 

A(q) and C(q) directly relate to the frequency 

spectrum of the output of the ARMA model. This 

enables an accurate match between the spectrum of 

the emulated driving cycle and the frequency 

spectrum of the original driving cycle. 

Disadvantage of the LTI model with random 

(white) noise as input is that the relation between 

the probability distribution of the noise and the 

probability distribution of the output is poor [11]. 

It is demonstrated that for stable LTI transfer 

functions and different probability distributions of 

the noise, the differences in probability distribution 

at the output reduce as the time of exposure to the 

excitations increases and the system reaches the 

stationary state [12]. For the emulation of driving 

cycles, an accurately defined speed distribution is 

important, which makes the ARMA model a less 

suitable choice. 

 

An extension to non-linear filters enables 

stationary random processes with the same spectral 

density but with different probability distributions. 

Differential equations of the Itô type [13] have 

drift and diffusion coefficients that determine the 

spectral density and probability density of the filter 
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output [14]. The use of these non-linear filters for 

load charachterization is proposed before [15]. 

Among others, the main disadvantage of these 

non-linear filters for emulating driving cycles is 

the inability to exactly match desired boundaries 

in the probability distribution of the output. For 

instance, for driving cycles an accurate lower 

boundary of 0 m/s is important. To realize both 

accurate frequency spectra and accurate speed 

distributions, the next method is proposed. 

 

2.3 Proposed method 

 

The method tries to extend the linear approach 

with a definition of the speed distributions 

directly at the output of the filter. Again the 

traffic circumstances are considered random 

white noise. As the ARMA model estimations 

show an order m of the numerator equal to one 

suffices for the driving cycles examined, it is also 

assumed that the drivers’ response is dominantly 

the result of his last observation e(k). Traffic 

circumstances e(k) is stated to equal random 

white noise sample ξ uniformly distributed 

between 0 and 1. With this assumption, 

characterization f(.) (1) reduces to:  

  

),v(f)k(v 1k ξ= − . (4) 

 

When the function f(.) is derived from an 

existing cycle, a new driving cycle is generated 

as: 

 

),v̂(f)k(v̂ 1k ξ= − . (5) 

 

This relation states that the new speed sample in 

the emulated driving cycle depends on a limited 

speed history and an independent random 

variable ξ. The definition of function f(.) 

determines the resemblance in frequency 

spectrum and speed distribution between the 

resulting emulated driving cycle and the original 

cycle. 

 

Based on an existing driving cycle v, probability 

density function F is defined as: 

 

{ }1k1k v|v)k(v(p)v,v(F −− ≤= . (6) 

 

This probability density function F indicates the 

probability p the next speed v(k) is equal to or 

smaller than variable v, given n previous 

velocities vk-1. The history taken into account and 

defined by n is based on the amount of correlation 

between sample v(k) and sample v(k-n). 

 

With the definition of the conditional probability 

density function F, a new driving cycle with 

characteristics comparable to its original is 

generated using: 

 

ξ== − )v̂,v(F|v)k(v̂ 1k
. (7) 

 

Figure 1 illustrates one dimension of the 

probability density function F, given 1kv̂ −  , and 

how to derive a new speed sample from it. 
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Figure 1: Probability density function F(v, 1kv̂ − ) 

 for one combination of 1kv̂ − . 

 

 

3 Algorithm 
 

The algorithm to derive alternative driving cycles 

consists of two steps: 

1. The construction of the conditional probability 

density function F from an original driving 

cycle v (characterization). 

2. The simulation of an alternative driving cycle 

v̂ from the conditional probability density 

function F (generation). 

