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Abstract

Driving patterns have a significant influence on the variation in fuel economy of hybrid electric vehicles.

Previous studies on component size optimization of hybrid electric vehicles typically use a single driving

pattern. The optimum components based on a particular driving pattern are not the optimum for other

different driving patterns. Selections of the optimum component sizes in previous studies are designer

dependent as different driving patterns lead to different optimum component sizes. This paper proposes a

methodology of component size optimization for the optimum fuel economy by considering a range of

different driving patterns simultaneously. This study is carried out on a series-parallel Toyota Prius hybrid

vehicle and the electric assist control strategy is used for the energy management. A genetic algorithm is

used as the optimization method. Both urban and highway driving patterns are classified into conservative,

normal and aggressive and all the six driving patterns are used simultaneously for the proposed

methodology. To compare the effectiveness of the proposed methodology and the existing single driving

pattern based methodology, component sizes are also optimized for each of the three driving patterns -

NEDC, LA92 and HWFET. All the optimum components are evaluated for fuel economy on four driving

patterns - NEDC, LA92, HWFET and ARTEMIS. The proposed methodology reduces the variation in fuel

economy over the range of driving patterns and provides designer independent component size selection.
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1 Introduction
Technological advancement in the automotive
industry is influenced by the availability of fossil
fuel and the threat of global warming. Increased
fuel prices and stringent emission norms due to
global warming are the major challenges for the
survival of the automotive industry. Hybrid
Electric Vehicles (HEVs) have come out as one
of the most promising technologies to counter the

problem. HEV is benefited with low emission of
electric vehicle and high efficiency of internal
combustion (IC) engine. A HEV is a complex
combination of various components involving a
large number of design parameters which must be
considered carefully to get better performance [1].
Development and testing of each design
combination is expensive and time consuming.
Design optimization is the only feasible technique
for optimum selection of components [2]. In those
several components, IC engine, electric machine
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and energy storage device are the most
significant components on which vehicle
performance is dependent. So, the optimum
selection of these components can ensure the
optimum performance. Analytical-based
optimization of a HEV is impractical as deriving
an equation involving hundreds of parameters is
very difficult [3]. The simulation-based
optimization where the optimization algorithm
works with vehicle simulation model is proved
well suited for finding optimum component sizes
of HEV [3].
The real world driving patterns are varied due to
route selection, traffic conditions and driver
behaviour. Different drive cycles are developed
to represent different driving patterns.
Automotive manufactures use drive cycles to
predict the performance of vehicle on road.
Driving patterns have a significant influence on
the automotive vehicle fuel consumption,
emissions and performance [4-7]. So, a design
based on a single driving pattern is not be able to
predict the performance on other driving patterns
and therefore, a range of driving patterns need to
be considered at the design stage to get near
optimal results on various driving patterns on
road. Similarly, a range of different driving
patterns need to consider for the design of
components of HEV for optimum performance.
Several studies on component size optimization
of HEV exist, but no study considers a range of
driving patterns simultaneously. A study [8] on a
power-split hybrid electric vehicle optimized
component sizes based on UDDS driving pattern
only. No study was done on other driving
patterns. Another study [9] on a parallel HEV
optimized component sizes for each of the three
drive cycles – FTP, ECE-EUDC and Tehran city
cycle TECH-CAR and results concluded that the
optimum components on one driving pattern
were not the optimum on other driving patterns.
Three different component sizes were found for
three drive cycles. There is no study of which
design to choose and what would be the
performance of any optimum components if
evaluation would have done on other driving
patterns. Another study [10] on a plug-in parallel
HEV used the UDDS, the FTP, the LA92 and the
US06 separately for component size optimization
and found four different sets of optimum
components one for each drive cycle. It also
concluded that the optimum component sizes
were different with different driving patterns and
component sizes were increased with
aggressiveness of driving patterns. Results from

