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Abstract 
In this study, Pontryagin’s minimum principle (PMP) is applied to obtain the control law of plug-in 

hybrid vehicles. The results show that the minimization of the equivalent fuel consumption with a pre-

defined weighting coefficient, which is a costate of PMP, is an effective way to obtain a control strategy 

that minimizes the overall energy. Dynamic programming yields results that are close to being global 

optimal. To realize the control algorithm solved by PMP, we introduce an adaptive concept that is based on 

driving patterns, and we conclude that an instantaneous optimal strategy with a properly selected costate is 

sufficiently simple for application to a real-time controller and is a desirable strategy that yields satisfactory 

results. 
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1 Introduction 
With regard to environmentally friendly 

strategies, electric vehicles (EVs) are possibly 
considered as next-generation vehicles because 
they do not produce emissions and the electrical 
devices in the EVs have high energy efficiencies. 
However, before EVs can be successfully applied, 
several problems await solutions. One of the 
problems is that a battery in an EV has a small 
energy density, which means the EV cannot drive 
for a long while without other energy resources. 
Therefore, the Plug-in Hybrid Electric Vehicle 
(PHEV) can be an alternative solution until 
breakthroughs are found for designing new 
sources of electric energy that have high energy 
densities. In general, though it has not been 
commercialized by major automotive companies, 
a PHEV has a huge battery, which is directly 
charged by an external plug so that the PHEV 
can drive longer in a pure electric mode than a 
general hybrid electric vehicle (HEV). In that 

PHEVs is supposed to be similar to EVs at short-
term driving, the energy management strategy is 
different with the strategy of HEV whereas it 
should be similar with HEV in a long-term drive 
way. With regard to the optimal control for energy 
management, various control concepts for hybrid 
electric vehicles have been widely applied to solve 
the power management problem. In the context of 
optimal control, Dynamic Programming (DP) and 
Pontryagin’s Minimum Principle (PMP) are two 
different approaches to obtain optimal trajectories 
for deterministic optimal control problems. In the 
minimum fuel consumption problem of HEVs, the 
DP method guarantees a global optimal solution by 
detecting all possible control options [1], [2], [3]. 
On the other hand, the control problem can be 
simple when PMP is used because the only control 
parameter we have to consider is a costate of PMP. 
In this paper, we will demonstrate an application 
of PMP in the control problem of PHEVs as an 
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alternative method that guarantees solutions that 
are close to being global optimal. 

2 A static model in a backward 
simulator 

We can consider two different types of 
simulator, a forward type and a backward type. 
The difference between these two is that, in the 
backward simulation, we can calculate the input 
control that satisfies the vehicle performance; so, 
the simulator can test all possible input controls. 
On the other hand, the forward-type simulator 
calculates the vehicle behaviour from the single 
input control whereas we can apply more 
realistic conditions to the forward type than to 
the backward type. In this paper, we use a 
backward-type simulator to obtain optimal 
control trajectories. A static model is considered 
in the simulator. The static model has a drawback 
because the transient dynamics of power 
resources are not considered in the model. 
However, the model is appropriate for the 
backward simulator because it is tractable and 
can be used to test all possible inputs. 

2.1 Vehicle model 
The split hybrid system shown in Fig. 1 is used 

as the target system in this paper, which models 
the Toyota Hybrid System (THS) by using a 
single planetary gear as the power split device [4]. 
The engine, motor-generator 1 (MG1), and 
motor-generator 2 (MG2) are attached to the 
carrier gear, sun gear, and ring gear of the 
planetary gear, while the vehicle is attached to 
the ring gear through a final drive. 

 

 
Fig. 1. The power split hybrid system, which has a 

power split device. 

In the static model, the relationships among 
the engine torque, the motor-generator torque, 
and the output torque can be obtained through the 
lever analogy. 

1 2 1 / 0eng mg mg reqT T T Tζ+ + − ⋅ =  (1)

1(1 ) 0eng mgT R T+ + =  (2)
In Eqs. (1) and (2), engT , 1mgT , 2mgT , and reqT  

are the torques of the engine, MG1, MG2, and 

the requested output torque of the transmission, 
respectively. Further, R  and ζ  are the gear ratio 
of the planetary gear set and the final gear ratio, 
respectively. The relationships among the speeds 
of the power resources can be also obtained by the 
lever analogy, which is expressed as follows. 

