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Abstract

This study reports the evaluation of the energy-saving effect of a longitudinal control algorithm based on

the traffic states of electric vehicles. For realizing energy saving, the control structure should observe the

various traffic states and reduce wasteful acceleration and deceleration. The longitudinal control for

energy-saving proposed in this paper is realized using a velocity pattern generation algorithm and a

velocity control algorithm. This paper proposes a longitudinal control algorithm to save energy in electric

vehicles driven alongside ordinary vehicles on a street and evaluates the energy-saving effect of the control.
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1 Introduction

This paper reports an evaluation of the energy-
saving effect of a longitudinal control algorithm
based on the traffic states of electric vehicles.
Recently, there has been an increase in research
on energy-saving technologies owing to rising oil
prices and an increase in eco-consciousness. In
the automotive field, research has been carried
out on energy-efficient technologies for several
years not only to improve engine efficiency and
reduce air and travel resistance and weight
saving but also to develop new approaches based
on the intelligent transport system (ITS)
technology [1]-[3]. In fact, the development of a
system of heavy-duty vehicles aiming at energy
saving was started in Japan under NEDO’s
Development of Energy-saving ITS
Technologies project in 2008.

This study is a part of the Energy-saving ITS
Technologies project and aims at the
development of a longitudinal control algorithm
to save energy in electric wvehicles driven
alongside ordinary vehicles on a street. The

proposed longitudinal control algorithm for energy
saving is predictably effective for not only internal
combustion engine vehicles but also electric
vehicles. This study adopts the longitudinal control
algorithm to save energy in electric vehicles and
evaluates the effect of the control.

The following sections explain the proposed
longitudinal control algorithm used to save energy
in electric vehicles and describe the evaluation of
the proposed longitudinal control algorithm for
light electric vehicles.

2 Longitudinal Control Algorithm
for Energy Saving

This section explains the longitudinal control
algorithm proposed for saving energy.

If a vehicle wants to spend less energy while
driving on an ordinary street, the vehicle should
respond flexibly to forward vehicles and signals
that obstruct its path.

The proposed longitudinal control algorithm is
divided into a velocity pattern generation
algorithm for saving energy and an optimal
velocity control algorithm, because this simplifies
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and clarifies the control structures and enables a
flexible response to forward vehicles and signals.
The velocity pattern generation algorithm for
energy saving is located at a higher level than the
velocity control algorithm. Figure 1 shows the
framework of the proposed longitudinal control.
The velocity pattern generation algorithm
receives information about the traffic state and
blockades for energy saving. This is followed by
the generation of approximate upper and lower
limit patterns for velocity.

The optimal velocity control algorithm controls
motors and brakes by considering the vehicle’s
efficiency map, gradient, and velocity pattern
created by the pattern generation algorithm.

The following subsection gives the details of the
velocity pattern generation algorithm and the
optimal velocity control algorithm.
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Figure 1: Framework of Energy-Saving Longitudinal
Control

2.1 Velocity Generation

Algorithm

The longitudinal control algorithm proposed in
this study aims to support a mixed environment
in which there are vehicles equipped with only
standard features on an ordinary street. In such
an environment, it is difficult to predict the future
state of all obstacles for saving energy, such as
moving or parked vehicles ahead, signal lights at
intersections, crossing pedestrians, gradients, or
speed limits.

Therefore, in this study, to dynamically support
as many obstacles as possible for saving energy,
rough upper and lower limit patterns of the
velocity are generated by the velocity pattern
generation algorithm primarily for saving energy.
The pattern generation algorithm treats all
obstacles for saving energy as velocity-position
graphs. It impacts a reduction in calculation cost,

Pattern

and the unionization of treatment of obstacles for
saving energy. Because the optimal velocity
control is located at a lower level, it can find
accurate and unique velocity patterns, while the
velocity pattern generation algorithm quickly
generates approximate upper and lower limit
patterns for velocity to save energy while driving.
This study assumes that the driving path and lane
are previously known.

2.1.1 Classification of Obstacles for Saving
Energy

The control algorithm proposed in this study only
controls the longitudinal direction. Thus, forward
vehicles, signals, and other obstacles are assumed
to reduce vehicle speed and compromise energy-
saving driving. All obstacles for energy saving are
classified as either foreseeable or unforeseeable.
Unforeseeable obstacles include most obstacles
such as forward wvehicles equipped with only
standard features and common signal lights at
intersections. Because unforeseeable obstacles
have no special equipment such as vehicle-to-
vehicle and road-to-vehicle communication
devices, only their current states can be observed
by a common external sensor. Common signal
lights that cannot share their lighting patterns are
also classified unforeseeable obstacles.

On the other hand, foreseeable obstacles
correspond to particular obstacles such as signal
lights and vehicles. If a signal light has a lightning
pattern that, along with its position, can be shared
by road-to-vehicle communication preliminarily, it
becomes a long-term foreseeable obstacle.
Additionally, road-to-vehicle communication can
share speed limits along the way. A linked car
navigation system may also make a useful
contribution.

Additionally, the brake lights and turn signals of a
forward vehicle are detected as short term
predictions using external sensors. Short-term
predictions are classified as foreseeable obstacles.