another study [11] on a parallel HEV showed that
the optimum component sizes for the FTP and the
ECE-EUDC drive cycles were different.
As component sizes for one driving pattern are not
the optimum for other driving patterns, the
performance of the optimum components based on
a single drive cycle might vary widely when
evaluated on other driving patterns. A research
study [12] on a parallel HEV used the FTP drive
cycle only for component size optimization. The
results indicated that the optimum components
based on a particular driving pattern could
generate as high as 50% variation in fuel
consumption when evaluated on other driving
patterns.
It can be concluded from all the previous studies
that no systematic methodology exists for
component size optimization of hybrid electric
vehicles for a range of driving patterns. The
knowledge in existing literature is only applicable
for component size optimization on a single
driving pattern. There is no direction available for
the justification for choosing any particular design
from different sets of optimum designs. No
knowledge also exists for reducing the variation in
fuel economy (FE) due to the single driving pattern
based component size optimization. As single
driving pattern based optimization provides a
separate set of optimum components for each of
the driving pattern, it is designer’s personal
experience which leads to the choice of any
particular design from all the available designs.
Therefore the choice of components for an
application becomes designer dependent. Little
study was done to evaluate the performance of the
optimum components based on any particular
driving pattern when evaluated on other driving
patterns.
This paper proposes a systematic methodology for
component size optimization over a range of
driving patterns by considering all the driving
patterns simultaneously. The paper also studies the
variation in FE of the optimum designs for four
different driving patterns.

2 Proposed methodology
In the conventional methodology for the
component size optimization, a single driving
pattern is considered to find the optimum
component sizes. The proposed methodology
considers a range of different driving patterns
simultaneously for the component size
optimization. In the proposed methodology, at
first, driving patterns are classified into different
categories and then all the driving patterns under
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different categories are considered
simultaneously for the optimization. Each
driving pattern is associated with a weight of
preference. To give equal importance to all
driving patterns under consideration all weights
need to be same. Higher weight could be given
to any particular driving pattern to give it higher
importance over the others. During optimization,
the objective function needs to be evaluated for
all driving patterns under consideration. The
optimization decision needs to be made based on
the combined output of the objective function
over all the driving patterns under consideration.
The flow diagram of the conventional
methodology and the proposed methodology are
shown in Figures 1 and 2 respectively. Thus the
approach outlined in Figure 2 is expected to lead
to a solution that works better (lower variation in
FE) than the approach outlined in Figure 1.
In the subsequent study in this paper, a single
drive cycle based component size optimization
and the proposed methodology based component
size optimization will be called as the method 1
and the method 2 respectively.

Random combinations
of components

Performance evaluation on
Driving pattern 1

Supervisory control
strategy

Performance
Constraints

New combinations of
components

Are optimization
criteria met?

Optimum components

NO
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Optimization algorithm

Figure 1: Conventional methodology
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Figure 2: Proposed methodology

3 Simulation study
A series-parallel Toyota Prius hybrid vehicle is
considered for this study, as the component size
optimization is a major challenge for this type of
architecture. The WARwick Powertrain
Simulation Tool for ARchitectures (WARPSTAR)
[13] an in-house software is used as vehicle
simulation software. The simulation model of a
Toyota Prius 1.5L hybrid vehicle available in the
WARPSTAR is considered for this study. The
vehicle simulation model consists of the following
major parameters

 Vehicle mass: 1368 kg
 Rolling resistance coefficient: 0.009
 Body aerodynamic drag coefficient: 0.29
 Vehicle frontal area: 2.0 m2

 Transmission: Power-split
 Initial battery state of charge (SOC): 0.7

3.1 Problem formulation

The problem can be defined as a constraint
optimization problem where FE needs to minimize
without sacrificing vehicle performance.
The vehicle performance requirements are defined
as constraints. In this study, the Toyota Prius
vehicle performance values have been considered
as constraints to ensure that the vehicle
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performance is not sacrificed during
optimization. These constraints are listed below

 0-60 mph: < 12.9 seconds
 Maximum speed: > 104 mph
 Gradeability: 5°

Another constraint is the battery SOC which
needs to be considered to be able to compare
different driving patterns. The final battery SOC
of all the driving patterns needs to be same. For
this study, the constraint is