 

The first step starts with a quantization of the 

speed samples in the original driving cycle. This 

quantization is based on a sample time ts and a 
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speed interval 
M

vv
v minmax −

=∆   where vmax 

and vmin represent the maximum and minimum 

vehicle speed on the given driving cycle, 

respectively. The driving cycle is now 

represented by M discrete speed classes. Every 

speed falls in a class i, where }M,..,1{i ∈ . Next, 

a transition summation matrix T is built. This 

square matrix T (
1n+ℜ∈ ) with M rows/columns 

represents how often a combination of transitions 

between discrete speeds v(k), v(k-1), .., v(k-n) 

occurs in the original driving cycle 

 

 { }
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 (8) 

 

with { }maxi v,,v,v K∆∈ 0  and N representing the 

number of observations in the original driving 

cycle. 

 

As example, for the situation with n=1 the 

transition summation matrix T reduces to the 

next (2-dimensional) transition matrix (where # 

stands for the number of transitions in the 

original driving cycle) 
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      (9) 

 

To generate an alternative driving cycle with a 

length different from its original, the transition 

summation array T is normalized to the number 

of samples and multiplied with the desired length 

of the driving cycle to be generated. 

 

Based on the transition summation array of 

expression (8), given the previous n samples, the 

probability the next speed sample is less than a 

certain value is derived as: 
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with vk-1 = [ vi(1) vi(2) … vi(n) ]. 

 

The second step is the generation of alternative 

cycles as given by expression (7) 

 

ξ== − )v̂,v(F|v)k(v̂ 1k
. (7) 

 

As probability density function F is based on the 

original driving cycle, the distribution of speeds in 

the alternative cycles will approach asymptotically 

to the original distribution for long alternative 

driving cycles. If during generation the original 

transition summation array T is adjusted according 

the simulated transition, the distribution of the 

generated pattern also resembles the original 

distribution for limited lengths of the alternative 

driving cycle. In that case, given the generated 

sample )0(iv)k(v̂ =  based on the previous 

transition )1(iv)1k(v̂ =− , .. , )n(iv)nk(v̂ =− , 

transition summation array T is updated according: 

 

1TT )n(i),..,0(i)n(i),..,0(i −= . (11) 

 

Based on this updated transition summation array 

T, also probability density function F(vi(0),vk-1) is 

recalculated.  

 

As every number in the transition summation array 

T stands for a transition in velocity, updating 

according (11) is called ‘pick without return’. 

Omitting the update (11) is referred to as ‘pick 

with return’. Advantage of ‘pick without return’ is 

both a frequency spectrum and a speed distribution 

of the generated driving cycle equal to the original 

driving cycle. Disadvantage is the possibility of an 

unsolvable situation for the next transition 

simulated, as the remaining combinations T may 

result in an update of Ti(0),..,i(n) below zero. At that 

point the algorithm stops. This appears no practical 

limitation and useful driving cycles are produced 

still. 

 

 

4 Results 
 

Method and algorithm are only useful if the 

generated driving cycles resemble the 

characteristics of the original driving cycle. This 

needs a definition of what is a good alternative 

driving cycle. As it is already concluded that time 

series prediction of a driving cycle is not possible 
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due to the random behaviour of the traffic 

environment, this qualification is based on: 

• A statistical comparison of original and 

generated time series, using histograms, 

• A spectral comparison of original and 

generated time series, using power spectra. 

Although also other choices are possible, the 

comparisons discussed will be limited to the 

mentioned above. 
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Figure 2: Relation between current velocity and 

previous velocity (1, 3 and 10 seconds in past). 

The method is applied on an existing driving cycle 

for a bus, the Braunschweig cycle [5]. Figure 2 

relates the current speed to the velocity 1, 3 and 10 

seconds in the past. From a straight line, this 

relation shifts to a scatter plot between zero and 

the maximum velocity. Based on this correlation, 

the method is applied with a sampling time of 1 

second and a history of 3 seconds. The speed is 

quantized with 17 discrete values for the velocity 

(M=17). Figure 3 shows the results. The first and 

second graph show the time series of the original 

and generated cycle, respectively. A first 

observation shows that the nature of the generated 

cycle resembles its original, except for the 

quantized values for the velocity in the generated 

cycle. The histogram illustrates that the occurrence 

of speed values in the original and alternative 

cycles match closely, although the variant ‘pick 

with return’ is used. The power spectra of both 

cycles are comparable, except for high frequency 

levels, where the sampling in amplitude results in 

quantization noise above 0,2 Hz in the generated 

driving cycle.  

