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Abstract 

This study reports the evaluation of the energy-saving effect of a longitudinal control algorithm based on 

the traffic states of electric vehicles. For realizing energy saving, the control structure should observe the 

various traffic states and reduce wasteful acceleration and deceleration. The longitudinal control for 

energy-saving proposed in this paper is realized using a velocity pattern generation algorithm and a 

velocity control algorithm. This paper proposes a longitudinal control algorithm to save energy in electric 

vehicles driven alongside ordinary vehicles on a street and evaluates the energy-saving effect of the control. 
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1 Introduction 

This paper reports an evaluation of the energy-

saving effect of a longitudinal control algorithm 

based on the traffic states of electric vehicles. 

Recently, there has been an increase in research 

on energy-saving technologies owing to rising oil 

prices and an increase in eco-consciousness. In 

the automotive field, research has been carried 

out on energy-efficient technologies for several 

years not only to improve engine efficiency and 

reduce air and travel resistance and weight 

saving but also to develop new approaches based 

on the intelligent transport system (ITS) 

technology [1]-[3]. In fact, the development of a 

system of heavy-duty vehicles aiming at energy 

saving was started in Japan under NEDO’s 

Development of Energy-saving ITS 

Technologies project in 2008.  

This study is a part of the Energy-saving ITS 

Technologies project and aims at the 

development of a longitudinal control algorithm 

to save energy in electric vehicles driven 
alongside ordinary vehicles on a street. The 

proposed longitudinal control algorithm for energy 

saving is predictably effective for not only internal 

combustion engine vehicles but also electric 

vehicles. This study adopts the longitudinal control 

algorithm to save energy in electric vehicles and 

evaluates the effect of the control. 

The following sections explain the proposed 

longitudinal control algorithm used to save energy 

in electric vehicles and describe the evaluation of 

the proposed longitudinal control algorithm for 

light electric vehicles. 

2 Longitudinal Control Algorithm 

for Energy Saving  
This section explains the longitudinal control 

algorithm proposed for saving energy.  

If a vehicle wants to spend less energy while 

driving on an ordinary street, the vehicle should 

respond flexibly to forward vehicles and signals 

that obstruct its path. 

The proposed longitudinal control algorithm is 

divided into a velocity pattern generation 

algorithm for saving energy and an optimal 

velocity control algorithm, because this simplifies 
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and clarifies the control structures and enables a 

flexible response to forward vehicles and signals.  

The velocity pattern generation algorithm for 

energy saving is located at a higher level than the 

velocity control algorithm. Figure 1 shows the 

framework of the proposed longitudinal control. 

The velocity pattern generation algorithm 

receives information about the traffic state and 

blockades for energy saving. This is followed by 

the generation of approximate upper and lower 

limit patterns for velocity. 

The optimal velocity control algorithm controls 

motors and brakes by considering the vehicle’s 

efficiency map, gradient, and velocity pattern 

created by the pattern generation algorithm.  

The following subsection gives the details of the 

velocity pattern generation algorithm and the 

optimal velocity control algorithm. 

 

 
Figure 1: Framework of Energy-Saving Longitudinal 

Control 

 

2.1 Velocity Pattern Generation 

Algorithm 

The longitudinal control algorithm proposed in 

this study aims to support a mixed environment 

in which there are vehicles equipped with only 

standard features on an ordinary street. In such 

an environment, it is difficult to predict the future 

state of all obstacles for saving energy, such as 

moving or parked vehicles ahead, signal lights at 

intersections, crossing pedestrians, gradients, or 

speed limits. 

Therefore, in this study, to dynamically support 

as many obstacles as possible for saving energy, 

rough upper and lower limit patterns of the 

velocity are generated by the velocity pattern 

generation algorithm primarily for saving energy. 

The pattern generation algorithm treats all 

obstacles for saving energy as velocity-position 
graphs. It impacts a reduction in calculation cost, 

and the unionization of treatment of obstacles for 

saving energy. Because the optimal velocity 

control is located at a lower level, it can find 

accurate and unique velocity patterns, while the 

velocity pattern generation algorithm quickly 

generates approximate upper and lower limit 

patterns for velocity to save energy while driving. 

This study assumes that the driving path and lane 

are previously known. 