( ) ( )1 1mg eng req reqS R S S Sζ ζ= + ⋅ − ⋅ + ⋅ (3)

2mg reqS Sζ= ⋅
 (4)

In Eqs. (3) and (4), engS , 1mgS , 2mgS , and reqS  
are the speeds of the engine, MG1, MG2, and the 
requested output speed. To obtain the 
instantaneous optimal operating line, we choose 
the engine torque and the engine speed, engT  and 

engS , as the control variables. From (1)~(4), we 
can obtain the operating torques and speeds of 
MG1 and MG2, which are functions of the control 
variables when the requested output torque and 
speed are given by a driving cycle. 
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Based on the operating values of MGs, the 
required power of the battery can then be 
calculated as follows. 

1 1 1 2 2 2
k k

bat c mg mg c mg mgP T S T Sη η= ⋅ ⋅ + ⋅ ⋅ (7)
In Eq. (7), the efficiencies of MG1 and MG2, 

viz., 1cη  and 2cη , are numerically calculated by 
interpolating motor-efficiency maps of each MG, 
which include the motor’s loss and the inverter’s 
loss. Further, 

1,
1,

recuperating
k

motoring
⎧

= ⎨−⎩
(8)

Finally, the derivative of SOC , namely, ,SOC  
can be calculated from the battery power and the 
current SOC. 

 
Fig. 2. An equivalent circuit model of a battery with 

an internal resistance and an output voltage, which are 
functions of the state of charge. 
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Considering the equivalent open circuit 
voltage and internal resistance in Fig. 2, SOC  is 
a function of SOC  and batP , which can be 
expressed as: 

2 41
2

bat bat bat bat

bat bat

V V R P
SOC

Q R
− −

= ⋅
 

(9)

In Eq. (9), batQ  is the capacity of the battery, 

batR  is the internal resistance of the battery, and 

batV  is the output voltage of the battery. Finally, 
the derivative of SOC  is a function of engT , engS , 
and SOC , as per (5) ~ (9). 

( ), ,eng engSOC f T S SOC=  (10)
We can use a fuel consumption rate map to 

obtain the numerical value of fcm  because the 

consumption rate, fcm , is a function of  the 

control variables, engT  and engS . 

( ),fc eng engm L T S=  (11)
In conclusion, SȮC in (10) and ṁfc in (11) are 

numerical functions of Teng, Seng, engS , and SOC , 
when the requested output condition is specified. 
The parameters of the vehicle are from the 
Prius04 model in Powertrain System Analysis 
Toolkit (PSAT), which are summarized in Table 
1 . 

Table 1. Vehicle parameters used in simulations. 
Vehicle total mass 1405 kg   
Engine Si_1497_57_US_04Prius 
Motor1 pm_25_50_prius 
Motor2 pm_15_30_prius 
Battery Nimh_6_168_panasonic_MY04_Prius 
Planetary gear ratio 2.6 (78/30) 
Final gear ratio 4.113  
Transmission gear 
efficiency 90 % 

Rolling resistance 
coefficient ( )0.007 0.00012 vehicle velocity+ ×  
Frontal area 1.746 2m   
Drag coefficient 0.29  
Wheel radius 0.305 m   

Air density 1.23 2/kg m  

2.2 Local optimal operating points 
The optimal control of PHEVs should be 

solved for the whole horizon time, whereas the 
candidates of the optimal control can be 
instantaneously calculated in the static model. 
The Confined-Optimal Operating Line (C-OOL) 
was introduced in [13]; it is the best engine 
operating line for the relevant battery power, 
when the output speed and torque are specified. 

To obtain the C-OOL, we calculate possible engine 
operation points wherein the same electric energy 
is either charged or discharged. Then, the point of 
the minimum fuel consumption rate out of the 
possible points can be selected as an optimal 
candidate. The C-OOL is a family of these optimal 
candidates, as shown in Fig. 3. 
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Fig. 3 An example of the C-OOL, when 100reqT Nm=  

and 100 /reqS rad s= . The dotted lines are feasible lines of 
operation for specific batP . The resolution of batP

 
in the 

figure is 1.5kW, whereas it is 0.05kW in our simulation. 

Now, we can present the best fuel consumption 
rate, ṁfc, as a function of Pbat  (see Fig. 4). The best 
fuel consumption function in Fig. 4 clearly implies 
that we can save more fuel if we use more electric 
energy. 
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Fig. 4. Instantaneous optimal fuel consumption rate 
line in the domain when 100reqT Nm=  and 100 /reqS rad s= . 

From the viewpoint of horizon optimal control, 
this optimal process reduces the dimensions of the 
control variables, by which we do not consider the 
inferior engine operation points when solving the 
problem in the horizon plane, whereas we need to 
calculate the C-OOL at each and every second. 
The physical meaning of the line in Fig. 4 is 
simple: given that the engine always operates at 
the best point, less fuel needs to be consumed 
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when more battery power is used, and vice versa. 
In general, the requested output torque and speed 
vary with time; hence, we can say, with reference 
to the time-horizon plane, that the fuel 
consumption rate, fcm , is just a function of batP  
and t , as in (12). 