 

Figure 3 shows the ability of the method to 

characterize a driving cycle and generated 

alternatives. To conclude on the practical value of 

the method, in cooperation with Connexxion/TSN 

measurements are taken from a bus with an electric 

propulsion system, a trolley bus in the city of 

Arnhem, the Netherlands. On the same day a bus 

route is driven several times in both directions. 

One of the measured speed profiles is used as input 

to the proposed method. The resulting speed 

distributions and power spectra are compared with 

those of another measured driving cycle. The 

results are shown in figure 4. Measurements are 

resampled to a sample time of one second and 

quantized to 37 speed classes. Again the method 

correlates the current speed sample with 3 samples 

in the past and ‘pick with return’ is used, providing 

the fastest software implementation but possibly 

deviations in the speed distributions. 

 

Again the nature of the original and generated 

driving cycles resembles. The difference in speed 

distribution between the original cycle (blue) and 

the generated cycle (red) lays within the deviation 

between the two measured cycles along the same 

route (blue and green). The speed distribution of 

the generated cycle notably resembles the original 

cycle more than the alternative measured cycle. 

Also the spectrum for the generated cycle 

resembles the spectra of both measured cycles, 

except for the quantization noise. 
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Figure 3: Original and generated driving cycle compared on speed distribution and power spectra. 
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Figure 4: Measured (blue) and generated (red) driving cycle compared on speed distribution and power spectra  

with an additional measured driving cycle (green). 
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5 Discussion 
 

Figure 3 and 4 demonstrate the proposed method 

is able to characterize a driving cycle and that 

new alternative cycles can be generated from this 

characterization. These alternative driving cycles 

resemble the original in terms of their frequency 

spectrum and speed distribution. This generation 

of alternative cycles is useful in optimization 

routines, to reduce the effect of cycle beating and 

to overcome the effects of the constraint the 

stored energy at the start and end of a simulation 

should equal. These problems are specific to 

optimization procedures. 

 

The observation an emulated driving cycle 

resembles its original more than two driving 

cycles measured on the same day along the same 

route, illustrates the accuracy of the proposed 

method in terms of frequency spectrum and 

speed distribution.  

 

The method does not extend the information 

enclosed in the original driving cycle. Already 

two measured driving cycles on the same day 

along the same route may differ more in terms of 

speed distribution than an emulated driving cycle 

based on the characterization of one measured 

driving cycle compared to this original cycle. 

More explicitly, a city bus originally designed on 

a city cycle as the Manhattan bus cycle [5], will 

with the aid of the proposed method not 

transform in a coach able to operate between 

Stavanger and Oslo.  

 

Sizing fuel cell stack, battery and/or supercap 

directly on the conditional probability density 

function as characterization of an original driving 

cycle is subject of further study. 

 

 

6 Conclusions 
 

Driving cycles are an important specification of 

what is expected from a fuel cell based power 

train for a vehicle such as a fuel cell bus. Still 

component sizing based on one or two driving 

cycles tends to suboptimal solutions, due to risk 

of cycle beating and the restrictive constraint that 

energy stored in the system should be equal at 

the start and end of a simulation. A 

characterization of the driving cycle and the 

generation of alternative cycles with a considerable 

longer time span would reduce these problems of 

suboptimality.  

 

Apart from the time series representation, a driving 

cycle can be represented by its frequency spectrum 

and probability density function. The proposed 

method explicitly uses these representations. It 

creates alternative driving cycles comprising the 

same information as the original driving cycle in 

terms of frequency spectrum and speed 

distribution, but with a user defined length. Using 

both the original driving cycle and the emulated 

driving cycles in optimization procedures reduces 

the risk of cycle beating and limits the effect of the 

constraint concerning the stored energy on the 

resulting optimal component sizes. 
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