2.1.1 Classification of Obstacles for Saving 

Energy 

The control algorithm proposed in this study only 

controls the longitudinal direction. Thus, forward 

vehicles, signals, and other obstacles are assumed 

to reduce vehicle speed and compromise energy-

saving driving. All obstacles for energy saving are 

classified as either foreseeable or unforeseeable.  

Unforeseeable obstacles include most obstacles 

such as forward vehicles equipped with only 

standard features and common signal lights at 

intersections. Because unforeseeable obstacles 

have no special equipment such as vehicle-to-

vehicle and road-to-vehicle communication 

devices, only their current states can be observed 

by a common external sensor. Common signal 

lights that cannot share their lighting patterns are 

also classified unforeseeable obstacles. 

On the other hand, foreseeable obstacles 

correspond to particular obstacles such as signal 

lights and vehicles. If a signal light has a lightning 

pattern that, along with its position, can be shared 

by road-to-vehicle communication preliminarily, it 

becomes a long-term foreseeable obstacle. 

Additionally, road-to-vehicle communication can 

share speed limits along the way. A linked car 

navigation system may also make a useful 

contribution. 

Additionally, the brake lights and turn signals of a 

forward vehicle are detected as short term 

predictions using external sensors. Short-term 

predictions are classified as foreseeable obstacles. 

 

2.1.2 Velocity Pattern Generation for 

Unforeseeable Obstacles 

As mentioned previously, forward vehicles, signal 

lights, crossing pedestrians, gradients, and speed 

limits detected without special equipment such as 

vehicle-to-vehicle or road-to-vehicle 

communication are classified as unforeseeable 

obstacles. For unforeseeable obstacles, the 

proposed pattern generation algorithm generates 

upper and lower limit patterns of velocity using the 



EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  3 

current states of the unforeseeable obstacles as 

observed by external sensors. 

This study presumes that the proposed 

longitudinal control algorithm is used as a drive 

assist system, and thus there is a target speed 

chosen by the driver. If there are no obstacles 

that require a reduction in speed and compromise 

energy-saving driving, the proposed velocity 

pattern generation generates upper and lower 

limit velocity patterns that adjust the pace to the 

target speed ordered by the driver. If there are 

obstacles, the proposed velocity pattern 

generation algorithm generates upper and lower 

limit velocity patterns that adjust the pace to 

reduce energy loss. 

As a basic policy of the velocity pattern 

generation for unforeseeable obstacles, the upper 

and lower limit velocity patterns adjust the pace 

to the lowest velocity of the observable obstacles. 

Figure 2 shows an example of the velocity 

pattern generation for unforeseeable obstacles. 

Vehicles A and B, Signals A and B, and the 

speed limit in the figure can only be observed as 

current states by external sensors, and cannot be 

observed as future states. The current states of 

each obstacle in the figure are as follows: the 

driver’s velocity is set to 70 km/h; the limit 

velocity is 60 km/h; the velocity of Vehicles A 

and B is 40 km/h and 50 km/h, respectively; 

Signal A is green; and Signal B is red. 

First, if a vehicle controlled by the proposed 

longitudinal control algorithm can observe the 

speed limit, the speed limit is slower than the 

driver’s velocity setting. The speed limit is 

therefore a priority. At this time, the upper limit 

pattern reduces the speed to 60 km/h in the most 

energy-efficient way, such as through free-

wheeling or engine braking. After the velocity 

reaches 60 km/h, the pattern velocity limit is 

constant.  

Second, if the controlled vehicle can observe 

Vehicle A, Vehicle A has the slowest velocity of 

all observable obstacles. Thus, if the controlled 

vehicle remains at over 50 km/h, the controlled 

vehicle closes in on Vehicle A and will have to 

reduce its speed rapidly using a mechanical load 

brake, which increases energy consumption 

accordingly. Therefore, the controlled vehicle 

reduces its speed to 50 km/h in the manner 

previously described. 

Third, if the controlled vehicle can observe 

Signal A, the controlled vehicle ignores its 

presence as signal A is a green light, which has 

no substantive meaning. 

Fourth, if the controlled vehicle can observe 

Vehicle B, then Vehicle B has the slowest velocity 

of all observable obstacles. Therefore, the 

controlled vehicle reduces its speed to 40 km/h, 

and avoids colliding with vehicle A in the manner 

previously described. 

