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Abstract

In this study, Pontryagin’s minimum principle (PMP) is applied to obtain the control law of plug-in

hybrid vehicles. The results show that the minimization of the equivalent fuel consumption with a pre-

defined weighting coefficient, which is a costate of PMP, is an effective way to obtain a control strategy

that minimizes the overall energy. Dynamic programming yields results that are close to being global

optimal. To realize the control algorithm solved by PMP, we introduce an adaptive concept that is based on

driving patterns, and we conclude that an instantaneous optimal strategy with a properly selected costate is

sufficiently simple for application to a real-time controller and is a desirable strategy that yields satisfactory

results.
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1 Introduction

With regard to environmentally friendly
strategies, electric vehicles (EVs) are possibly
considered as next-generation vehicles because
they do not produce emissions and the electrical
devices in the EVs have high energy efficiencies.
However, before EVs can be successfully applied,
several problems await solutions. One of the
problems is that a battery in an EV has a small
energy density, which means the EV cannot drive
for a long while without other energy resources.
Therefore, the Plug-in Hybrid Electric Vehicle
(PHEV) can be an alternative solution until
breakthroughs are found for designing new
sources of electric energy that have high energy
densities. In general, though it has not been
commercialized by major automotive companies,
a PHEV has a huge battery, which is directly
charged by an external plug so that the PHEV
can drive longer in a pure electric mode than a
general hybrid electric vehicle (HEV). In that

PHEVs is supposed to be similar to EVs at short-
term driving, the energy management strategy is
different with the strategy of HEV whereas it
should be similar with HEV in a long-term drive
way. With regard to the optimal control for energy
management, various control concepts for hybrid
electric vehicles have been widely applied to solve
the power management problem. In the context of
optimal control, Dynamic Programming (DP) and
Pontryagin’s Minimum Principle (PMP) are two
different approaches to obtain optimal trajectories
for deterministic optimal control problems. In the
minimum fuel consumption problem of HEVs, the
DP method guarantees a global optimal solution by
detecting all possible control options [1], [2], [3].
On the other hand, the control problem can be
simple when PMP is used because the only control
parameter we have to consider is a costate of PMP.
In this paper, we will demonstrate an application
of PMP in the control problem of PHEVS as an
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alternative method that guarantees solutions that
are close to being global optimal.

2 A static model in a backward
simulator

We can consider two different types of
simulator, a forward type and a backward type.
The difference between these two is that, in the
backward simulation, we can calculate the input
control that satisfies the vehicle performance; so,
the simulator can test all possible input controls.
On the other hand, the forward-type simulator
calculates the vehicle behaviour from the single
input control whereas we can apply more
realistic conditions to the forward type than to
the backward type. In this paper, we use a
backward-type simulator to obtain optimal
control trajectories. A static model is considered
in the simulator. The static model has a drawback
because the transient dynamics of power
resources are not considered in the model.
However, the model is appropriate for the
backward simulator because it is tractable and
can be used to test all possible inputs.

2.1 Vehicle model

The split hybrid system shown in Fig. 1 is used
as the target system in this paper, which models
the Toyota Hybrid System (THS) by using a

single planetary gear as the power split device [4].

The engine, motor-generator 1 (MG1), and
motor-generator 2 (MG2) are attached to the
carrier gear, sun gear, and ring gear of the
planetary gear, while the vehicle is attached to
the ring gear through a final drive.

Final drive

MG2 R

(e 1
(o)

Fig. 1. The power split hybrid system, which has a
power split device.

In the static model, the relationships among
the engine torque, the motor-generator torque,
and the output torque can be obtained through the
lever analogy.

T, +T,+T1,.,-1¢-T, =0 (1)

eng mgl req
T;ng + (1+ R)T;ngl = O (2)
In Eqs (1) and (2)’ 7;";; ' ngl’ 7:11;;2' and Treq

are the torques of the engine, MG1, MG2, and

the requested output torque of the transmission,
respectively. Further, R and £ are the gear ratio

of the planetary gear set and the final gear ratio,
respectively. The relationships among the speeds
of the power resources can be also obtained by the
lever analogy, which is expressed as follows.

Smgl :(1+R).<Seng _é/.Sreq)—i_é/.Sreq (3)
Sng = é/'Sreq (4)
In Egs. (3) and (4), S, S+ Spe2s @nd S,

eng ¥ Pmgl?
are the speeds of the engine, MG1, MG2, and the
requested output speed. To obtain the
instantaneous optimal operating line, we choose
the engine torque and the engine speed, 7, and

eng
S

eng !
can obtain the operating torques and speeds of
MG1 and MG2, which are functions of the control
variables when the requested output torque and
speed are given by a driving cycle.

ng]_ _ 1 0 1 _1/4,.]1611
|:ng2:| - _(l+ R) L‘+ R R:| |: ]:fﬂﬁ :| (5)

Swer | _|-R 1+R| S-S,
Se2| L1 0 || S, (6)

Based on the operating values of MGs, the
required power of the battery can then be
calculated as follows.