 Difference between the final battery
SOC and the initial battery SOC: < 1%

The IC engine, the electric motor and the battery
are the components to be optimized. The Toyota
Prius 1.5L SI engine with maximum power of
43kW is used as the baseline IC engine. For the
baseline electric motor, the Toyota Prius
permanent magnet brushless DC motor with
maximum power of 30kW is used. For battery
sizing, the Toyota Prius NiMH battery pack with
maximum capacity of 6Ah is considered as the
baseline battery. Different power ratings of the
components are achieved by linear scaling of the
maps of the baseline components. The generator
and the transmission are kept same as that of the
Toyota Prius 1.5L hybrid vehicle. Three design
parameters are considered as optimization
variables. These variables are the IC engine
power (PIC), the electric motor power (PEM) and
the battery capacity (CB). The ranges of the
variations for each design parameter are
determined based on the desired performance
characteristics of components as listed in Table
1.

Table 1: Range of variation of each design parameter

Design
parameters

Lower limit Upper limit

PIC, kW 12.9 73.1
PEM, kW 9.0 30.0
CB, Ah 1.8 10.2

The problem can be formulated as a constraint
optimization problem as follows:

Minimize, f(x), x € X
Satisfy, hi(x) ≤ 0, i=1,2,..,N

Where x is the solution to the problem within the
solution space X. X is the upper and lower limit
of the design variables. f(x) is the objective
function and each inequality hi(x) ≤ 0 represents
one of the non-linear constraints shown above. N
is the number of constraints.

3.2 Supervisory control strategy

The rule based electric assist supervisory control
strategy [14] is considered for the energy
management. The control strategy is described as
follows

 The electric motor supplies all the driving
torque if the battery SOC is higher than
SOCL and the vehicle speed is below a
certain minimum speed VC or the required
torque is smaller than TC.

 When the required torque is higher than
TC and the engine runs in its efficient
region with the required driving torque,
the engine produces the torque to drive the
vehicle alone.

 When the required torque is higher than
the maximum torque of the engine at the
engine’s operating speed, the motor
provides the additional torque.

 When the battery SOC is lower than
SOCL, the engine provides additional
torque which is used by the motor to
recharge the battery.

 When the battery SOC is lower than
SOCH, the motor charges the battery by
regenerative braking.

SOCL: Lowest desired battery SOC
SOCH: Highest desired battery SOC
VC: Vehicle speed below which vehicle operates
electric only mode
TC: Required vehicle torque below which vehicle
operates electric only mode

3.3 Optimization method

The component size optimization of hybrid electric
vehicles is a multi-modal problem [2]. The
optimization algorithm for solving such a problem
can be classified into two categories: gradient-
based and derivative-free algorithms [15].
Gradient-based algorithms [2, 16] use derivative
information and they are weak in global
optimization. They require strong assumptions for
the objective function, such as continuity,
differentiability, satisfaction of Lipschitz condition
etc., which cannot be trivially assumed. On the
other hand, derivative-free algorithms such as
genetic algorithms (GA) are robust, global and
may be generally applied without recourse to
domain specific knowledge [12]. Genetic
algorithms are well proved for component size
optimization of hybrid electric vehicles [9, 12, 15,
17]. In this study, a genetic algorithm is selected as
the optimization method.



EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 5

3.3.1 Genetic algorithm

Genetic algorithm is a stochastic global search
and optimization method that mimics the process
of natural biological evolution [9, 15]. GA is
population based method and every individual of
the population is a potential solution. Each
individual of the population is an encoded string
known as chromosome that contains the decision
variables known as genes.
The structure of the GA consists of the following
main steps

 Creation of an initial population
 Evaluation of each individual of the

population by means of a fitness
function

 Selection of individuals
 Crossover and mutation of selected

individuals of the population
At the start of the algorithm, an initial population
of individual is selected randomly. Each
individual of the population is evaluated using a
fitness function that needs to be minimized.
Selection is the process to select the individuals
with higher fitness over the others to produce
new individuals for the next generation of
population. Crossover is the method of merging
the genetic information of two individuals called
parents to produce the new individuals called
children. Mutation is a probabilistic random
deformation of the genetic information for an
individual. Following the evaluation of the
fitness of all chromosomes in the population, the
genetic operators are applied to produce a new
population.
The selection method used in this study is the
roulette wheel method in which the probability
for choosing a certain individual is proportional
to its fitness. The simple crossover and the binary
mutation are considered for this study.
In this study, the population of genetic algorithm
is initialized with 50 randomly selected
components from the entire solution space and
the maximum number of generation is set to 150
as after 100 generations there is small
improvement of results.