Last, if the controlled vehicle can observe Signal B, 

then Signal B has the slowest velocity of all 

observable obstacles as it is a red light and is 

substantively the same as a parked vehicle. 

Therefore, the controlled vehicle reduces its speed 

to zero in the manner previously described. 

The method described previously may increase 

energy consumption and generate too great a 

distance between the controlled vehicle and 

obstacle, such as a forward vehicle or red signal 

light. This study adds a condition that, if the 

controlled vehicle is at a distance at which it will 

not collide with the obstacle, the controlled vehicle 

does not consider the obstacle when it reduces its 

speed to the obstacle’s velocity in the most energy-

efficient way possible. 

Additionally, this study does not consider vehicles 

behind the controlled vehicle. 

 

 
Figure 2: Velocity Pattern Generation for Unforeseeable 

Obstacles 

 

2.1.3 Velocity Pattern Generation for 

Foreseeable Obstacles 

As mentioned before, particular obstacles that have 

special equipment such as vehicle-to-vehicle or 

road-to-vehicle communication, including partial 

signal lights and other vehicles, are classified as 

foreseeable obstacles. 

If the controlled vehicle can observe foreseeable 

signals at an intersection, the controlled vehicle 

can select the proper timing to pass through the 

intersection and maintain energy saving. Similarly, 

if the controlled vehicle can observe foreseeable 

vehicles, the controlled vehicle can calculate new 
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energy-saving velocity patterns without wasting 

driving efforts.  

Figure 3 shows an example of velocity pattern 

generation for foreseeable obstacles. Vehicle A 

and Signals A and B in the figure are the 

observed states of the obstacles from this 

moment in time onward. The figure shows the 

velocity pattern of each obstacle observed by the 

controlled vehicle at this time.  

First, in case 1 in the figure, the controlled 

vehicle can only observe signal A. 

To begin with, the generation of an upper limit 

velocity pattern is described. The controlled 

vehicle obtains the color of Signal A when the 

controlled vehicle increases its speed to the 

driver’s pre-set velocity for maximum 

acceleration. If signal A is green at this time, in 

the upper limit velocity pattern, the controlled 

vehicle increases its speed to the driver’s velocity 

setting for maximum acceleration. On the other 

hand, if signal A is red at this time, in the upper 

limit velocity pattern, the controlled vehicle 

increases its speed sufficiently to pass through 

the intersection before the light changes to red. 

At the same time, the controlled vehicle obtains 

the color of Signal A when the controlled vehicle 

increases its speed to the driver’s pre-set velocity 

for minimum acceleration. If signal A is green 

and has the same timing as the upper limit 

velocity pattern, in the lower limit velocity 

pattern, the controlled vehicle increases its speed 

to the driver’s velocity setting for minimum 

acceleration. If signal A is red at this time, in the 

lower limit velocity pattern, the controlled 

vehicle increases its speed sufficiently to pass 

through the intersection before the light changes 

from green to yellow using the same timing as in 

the upper limit velocity pattern. 

Second, case 2 in the figure shows that the 

controlled vehicle can observe Signal B. If the 

controlled vehicle can observe more than two 

foreseeable signals, this study presumes that the 

controlled vehicle is driven to the previous signal 

using the upper limit velocity pattern calculated 

for the previous signal. In the figure, the 

controlled vehicle is driven to signal A using the 

upper limit velocity pattern calculated for signal 

A. The controlled vehicle then generates the 

upper and lower limit velocity patterns from 

Signal A to Signal B in the same way as in case 1. 

Additionally, if the controlled vehicle path goes 

through signal A at the next light switch from red 

to green and signal A has the same timing as 

described previously, the upper and lower limit 

velocity patterns are updated. This is done to look 

for the most energy-saving path. 

Third, case 3 in the figure shows that the 

controlled vehicle can observe Vehicle A. Long-

term foreseeable behavior of vehicles is limited on 

a street mixed with ordinary vehicles. However, if 

the controlled vehicle can observe the behaviour of 

Vehicle A through the intersection of Signal B, the 

upper and lower limit velocity patterns of Signal B 

are generated in the same manner as in cases 1 and 

2 under the condition that the controlled vehicle 

does not collide with Vehicle A. 

Last, the velocity patterns for foreseeable obstacles 

overlap those of unforeseeable obstacles, and the 

velocity patterns for all obstacles are the lowest 

upper and highest lower limit velocity patterns. 