P,

bat

as the control variables. From (1)~(4), we

= Uclk ' ngl ' Smgl + 77c2k : T:ngZ : Sng (7)
In Eq. (7), the efficiencies of MG1 and MG2,
viz.,, n,, and 7., , are numerically calculated by

interpolating motor-efficiency maps of each MG,
which include the motor’s loss and the inverter’s
loss. Further,

1, recuperatin
k:{ perating -
-1, motoring

Finally, the derivative of SOC, namely, SOC,

can be calculated from the battery power and the
current SOC.

M

Rpa(SOC)

Vo SOC)

Fig. 2. An equivalent circuit model of a battery with
an internal resistance and an output voltage, which are
functions of the state of charge.
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Considering the equivalent open circuit
voltage and internal resistance in Fig. 2, SOC is
a function of SOC and B, , which can be
expressed as:

: Vi =\ Vou: — 4R, B,
SOC:i bat bat bat ™ bat (9)
Qbat 2R

bat

In Eq. (9), Q,, is the capacity of the battery,
R, is the internal resistance of the battery, and
V., is the output voltage of the battery. Finally,

the derivative of SOC isafunctionof 7, , S, ,
and SOC, as per (5) ~ (9).
SOC = f(T,,,.S,,,,SOC) (10)

We can use a fuel consumption rate map to
obtain the numerical value of sz, because the

consumption rate, 71, , is a function of the

control variables, 7,,, and S,

eng '

iy, =L(T,,.5,,) (11)

eng?
In conclusion, SOC in (10) and 7 in (11) are
numerical functions of 7., Sene, S,,. , and SOC,

eng !
when the requested output condition is specified.
The parameters of the vehicle are from the
Prius0O4 model in Powertrain System Analysis
Toolkit (PSAT), which are summarized in Table
1.
Table 1. Vehicle parameters used in simulations.

Vehicle total mass 1405 kg

Engine Si_1497 57 US 04Prius

Motorl pm_25 50 prius

Motor2 pm_15 30 prius

Battery Nimh_6_168_panasonic_MY04_Prius
Planetary gear ratio | 2.6 (78/30)

Final gear ratio 4.113

Tra_m_smlssmn gear 90 %

efficiency

Rolling resistance : .
coefficient 0.007 +(0.00012 x vehicle velocity)
Frontal area 1.746 m®

Drag coefficient 0.29

Wheel radius 0.305 m

Air density 1.23 kg/m?

2.2 Local optimal operating points

The optimal control of PHEVs should be
solved for the whole horizon time, whereas the
candidates of the optimal control can be
instantaneously calculated in the static model.
The Confined-Optimal Operating Line (C-OOL)
was introduced in [13]; it is the best engine
operating line for the relevant battery power,
when the output speed and torque are specified.

To obtain the C-OOL, we calculate possible engine
operation points wherein the same electric energy
is either charged or discharged. Then, the point of
the minimum fuel consumption rate out of the
possible points can be selected as an optimal
candidate. The C-OOL is a family of these optimal

candidates, as shown in Fig. 3.
Optimal points for C-OOL

-

110F
100}
90}
80}
70k [ )

60| T
50+

C-O0L .
40T ®  Minimum fuel consumption points |
F<To] NN - Operating line according to P,

PYIK S Equivalent fuel consumption line

T —— Engine max t0ﬁ7 f

Engine Torque(Nm)

Fr

. | | ; o
1000 1500 2000 2500 3000
Engine speed(rpm)

Fig. 3 An example of the C-OOL, when 7 =100Nm

reg
and S, =100rad /s . The dotted lines are feasible lines of

operation for specific B, . The resolution of B, in the

figure is 1.5kW, whereas it is 0.05kW in our simulation.

Now, we can present the best fuel consumption
rate, 7z, as a function of Py, (see Fig. 4). The best
fuel consumption function in Fig. 4 clearly implies
that we can save more fuel if we use more electric

energy.
Confined-optimal fuel consumption rate

m—— Hybrid driving
2F - NC - * Pure electric driving [

| |
| | | |
| | | |
| | | |
15F -+ - I it i
| | | |
| | | |
| \ | |
| | 1

”;fc (g/s)

| |
| |
| |
| |
05F—t-—-F---
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L |

Fig. 4. Instantaneous optimal fuel consumption rate
line in the domain when 7, =100Nm and S, =100rad /s .