3.4 Driving patterns

Driving patterns could be varied from driver to
driver, but in a broader sense could be classified
into conservative, normal and aggressive. All the
three types of driving patterns can exist in both
urban and highway. For this study, driving
patterns are classified into above discussed
categories based on drive cycles parameters [18]

and shown in Tables 2 and 3. The ECE15, the FTP
and the LA92 are selected as conservative, normal
and aggressive urban driving patterns respectively.
The EUDC, the HWFET and the US06 are
selected as conservative, normal and aggressive
highway driving patterns respectively.
The FE is evaluated for all the driving patterns as
listed in Tables 2 and 3 and the cumulative FE is
used for the method 2. For this study, all the
driving patterns are given equal weight of
preference.

Table 2: Classification of urban driving patterns

Parameters,
(unit)

Urban

Conserva-
tive

Normal Aggre-
ssive

ECE15 FTP-75 LA92

% of driving
time
accelerating

35.3 41.8 46.7

% of driving
time
decelerating

32.0 35.2 40.5

Maximum
speed, kph

50.07 91.09 107.35

Table 3: Classification of highway driving patterns

Parameters,
(unit)

Highway

Conserva-
tive

Normal Aggre-
ssive

EUDC HWFET US06

% of driving
time
accelerating

32.6 34.6 37.1

% of driving
time
decelerating

13.4 27.5 36.7

Maximum
speed, kph

120.09 96.32 128.91

Where,

% of driving time accelerating =

100
timeDriving

ngacceleratispenttimeDrive

% of driving time decelerating =

100
timeDriving

ngdeceleratispenttimeDrive



EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 6
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4 Results and discussions
All three design parameters - the IC engine
power (PIC), the electric motor power (PEM) and
the battery capacity (CB) are optimized as per the
method 2 using all the six driving patterns as
shown in Tables 2 and 3. To compare the method
2 with the method 1, all the design parameters
are also optimized for each of the most widely
used conservative driving NEDC, aggressive
urban driving LA92 and normal highway driving
HWFET as per the method 1.
Comparison of the optimum component sizes
between the method 1 and the method 2 are
shown in Table 4. Results in Table 4 show that
the optimum component sizes for the NEDC, the

LA92 and the HWFET are different when
optimization is done based on the method 1. The
optimum components of one driving pattern are
not the optimum for other driving patterns. As
different sets of optimum components are found,
the designer has to make decision about the choice
of the components for any application. In other
words, the choice of optimum component becomes
designer dependent. On the other hand, the method
2 finds only one optimum size of the IC engine,
the electric motor and the battery for a range of
driving patterns which cover conservative, normal
and aggeressive driving. Therefore, for the method
1, designer has to decide which design to choose
from the available three different optimum designs
but for the method 2, designer has only one choice.
Hence, in case of the method 2 the component size
optimization over a range of driving patterns
becomes designer independent.
The optimum components based on each of the
three driving patterns - NEDC, LA92 and HWFET
are evaluated on one conservative driving NEDC,
one aggressive urban driving LA92, one normal
highway driving HWFET and one real world
driving combining the ARTEMIS-urban and the
ARTEMIS-highway to find the variation in FE
over the four driving patterns. The optimum
components based on the method 2 are also
evaluated for the same four driving patterns as
discussed before. The FE of the optimum
components based on the NEDC driving pattern
are 89.9 mpg, 39.0 mpg, 109.5 mpg and 38.8 mpg
when evaluated on the NEDC, the LA92, the
HWFET and the ARTEMIS driving patterns
respectively. Similarly, the optimum components
based on the LA92, the HWFET and the method 2
are also evaluated on the NEDC, the LA92, the
HWFET and the ARTEMIS driving patterns. The
comparative results of FE are shown in Table 5.
The average FE of the optimum components of the
method 2 is comparable to that of the optimum
components for each of the other three driving
patterns - NEDC, LA92 and HWFET.
The overall variation in FE of the optimum
components based on the NEDC and the HWFET
are 64.6% and 66.6% respectively. The optimum
components based on the LA92 shows 53.4%
variation in FE. The optimum engine size for the
LA92 is 60.5% and 19.7% higher as compared to
that of the NEDC and the HWFET respectively.
And the optimum battery size for the LA92 is
72.6% and 4 times higher as compared to that of
the NEDC and the HWFET respectively.
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Table 4: Comparison of optimum component sizes between methods 1 and 2