 

 
Figure 3: Velocity Pattern Generation for Foreseeable 

Obstacles 

 

2.2 Optimal Velocity Control Algorithm 

The proposed optimal velocity control algorithm 

solves the optimal control problem of energy 

consumption for a vehicle from the current time to 

a previously defined assessment period, and 

controls the vehicle directly. The optimal velocity 

control operates under the condition that the 

vehicle maintains the range between the upper and 

lower limit velocity patterns calculated by the 

velocity pattern generation algorithm and does not 

collide with any obstacles.  

Specifically, the optimal velocity control solves 

the optimal control problem using model 

predictive control. The control architecture is from 

reference [3]. 

Figure 4 shows the relationship between the 

controlled vehicle and a forward obstacle. The 

figure expresses the forward obstacle as a 

passenger vehicle. In addition, the forward 
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obstacle is nearest obstacle and is 

interchangeable with an intersection with a red 

signal light. 

First, the movement model of the controlled 

vehicle is expressed according to the following 

equation.  
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where vf and vb are the velocities of the forward 

obstacle and controlled vehicle, respectively; ab 

is the acceleration of the controlled vehicle; ub is 

the drive and brake force of the controlled 

vehicle; (.) is the road gradient angle; fab is the 

air resistance; fub is the road resistance (constant); 

mb is the mass; b is a time constant; is the air 

density; Cb is the air resistance coefficient; Ab is 

the frontal projected area; and g is gravity 

acceleration. 

Second, the equations for the state of the 

controlled vehicle and forward obstacle are as 

follows. 
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where x is the state vector, u is the input vector, 

af(.) is the acceleration of the forward obstacle, 

and df is the distance between the controlled 

vehicle and forward obstacle. 

Third, the control problem is formulated based 

on model predictive control. The proposed 

optimal velocity control algorithm solves the 

optimal control problem for every control period, 

and updates input ub. The assessment function is 

configured as follows. 
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L is a term for assessing the energy consumption 

of the controlled vehicle. It uses the current energy 

consumption value calculated based on the 

velocity and drive force. In addition, Lvu and Lvd 

are terms assessing the maintenance of the range 

between the upper and lower limit velocity 

patterns. When the current velocity of the 

controlled vehicle maintains the range between the 

upper and lower limit patterns, Lvu and Lvd become 

zero. In addition, Ldf is a term that assesses the 

distance from the obstacle. This study is designed 

such that if the controlled vehicle comes close to 

the collision limit distance following the velocity, 

the controlled vehicle does abruptly decelerate for 

safety reasons. When the current distance is farther 

than the collision limit distance, Ldf becomes zero. 

Additionally, W, Wvu, Wvd, and Wdf are invariable 

weight coefficients adjusted by the designer, and T 

is the assessment period, which is set at 10 s. 

Fourth, the following equation creates a condition 

of constraint to guard from a divergent input: 

  
      

                         ( ) 
where umax is a constant value adjusted by the 

designer. The following equation expresses the 

necessary conditions that have to be fulfilled by 

the optimal input u
*
 that minimizes Ｊ during 

assessment period T. 
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where H is a Hamiltonian matrix,  is a Lagrange 

multiplier, and ud is a dummy variable. 

In this study, the proposed optimal velocity 

control algorithm was developed using the 

Receding Horizon Control, which is a part of the 

Model Predictive Control series based on the 

above solution of the optimal control problem. 

 

 
Figure 4: Energy-Saving Velocity Control Algorithm 

 

3 Experimental Evaluation 

Using Light Electric Vehicles 
This study evaluates the proposed longitudinal 

control algorithm using four light electric 

vehicles and two signals. Figure 5 shows a 

photograph of the light electric vehicles. The 

following subsection describes the conditions, 

scenario, and results of the experimental 

evaluation.  

 

 
Figure 5: Experimental Evaluation Using Light 

Electric Vehicles 

3.1 Experimental Conditions 

The implementation site of the experiment is the 

ring course at Keio University. The four light 

electric vehicles used are called Vehicles A, B, C, 

and D. The two signals are termed Signals A and 

B. 

The steering equipment of each vehicle is altered 

to enable self-steering using a servomotor. 

During the experiment, the self-steering system 

follows a prepared trajectory using a RTK-GPS. 

The reason for this is to prevent the vehicle path 

from affecting the experimental results.  