From the viewpoint of horizon optimal control,
this optimal process reduces the dimensions of the
control variables, by which we do not consider the
inferior engine operation points when solving the
problem in the horizon plane, whereas we need to
calculate the C-OOL at each and every second.
The physical meaning of the line in Fig. 4 is
simple: given that the engine always operates at
the best point, less fuel needs to be consumed
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when more battery power is used, and vice versa.
In general, the requested output torque and speed
vary with time; hence, we can say, with reference
to the time-horizon plane, that the fuel
consumption rate, 7, is just a function of 7,
and ¢, asin (12).
ti, = g(Bynt) (12)
Additionally, the pure electric driving point,
namely, the point to the right in Fig. 4, is an
operating point at which the battery supplies all
the energy that is needed to drive the vehicle,
while the engine does not operate or - if

appropriate — operates at optimal speed with no
fuel consumption but with engine drag.

3 Optimal control of PHEVs

Minimization of fuel economy is the only
object in this paper though there are other criteria
that we can consider, such as the acceleration
performance or emission level. The optimal
control problem of PHEVs can be solved by
optimization techniques that are based on optimal
control theories. In this chapter, we discuss the
general solution for deterministic optimal control
problems and introduce Pontryagin’s Minimum
Principle (PMP) as a method of solving the
control problem for PHEVs.

3.1 Optimal control theory

There are two representative approaches to
solve deterministic optimal control problems.
One is Dynamic Programming (DP), which
pursues Bellman’s principle of optimality, and
the other is trajectory optimization that is based
on Pontryagin’s Minimum Principle (PMP).

Optima field caleulated from DP

g 888

FC(z)

ot U‘; ol <200

soc fimeis)

Fig. 5. An example of an optimal field that is
calculated from DP with a forward-looking type refers
to the total fuel consumption from the origin to the
current point.

In general, DP calculates the optimal field,
which is a family of optimal cost-to-go. (See Fig. 5
although it shows a cost-from-start.) On the other
hand, PMP produces the necessary conditions that
optimal trajectories must satisfy, which means it
does not guarantee optimality whereas a solution
that is yielded by DP is always an absolute or

global optimum for deterministic problems.

Optimal trajectory solved by PMP
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Fig. 6. An optimal SOC trajectory that is solved by
PMP. PMP just guarantees that the solution is superior
to trajectories that are near the solution.

Mathematically, these two methods, DP and
PMP, can be linked when the costate of PMP is
interpreted as an instantaneous sensitivity between
the state and the optimal field on the optimal
trajectory [11]. This means that PMP checks for
optimality only on the optimal trajectory, and DP
needs far more calculations to check all the
possible trajectories. In conclusion, DP generates a
superior solution than PMP whereas PMP requires
less computing time to obtain the solution.
However, PMP has an advantage in that the
solution can be calculated instantaneously if we
know an appropriate costate, which will be
described in the following section.

3.2 Optimal control in PHEVS

Assuming that the main goal of the control
strategy is to coordinate the operations of the three
power resources to minimize the overall energy
consumption, a PMP problem can be formulated
as:

min{J:_[;’ g(P., (t),t)dt}

subject to:
soc(t) = f(soc(t).B,(t))
SOC(ty) =SOC(t,)

SOC,;, < SOC (1)< SOC,

Pmin < bat (t)g Pmax

(13)
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In the above, g(B,,,t) is the fuel consumption
rate, as in (12), and f(SOC,B,,) is the state
equation for SOC , as in (9). Further, the state
variable, SOC , and the control variable, B, ,, are

limited by SOC_., SOC P.,and P_ . An

max ! ~ min ? max
optimal control variable is the variable that
minimizes a Hamiltonian function at every time
step, where the Hamiltonian is defined as:

H=g(B,(t).t)+p(t)- £ (B, (1),50C(r)) (14)
In (14), p(t) is the costate function in PMP

[12]. Based on the necessary conditions, the

optimal control, B, can be calculated as

B, =argmin (B, (1), (1).50C (1).1)  (15)

and the costate equation is defined as

p= _a%(soc) (16)

The optimal trajectory should satisfy the
necessary conditions, such as: the state equation
in (9); the co-state equation in (16); and the
condition expressed in (15). Furthermore, the
optimal trajectory also satisfies the boundary
condition in (13) whereby the final SOC arrives

at the desired final value, SOC(t‘,) . The

Equivalent Consumption Minimization Strategy
(ECMS) is substantially linked to PMP given that
equivalent consumption in ECMS is defined

min !

at !

similar to the Hamiltonian in Eq. (14) [6], [7], [8].