 ( ),fc batm g P t=  (12)
Additionally, the pure electric driving point, 

namely, the point to the right in Fig. 4, is an 
operating point at which the battery supplies all 
the energy that is needed to drive the vehicle, 
while the engine does not operate or – if 
appropriate – operates at optimal speed with no 
fuel consumption but with engine drag. 

3 Optimal control of PHEVs 
Minimization of fuel economy is the only 

object in this paper though there are other criteria 
that we can consider, such as the acceleration 
performance or emission level. The optimal 
control problem of PHEVs can be solved by 
optimization techniques that are based on optimal 
control theories. In this chapter, we discuss the 
general solution for deterministic optimal control 
problems and introduce Pontryagin’s Minimum 
Principle (PMP) as a method of solving the 
control problem for PHEVs. 

3.1 Optimal control theory 
There are two representative approaches to 

solve deterministic optimal control problems. 
One is Dynamic Programming (DP), which 
pursues Bellman’s principle of optimality, and 
the other is trajectory optimization that is based 
on Pontryagin’s Minimum Principle (PMP).  

 
Fig. 5. An example of an optimal field that is 

calculated from DP with a forward-looking type refers 
to the total fuel consumption from the origin to the 

current point. 

In general, DP calculates the optimal field, 
which is a family of optimal cost-to-go. (See Fig. 5 
although it shows a cost-from-start.) On the other 
hand, PMP produces the necessary conditions that 
optimal trajectories must satisfy, which means it 
does not guarantee optimality whereas a solution 
that is yielded by DP is always an absolute or 
global optimum for deterministic problems.  
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Fig. 6. An optimal SOC trajectory that is solved by 

PMP. PMP just guarantees that the solution is superior 
to trajectories that are near the solution. 

Mathematically, these two methods, DP and 
PMP, can be linked when the costate of PMP is 
interpreted as an instantaneous sensitivity between 
the state and the optimal field on the optimal 
trajectory [11]. This means that PMP checks for 
optimality only on the optimal trajectory, and DP 
needs far more calculations to check all the 
possible trajectories. In conclusion, DP generates a 
superior solution than PMP whereas PMP requires 
less computing time to obtain the solution. 
However, PMP has an advantage in that the 
solution can be calculated instantaneously if we 
know an appropriate costate, which will be 
described in the following section.  

3.2 Optimal control in PHEVs 
Assuming that the main goal of the control 

strategy is to coordinate the operations of the three 
power resources to minimize the overall energy 
consumption, a PMP problem can be formulated 
as: 

( )( ){ }
( ) ( ) ( )( )
( ) ( )

( )
( )

0

0

min max

min max

min ,
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⎨
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∫
 

(13)
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In the above, ( , )batg P t  is the fuel consumption 
rate, as in (12), and ( , )batf SOC P  is the state 
equation for SOC , as in (9). Further, the state 
variable, SOC , and the control variable, batP , are 
limited by minSOC , maxSOC , minP , and maxP . An 
optimal control variable is the variable that 
minimizes a Hamiltonian function at every time 
step, where the Hamiltonian is defined as:  

( )( ) ( ) ( ) ( )( ), ,bat batH g P t t p t f P t SOC t= + ⋅ (14)
In (14), ( )p t  is the costate function in PMP 

[12]. Based on the necessary conditions, the 
optimal control, *

batP , can be calculated as 

( ) ( ) ( )( )* * *arg min , , ,
bat

bat batP
P H P t p t SOC t t=  (15)
and the costate equation is defined as 

( )
Hp SOC
∂= − ∂ (16)

The optimal trajectory should satisfy the 
necessary conditions, such as: the state equation 
in (9); the co-state equation in (16); and the 
condition expressed in (15). Furthermore, the 
optimal trajectory also satisfies the boundary 
condition in (13) whereby the final SOC  arrives 
at the desired final value, ( )fSOC t . The 
Equivalent Consumption Minimization Strategy 
(ECMS) is substantially linked to PMP given that 
equivalent consumption in ECMS is defined 
similar to the Hamiltonian in Eq. (14) [6], [7], [8]. 
The similarity of these two techniques is 
described in [13]. 