Vehicles A, B, and C are the forward vehicles. 

The longitudinal control of these vehicles uses 

the recorded data of the target drive and brake 

force values, the velocity, and the position. The 

recorded data is obtained by human driver 

previously. The driving and brake forces of 

Vehicles A, B, and C are controlled by the 

feedforward of the target drive and brake force 

values, and the feedback of the velocity and 

position. The reason for this is to prevent the 

difference in the behaviour of the forward vehicle 

from affecting the experimental results. 

Vehicle D is the evaluated vehicle. Control of 

Vehicle D is switchable between the proposed 

longitudinal control and manual longitudinal 

control. Vehicle D is driven by two drive motors in 

the rear wheel, and braked using the regeneration 

brake of these drive motors. The reason for this is 

that driving and braking using the drive motors 

only makes full use of the characteristics of the 

electric vehicle, while the experiment tried to 

equalize the experimental conditions between the 

proposed longitudinal control and manually 

longitudinal control. In addition, Vehicle D can 

measure the power-supply voltage and ampere of 

the inverter of the drive motors. 

Signals A and B are located in the middle of two 

straight sections of the experimental course. 

Signals A and B have red, yellow, and green lights, 

and switch lights through a prepared timing 

sequence. 

The longitudinal control system of Vehicle D 

handles Vehicles A, B, and C as unforeseeable 

obstacles and can obtain the current velocity and 

position information of each vehicle during every 

control period. In addition, the longitudinal control 

system of Vehicle D handles Signals A and B as 

foreseeable obstacles and can receive all period 

information of the nearest forward signal during 

every control period. 

The speed limit on a straightaway of the 

experimental course is 23 km/h. The speed limit on 

a curved section of the experimental course is 12 

km/h. 

Figure 6 shows a sketch of the experimental course.  

 

 
Figure 6: Sketch of the Experimental Course 
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3.2 Experimental Scenarios 

Table 1 lists some of the experimental scenarios. 

In the experiment, all vehicles go around the ring 

course nine times. The travel distance of the 

vehicles in the experiment at one time is about 2 

km.  

As mentioned previously, Vehicles A, B, and C 

are steered, driven, and braked automatically, 

and accurately repeat the same behavior in each 

experiment. Signals A and B accurately switch 

lights using the prepared timing. 

For convenience, the following explanation of 

the experimental scenario curtails descriptions of 

yellow lights for Signals A and B, as well as 

certain descriptions of vehicle D.  

The experimental scenario is as follows: 

Vehicles A, B, C, and D are parked a dozen 

meters in front of Signal A. After the start of the 

experiment, Vehicles A, B, and C start moving 

progressively, and go through signal A, which is 

green. 

Vehicles A, B, and C go through Signal B, which 

is also green. 

Vehicles A, B, and C stop at Signal A, which is 

red. 

Next, Signal A switches from red to green, and 

Vehicles A, B, and C start moving progressively, 

going through Signal A. 

Because Signal B is late to switch from red to 

green, Vehicle A reduces its speed inevitably and 

passingly, and Vehicles A, B, and C go through 

Signal B. 

Because Signal A is late to switch from red to 

green, Vehicles A, B, and C reduce their speed 

inevitably and passingly, and go through Signal 

A. 

Vehicles A, B, and C stop at Signal B, which is 

red. 

Next, Signal B switches from red to green, and 

Vehicles A, B, and C start moving progressively, 

going through Signal B. 

Because Signal A is late to switch from green to 

red, Vehicles A, B, and C drastically reduce their 

speed inevitably, and stop at Signal A. 

Signal A then switches from red to green, and 

Vehicles A, B, and C start moving progressively, 

going through Signal A. 

Vehicles A, B, and C go through Signal B, which 

is green. 

Because Signal A is late to switch from green to 

red, Vehicle A goes through Signal A without 

reducing speed, and Vehicles B and C reduce 

their speed inevitably, stopping at Signal A. 

Next, Signal A switches from red to green, and 

Vehicles B and C start moving progressively, 

going through Signal A. 

Vehicles B and C stop at Signal A, which is red, 

and join Vehicle A. 

Signal B then switches from red to green, and 

Vehicles A, B, and C start moving progressively, 

going through Signal B. However, Vehicle C is 

late to start moving, and thus increases its distance 

from Vehicle B. 