The similarity of these two techniques is
described in [13].

3.3 Optimality of the PMP method

PMP produces the necessary conditions for
optimality whereas DP (or the Hamilton-Jacobi-
Bellman equation) guarantees global optimality
[9], [10]. Therefore, the PMP solution might be
inferior to the solution from DP, and the
performance  degradation may not be
insignificant in the general optimal control
problem. However, the optimal trajectory that is
yielded by PMP is near the global optimal
solution in a hybrid electric vehicle system. The

state equation, f (B, (¢),SOC(z)), is a function
of B, and SOC. (See Fig. 7.)

x10° Relation between SOC and P, ,
T T T
! ——S0C=0.2
T~ | ——soc=03
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=
T
|
|
_ 1
|
|
|
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|
|
T——
|
|
|
7‘4
| |
| |
I

pri‘mary oderating ‘[ange

Fig. 7. The time derivative of SOC is influenced by
the SOC but the influence is not significant in the
primary operating range, viz., -5kW to +5kW.

It is, however, not the case that SOC definitely

influences SOC especially in the primary
operating range of the battery because the
resistance and the voltage of the battery are hardly
influenced by SOC , which means that we can

consider SOC to be a function of just B, and
expressed as
SOC(1) = f (R (1)) (17)
Given that the state equation is a function of
only B, , the costate is constant because both

sides of Eq. (16) are zero. In that case, the optimal
trajectory that satisfies the necessary conditions of
PMP is unique and the uniqueness guarantees the
global optimality of the solution, which is
described in [13]. Furthermore, the constant
costate makes the optimal control law simple
enough to be implemented.

3.4 Optimal control simulator

We developed a new simulator, OC_SIM, which
can solve the optimal control problem of PHEVS.
The simulator features several types of hybrid
electric vehicle, and we can select various
combinations to test the fuel economies of the
vehicles.
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Fig. 8. The main panel and a component panel in
OC_SIM.

The simulator can execute both optimal
control techniques, DP and PMP, by which a user
simulates hybrid electric vehicles at various
driving schedules.
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Fig. 9. A panel that displays results and a simple
report of the simulation results.

A results panel presents all the results of the
optimal simulation by which the user can
evaluate operating points of power resources.
The summary of the simulation is reported by a
text file. Furthermore, there is a function by
which users can check the influence of the co-
state of PMP if the user selects the PMP method.
The simulator, OC_SIM, can be downloaded
from Error! Reference source not found..

4 Optimal control for the PHEV

As stated in section 3.3, the necessary
conditions of PMP generate a global optimal
solution under the assumption that the battery
resistance and voltage are independent of SOC.
In this section, we calculate and compare the

optimal solutions that are yielded by: i) DP; ii)
PMP without the above assumption of

independence; and iii) PMP with that assumption.

On the basis of the simulation results, we can
conclude that the solution is near-optimal if we
use a constant co-state under the assumption of
independence. We also propose a method to

guess an appropriate co-state on the basis of the
driving patterns.

4.1 Simulation results

Using the OC_SIM, we calculate optimal
control solutions for the target vehicle at FTP72.

SOC trajectories according to different initial values of costates

-351.3699

-345.7736

-340.4745

-335.2249

—-330.6686

soc

-325.2704

-318.9807

-312.8892

-306.5995

v | = —-208.7746

0 200 400 600 800 1000 1200 1400
time (sec)

Fig. 10. SOC trajectories that are solved through PMP
with different initial co-states at FTP72.

Fig. 10 shows the results that are derived from
PMP for different initial co-states, in which a
larger initial costate yields a lower final SOC .
Given that the costate can be interpreted as a
parameter that is equivalent to the electric usage
and the fuel consumption, it is natural that the total
usage of electric energy is influenced by the
costate. To obtain the optimal control trajectory for
PHEVs, we set the initial SOC as 0.6 and the final
SOC as 0.2. Then, we found that the optimal
initial value of the costate was -301.1 in the FTP72
cycle. The fuel economy of the control trajectory
that is derived from PMP is close to the global
optimal results that are yielded by DP. (see Table
2).

Table 2. Optimal fuel economies for PHEVs under
different techniques.

PMP
Exact
l\/(ljeth DP solution Contsttant co-
0 (p(0)=-301.1) state
(p(0)=—293.4)
FE
(km/l) 65.716 65.621 65.358

In Table 2, there is an additional case when a
constant costate is used instead of a variable
costate for an exact solution. Though a constant
costate is available only under the assumption of
independence, the fuel economy in this case is also
close to that under the global optimal solution. The
SOC trajectories of the two cases seem to be
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slightly different but the engine operation
patterns in Fig. 12 show that these two controls
are similar.