3.3 Optimality of the PMP method 
PMP produces the necessary conditions for 

optimality whereas DP (or the Hamilton-Jacobi-
Bellman equation) guarantees global optimality 
[9], [10]. Therefore, the PMP solution might be 
inferior to the solution from DP, and the 
performance degradation may not be 
insignificant in the general optimal control 
problem. However, the optimal trajectory that is 
yielded by PMP is near the global optimal 
solution in a hybrid electric vehicle system. The 
state equation, ( ) ( )( ),batf P t SOC t , is a function 

of batP  and SOC . (See Fig. 7.) 
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Fig. 7. The time derivative of SOC is influenced by 
the SOC but the influence is not significant in the 

primary operating range, viz., -5kW to +5kW. 

It is, however, not the case that SOC  definitely 
influences SOC  especially in the primary 
operating range of the battery because the 
resistance and the voltage of the battery are hardly 
influenced by SOC , which means that we can 
consider SOC  to be a function of just batP  and 
expressed as 

( ) ( )( )batSOC t f P t= (17)
Given that the state equation is a function of 

only batP , the costate is constant because both 
sides of Eq. (16) are zero. In that case, the optimal 
trajectory that satisfies the necessary conditions of 
PMP is unique and the uniqueness guarantees the 
global optimality of the solution, which is 
described in [13]. Furthermore, the constant 
costate makes the optimal control law simple 
enough to be implemented. 

3.4 Optimal control simulator 
We developed a new simulator, OC_SIM, which 

can solve the optimal control problem of PHEVs. 
The simulator features several types of hybrid 
electric vehicle, and we can select various 
combinations to test the fuel economies of the 
vehicles. 
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Fig. 8. The main panel and a component panel in 

OC_SIM. 

The simulator can execute both optimal 
control techniques, DP and PMP, by which a user 
simulates hybrid electric vehicles at various 
driving schedules. 

 
Fig. 9. A panel that displays results and a simple 

report of the simulation results. 

A results panel presents all the results of the 
optimal simulation by which the user can 
evaluate operating points of power resources. 
The summary of the simulation is reported by a 
text file. Furthermore, there is a function by 
which users can check the influence of the co-
state of PMP if the user selects the PMP method. 
The simulator, OC_SIM, can be downloaded 
from Error! Reference source not found.. 

4 Optimal control for the PHEV 
As stated in section 3.3, the necessary 

conditions of PMP generate a global optimal 
solution under the assumption that the battery 
resistance and voltage are independent of SOC . 
In this section, we calculate and compare the 
optimal solutions that are yielded by: ⅰ) DP; ⅱ) 
PMP without the above assumption of 
independence; and ⅲ) PMP with that assumption. 
On the basis of the simulation results, we can 
conclude that the solution is near-optimal if we 
use a constant co-state under the assumption of 
independence. We also propose a method to 

guess an appropriate co-state on the basis of the 
driving patterns.  

4.1 Simulation results 
Using the OC_SIM, we calculate optimal 

control solutions for the target vehicle at FTP72.  
 

0 200 400 600 800 1000 1200 1400
0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (sec)

SO
C

SOC trajectories according to different initial values of costates

 

 -351.3699

-345.7736

-340.4745

-335.2249

-330.6686

-325.2704

-318.9807

-312.8892

-306.5995

-298.7746

 
Fig. 10. SOC trajectories that are solved through PMP 

with different initial co-states at FTP72. 

Fig. 10 shows the results that are derived from 
PMP for different initial co-states, in which a 
larger initial costate yields a lower final SOC . 
Given that the costate can be interpreted as a 
parameter that is equivalent to the electric usage 
and the fuel consumption, it is natural that the total 
usage of electric energy is influenced by the 
costate. To obtain the optimal control trajectory for 
PHEVs, we set the initial SOC  as 0.6 and the final 
SOC  as 0.2. Then, we found that the optimal 
initial value of the costate was -301.1 in the FTP72 
cycle. The fuel economy of the control trajectory 
that is derived from PMP is close to the global 
optimal results that are yielded by DP. (see Table 
2). 

Table 2. Optimal fuel economies for PHEVs under 
different techniques. 

Meth
od DP 

PMP 
Exact 

solution 
( )(0) 301.1p = −

 

Constant co-
state 

( )4.293)0( −=p

FE 
(km/l) 65.716 65.621 65.358 

 
In Table 2, there is an additional case when a 

constant costate is used instead of a variable 
costate for an exact solution. Though a constant 
costate is available only under the assumption of 
independence, the fuel economy in this case is also 
close to that under the global optimal solution. The 
SOC  trajectories of the two cases seem to be 
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slightly different but the engine operation 
patterns in Fig. 12 show that these two controls 
are similar. 
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Fig. 11. Two optimal trajectories that are derived 

from PMP. One is calculated with an exact solution 
with a variable co-state, while the other is obtained by 
a constant co-state under the assumption of 
independence for the battery. 