Next, Vehicles A, B, and C go through Signal A, 

which is green. The larger distance between 

Vehicles B and C remains constant. 

Vehicles A, B, and C go through Signal B, which 

is green. The distance between Vehicles B and C 

decreases gradually. 

Vehicles A, B, and C go through Signal A, which 

is green. The distance between Vehicles B and C 

gradually decreases. 

Vehicles A, B, and C go through Signal B, which 

is green. Vehicle C joins Vehicles A and B. 

When Vehicles A, B, and C go through Signal A, 

the signal switches from green to red. Vehicle D, 

which is driven by a subject goes through or stops 

at Signal A. 

Vehicles A, B, and C stop at Signal B, which is red. 

Next, Signal B switches from red to green, and 

Vehicles A, B, and C start moving progressively, 

going through Signal B. 

If Vehicle D, which is driven by the subject, stops 

at Signal A, it then starts moving through Signal A 

after the signal switches from red to green. 

Vehicles A, B, and C stop at Signal A, which is red. 

If vehicle D, which is driven by a subject, stops at 

signal B just before going through, signal A 

switches from green to red. Vehicle D then goes 

through or stops at signal B. 

If vehicle D, which is driven by a subject, is 

stopped at signal B, vehicle D starts moving and 

goes through the signal after it switches from red 

to green. 

Vehicle D stops at signal A, which is red, and joins 

vehicles A, B, and C. 

Signal A then switches from red to green, and 

Vehicles A, B, and C start moving progressively, 

going through Signal A. 

Vehicles A, B, and C go through signal B, which is 

green. 

Vehicles A, B, and C stop at Signal A, which is red. 

When Vehicle D stops at Signal A, the experiment 

is finished. 
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Table.1: Experimental Scenarios 

 Vehicle 

A B  C 

Sig A Lap 1 Pass Pass Pass 

Sig B Lap 1 Pass Pass Pass 

Sig A Lap 2 Stop Stop Stop 

Sig B Lap 2 Slow Pass Pass 

Sig A Lap 3 Slow Slow Slow 

Sig B Lap 3 Stop Stop Stop 

Sig A Lap 4 Hard Stop Hard Stop Hard Stop 

Sig B Lap 4 Pass Pass Pass 

Sig A Lap 5 Pass Stop Stop 

Sig B Lap 5 Stop Stop Stop 

Sig A Lap 6 Pass Pass Pass 

Sig B Lap 6 Pass Pass Pass 

Sig A Lap 7 Pass Pass Pass 

Sig B Lap 7 Pass Pass Pass 

Sig A Lap 8 Pass Pass Pass 

Sig B Lap 8 Stop Stop Stop 

Sig A Lap 9 Stop Stop Stop 

Sig B Lap 9 Pass Pass Pass 

Sig A End Stop Stop Stop 

 

3.3 Experimental Results 

The participants of the experiment included 

eighteen men and two women. All the 

participants had a driver’s license. The proposed 

longitudinal control algorithm was evaluated 

twice. 

Figure 7 shows the prepared trajectory followed 

by all vehicles. As mentioned before, four light 

electric vehicles and two signals were used in the 

experiment. The experimental course includes 

two curves and two straightaways. 

Figure 8 shows a point diagram expressing the 

relationship between the average energy 

consumption and arrival time at all experimental 

trials. In the experiment, four subjects ignored 

the signal once at Sig A Lap 8 or Sig B Lap 8. 

Compared with the subjects who had driven 

properly, the energy consumption was reduced 

by over 12% using the proposed longitudinal 

control algorithm. 

The above results suggest that the proposed 

longitudinal control algorithm is effective in 

energy saving. 

 

 
Figure 7: Target Trajectory for All Vehicles 

 

 
Figure 8: Average Energy Consumption 

 

4 Conclusion 
This study proposed a longitudinal control 

algorithm to save energy in electric vehicles. The 

algorithm was divided into a velocity pattern 

generation algorithm to save energy and an 

optimal velocity control algorithm, because this 

simplifies and clarifies the control structures and 

enables a flexible response to forward vehicles and 

signals. 

In the experimental evaluation, the energy 

consumption was reduced by over 12% using the 

proposed longitudinal control algorithm as 

compared with the subjects who had driven 

properly. 

This study suggests that the proposed longitudinal 

control algorithm is effective in energy saving. 
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