I I

1 1
0 200 400 600 800 1000 1200 1400
time (s)

Fig. 11. Two optimal trajectories that are derived
from PMP. One is calculated with an exact solution
with a variable co-state, while the other is obtained by

a constant co-state under the assumption of
independence for the battery.

Hence, the fuel economy under a constant
costate is close to the fuel economy under the
exact solution.

Engine operating points of two cases
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Fig. 12. Engine operation points of the two cases
show similar tendencies.
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Fig. 13. The comparison of the two costates, a
variable co-state under the exact solution and a
constant  costate under the assumption of
independence for the battery.

The use of a constant costate not only reduces
the computational burden but also makes it easy to
guess an appropriate costate from driving patterns.
Unfortunately, the difference between the constant
costate and the exact co-state in PHEVS is over 5%
whereas the difference in HEVS is at most 1% [13]
because PHEVs use a wider range of the battery
than HEVs. However, by noting the results on the
fuel economies, we can conclude that the optimal
control that is based on PMP with a constant co-
state is still a viable compromise that simplifies the
problem.

4.2 Approximation model

The costate in PMP, which is interpreted as the
weighting  coefficient for the equivalent
consumption of battery energy, determines how
fast electric energy is used during a driving cycle.
Therefore, it is essential to select an appropriate
costate that makes the SOC trajectory be a global
optimal solution. From an observation of several
simulation results [14], the optimal costate is found
to be closely related to the patterns of a driving
cycle that are represented by the effective SOC
drop rate and the effective mean power over the
duration of traction. The effective SOC drop rate
is defined as

ASOC,

SOC, =— "9
eff Ateff (18)

In (18), Az, is the total traction time when a

powertrain produces a propulsion force and
ASOC,, is the total variation of the SOC during

At . Further, the effective mean power is defined

as

P
o
Pmean = At (1 9)
eff

In (19), B, is the requested power for ¢, . With

these two parameters, we obtain an equation that
describes the optimal costate, p for PHEV

control, which is expressed as
Doy =—3645-75190-S0C,, +2.49-P,

+3317-50C,; - P,

Form Eq. (20), we can calculate an optimal co-
state, which is shown in Fig. 14. To obtain the

SOCeﬁ, we calculate the equivalent value of the

parameter from the summation of the power that is
requested during recuperation and the difference
between the initial SOC and the final (target)
SocC.

opt !

(20)
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At@ff

soc,, = {(C 2 Pou) = O'Ly (21)

In (21), P,

recup

C is a conversion coefficient that is

determined by the battery size, which is
1.161x10™ for our PHEV.

is the recuperating power and

Comparison of the approximated costates
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Fig. 14. Optimal vs. calculated co-states from Eq.
(20). The calculated co-states with regard to the driving
pattern are close to the optimal co-states that are
yielded by PMP.

Fig. 14 shows that the approximated costates
that are based on Eq. (20) are close to the optimal
costates that are yielded by PMP. This means
that the optimal costates can be estimated from
the two parameters, once the future driving
schedule is specified. Unfortunately, it is not
possible for us to know the future driving
schedule without external devices such as
navigation systems that are based on GPS. It is,
however, possible to estimate these two
parameters from prior driving records if the
PHEV is used in regular driving patterns, e.g.,
daily commuting. In conclusion, a control
concept that is based on PMP is an efficient
method that can be applied to a real-time
controller because the costate, which is an
assumed value that nevertheless can be obtained
from driving patterns, is the only parameter we
have to consider. At the same time, the method
yields good results with regard to fuel
minimization for PHEVs.

5 Conclusion

The optimal control that is based on
Pontryagin’s minimum principle (PMP) possibly
possesses the potential for application in real-
time energy management strategies because it
can achieve near-optimal control of the power
resources. Further, we can instantaneously

control the system under optimality. The only
parameter we have to consider in PMP, viz., the
costate, is a parameter that is related to regulating
the final SOC . The costate is influenced by
driving schedules but we can estimate an
appropriate costate from an approximation model
with two representative parameters, SOC,; and
P..n. These two parameters might be calculated
from past driving patterns when the driving
patterns of vehicles are repeated, as with daily
commuting. The co-state approximation model that
is based on pattern recognition parameters in our
study is adequate for the control of a PHEV in that
the PHEV can be used in daily commuting rather
than in long-duration driving on highways. Our
study focuses on an adaptive concept to decide an
appropriate costate that is based on the
approximation model.
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