Hence, the fuel economy under a constant 
costate is close to the fuel economy under the 
exact solution. 
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Fig. 12. Engine operation points of the two cases 

show similar tendencies. 
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Fig. 13. The comparison of the two costates, a 

variable co-state under the exact solution and a 
constant costate under the assumption of 
independence for the battery. 

The use of a constant costate not only reduces 
the computational burden but also makes it easy to 
guess an appropriate costate from driving patterns. 
Unfortunately, the difference between the constant 
costate and the exact co-state in PHEVs is over 5% 
whereas the difference in HEVs is at most 1% [13] 
because PHEVs use a wider range of the battery 
than HEVs. However, by noting the results on the 
fuel economies, we can conclude that the optimal 
control that is based on PMP with a constant co-
state is still a viable compromise that simplifies the 
problem. 

4.2 Approximation model 
The costate in PMP, which is interpreted as the 

weighting coefficient for the equivalent 
consumption of battery energy, determines how 
fast electric energy is used during a driving cycle. 
Therefore, it is essential to select an appropriate 
costate that makes the SOC  trajectory be a global 
optimal solution. From an observation of several 
simulation results [14], the optimal costate is found 
to be closely related to the patterns of a driving 
cycle that are represented by the effective SOC  
drop rate and the effective mean power over the 
duration of traction. The effective SOC  drop rate 
is defined as 

eff
eff

eff

SOC
SOC

t
Δ

=
Δ  

(18)

In (18), efftΔ  is the total traction time when a 
powertrain produces a propulsion force and 

effSOCΔ  is the total variation of the SOC  during 

efftΔ . Further, the effective mean power is defined 
as 

eff
mean

eff

P
P

t
=

Δ
∑

 
(19)

In (19), effP  is the requested power for efft . With 
these two parameters, we obtain an equation that 
describes the optimal costate, optp , for PHEV 
control, which is expressed as 

364.5 75190 2.49

3317
opt eff mean

eff mean

p SOC P

SOC P

= − − ⋅ + ⋅

+ ⋅ ⋅  
(20)

Form Eq. (20), we can calculate an optimal co-
state, which is shown in Fig. 14. To obtain the 

effSOC , we calculate the equivalent value of the 
parameter from the summation of the power that is 
requested during recuperation and the difference 
between the initial SOC and the final (target) 
SOC .  
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( ){ }0.4con recup
eff

eff

C P
SOC t

⋅ −
= Δ

∑ (21)

In (21), recupP  is the recuperating power and 

conC  is a conversion coefficient that is 
determined by the battery size, which is 

41.161 10−×  for our PHEV. 
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Fig. 14. Optimal vs. calculated co-states from Eq. 

(20). The calculated co-states with regard to the driving 
pattern are close to the optimal co-states that are 

yielded by PMP. 

Fig. 14 shows that the approximated costates 
that are based on Eq. (20) are close to the optimal 
costates that are yielded by PMP. This means 
that the optimal costates can be estimated from 
the two parameters, once the future driving 
schedule is specified. Unfortunately, it is not 
possible for us to know the future driving 
schedule without external devices such as 
navigation systems that are based on GPS. It is, 
however, possible to estimate these two 
parameters from prior driving records if the 
PHEV is used in regular driving patterns, e.g., 
daily commuting. In conclusion, a control 
concept that is based on PMP is an efficient 
method that can be applied to a real-time 
controller because the costate, which is an 
assumed value that nevertheless can be obtained 
from driving patterns, is the only parameter we 
have to consider. At the same time, the method 
yields good results with regard to fuel 
minimization for PHEVs. 

5 Conclusion 
The optimal control that is based on 

Pontryagin’s minimum principle (PMP) possibly 
possesses the potential for application in real-
time energy management strategies because it 
can achieve near-optimal control of the power 
resources. Further, we can instantaneously 

control the system under optimality. The only 
parameter we have to consider in PMP, viz., the 
costate, is a parameter that is related to regulating 
the final SOC . The costate is influenced by 
driving schedules but we can estimate an 
appropriate costate from an approximation model 
with two representative parameters, SȮCeff  and 
Pmean. These two parameters might be calculated 
from past driving patterns when the driving 
patterns of vehicles are repeated, as with daily 
commuting. The co-state approximation model that 
is based on pattern recognition parameters in our 
study is adequate for the control of a PHEV in that 
the PHEV can be used in daily commuting rather 
than in long-duration driving on highways. Our 
study focuses on an adaptive concept to decide an 
appropriate costate that is based on the 
approximation model. 
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