Components Optimum sizes

Method 1
(Conventional methodology)

Method 2
(Proposed methodology –
combination of 6 driving

patterns)
NEDC LA92 HWFET

PIC, kW 31.1 49.9 41.7 40.4

PEM, kW 29.7 29.9 26.3 29.8

CB, Ah 5.34 9.22 1.8 7.95

Table 5: Comparison of fuel economy over different driving patterns

Driving patterns Fuel economy (FE), mpg

Method 1
(Conventional methodology)

Method 2
(Proposed methodology)

NEDC LA92 HWFET

NEDC 89.9 66.4 64.9 69.2

LA92 39.0 50.4 40.6 49.9

HWFET 109.5 97.0 111.7 102.9

ARTEMIS (urban
+ highway)

38.8 45.2 37.3 43.5

% Overall
variation in FE,

[(max–min)/max]

64.6 53.4 66.6 57.7

Average of FE 69.3 64.8 63.6 66.4

Standard deviation
of FE

36.0 23.3 34.3 26.7

So, the overall vehicle weight and cost would
increase for the LA92 based design compared to
the NEDC and the HWFET based designs. The
variation in FE for the method 2 is 57.7%. The
optimum components based on the method 2
reduces around 11% and 13% variation in FE as
compared to the optimum components based on
the NEDC and the HWFET driving pattern
respectively. But, the variation in FE for the
method 2 is 8% higher as compared to the LA92
based optimum components.
Similarly, the standard deviation of FE for the
method 2 is 26.7 that is around 26% and 22%
lower than that of the NEDC and the HWFET
respectively and 14% higher as compared to that
of the LA92 based optimum components.
The advantage of the method 2 over the method
1 in case of the LA92 is that it reduces the IC
engine and the battery sizes by around 19% and
14% respectively as compared to that of the

LA92. This would reduce the overall vehicle
weight as well as the cost.
Results in Table 5 show that for the method 1, the
best design for the maximum FE is the HWFET
based design for the HWFET driving pattern and
the best design for the minimum variation in FE is
the LA92 based design. But no optimum designs
lead to that of the method 2 which produces lower
variation in FE with reduced component sizes.
The decision making based on the method 1 is
required more time, as each driving pattern needs
to be investigated. But for the method 2 only one
evaluation is required. Therefore, the decision
making for the selection of the optimum
components becomes easy and less time
consuming.
As the method 2 demonstrates its potential to
reduce the variation in FE for the electric assist
supervisory control strategy which is deterministic
rule based, it could be inferred that the method 2
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could be applicable for any other detreministic
rule based supervisory control strategy under
similar conditions. The fuzzy rule based
supervisory control strategies are expected to
work better with the method 2 as the fuzzy logic
is better suited for handling uncertainty of
different driving patterns.
As the method 2 considers a range of different
driving patterns and hybrid electric vehicles are
subjected to different driving patterns
irrespective of architectures, the method 2 could
be equally applicable to other HEV architectures
also.

5 Conclusions
In this paper, a methodology to select component
sizes optimized simultaneously for a range of
driving patterns has been proposed. The
proposed methodology has considered six
different driving patterns consist of conservative,
normal and aggressive driving for both urban and
highway.
The component size optimization has become
designer independent as the proposed
methodology has provided a single set of
optimum components instead of multiple sets of
optimum components over a range of driving
patterns.
The proposed methodology has reduced the
variation in FE with reduced component sizes
over a range of different driving patterns as
compared to the conventional methodology.
The proposed methodology is easy and less time
consuming as compared to the conventional
methodology while selecting optimum
components over a range of driving patterns.

6 Future works
Exhaust emissions and component cost have an
influence on component size optimization.
Vehicle exhaust emissions and cost of
components will be considered in further studies
to enhance the proposed methodology.
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