2.1.2 Velocity Pattern Generation for
Unforeseeable Obstacles

As mentioned previously, forward vehicles, signal
lights, crossing pedestrians, gradients, and speed
limits detected without special equipment such as
vehicle-to-vehicle or road-to-vehicle
communication are classified as unforeseeable
obstacles. For unforeseeable obstacles, the
proposed pattern generation algorithm generates
upper and lower limit patterns of velocity using the
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current states of the unforeseeable obstacles as
observed by external sensors.

This study presumes that the proposed
longitudinal control algorithm is used as a drive
assist system, and thus there is a target speed
chosen by the driver. If there are no obstacles
that require a reduction in speed and compromise
energy-saving driving, the proposed velocity
pattern generation generates upper and lower
limit velocity patterns that adjust the pace to the
target speed ordered by the driver. If there are
obstacles, the proposed velocity pattern
generation algorithm generates upper and lower
limit velocity patterns that adjust the pace to
reduce energy loss.

As a basic policy of the velocity pattern
generation for unforeseeable obstacles, the upper
and lower limit velocity patterns adjust the pace
to the lowest velocity of the observable obstacles.
Figure 2 shows an example of the velocity
pattern generation for unforeseeable obstacles.
Vehicles A and B, Signals A and B, and the
speed limit in the figure can only be observed as
current states by external sensors, and cannot be
observed as future states. The current states of
each obstacle in the figure are as follows: the
driver’s velocity is set to 70 km/h; the limit
velocity is 60 km/h; the velocity of Vehicles A
and B is 40 km/h and 50 km/h, respectively;
Signal A is green; and Signal B is red.

First, if a vehicle controlled by the proposed
longitudinal control algorithm can observe the
speed limit, the speed limit is slower than the
driver’s velocity setting. The speed limit is
therefore a priority. At this time, the upper limit
pattern reduces the speed to 60 km/h in the most
energy-efficient way, such as through free-
wheeling or engine braking. After the velocity
reaches 60 km/h, the pattern velocity limit is
constant.

Second, if the controlled vehicle can observe
Vehicle A, Vehicle A has the slowest velocity of
all observable obstacles. Thus, if the controlled
vehicle remains at over 50 km/h, the controlled
vehicle closes in on Vehicle A and will have to
reduce its speed rapidly using a mechanical load
brake, which increases energy consumption
accordingly. Therefore, the controlled vehicle
reduces its speed to 50 km/h in the manner
previously described.

Third, if the controlled vehicle can observe
Signal A, the controlled vehicle ignores its
presence as signal A is a green light, which has
no substantive meaning.

Fourth, if the controlled vehicle can observe
Vehicle B, then Vehicle B has the slowest velocity
of all observable obstacles. Therefore, the
controlled vehicle reduces its speed to 40 km/h,
and avoids colliding with vehicle A in the manner
previously described.

Last, if the controlled vehicle can observe Signal B,
then Signal B has the slowest velocity of all
observable obstacles as it is a red light and is
substantively the same as a parked vehicle.
Therefore, the controlled vehicle reduces its speed
to zero in the manner previously described.

The method described previously may increase
energy consumption and generate too great a
distance between the controlled vehicle and
obstacle, such as a forward vehicle or red signal
light. This study adds a condition that, if the
controlled vehicle is at a distance at which it will
not collide with the obstacle, the controlled vehicle
does not consider the obstacle when it reduces its
speed to the obstacle’s velocity in the most energy-
efficient way possible.

Additionally, this study does not consider vehicles
behind the controlled vehicle.
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Figure 2: Velocity Pattern Generation for Unforeseeable
Obstacles

2.1.3 Velocity Pattern Generation for

Foreseeable Obstacles

As mentioned before, particular obstacles that have
special equipment such as vehicle-to-vehicle or
road-to-vehicle communication, including partial
signal lights and other vehicles, are classified as
foreseeable obstacles.

If the controlled vehicle can observe foreseeable
signals at an intersection, the controlled vehicle
can select the proper timing to pass through the
intersection and maintain energy saving. Similarly,
if the controlled vehicle can observe foreseeable
vehicles, the controlled vehicle can calculate new
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energy-saving velocity patterns without wasting
driving efforts.

Figure 3 shows an example of velocity pattern
generation for foreseeable obstacles. Vehicle A
and Signals A and B in the figure are the
observed states of the obstacles from this
moment in time onward. The figure shows the
velocity pattern of each obstacle observed by the
controlled vehicle at this time.

First, in case 1 in the figure, the controlled
vehicle can only observe signal A.

To begin with, the generation of an upper limit
velocity pattern is described. The controlled
vehicle obtains the color of Signal A when the
controlled vehicle increases its speed to the
driver’s  pre-set velocity for maximum
acceleration. If signal A is green at this time, in
the upper limit velocity pattern, the controlled
vehicle increases its speed to the driver’s velocity
setting for maximum acceleration. On the other
hand, if signal A is red at this time, in the upper
limit velocity pattern, the controlled wvehicle
increases its speed sufficiently to pass through
the intersection before the light changes to red.
At the same time, the controlled vehicle obtains
the color of Signal A when the controlled vehicle
increases its speed to the driver’s pre-set velocity
for minimum acceleration. If signal A is green
and has the same timing as the upper limit
velocity pattern, in the lower limit velocity
pattern, the controlled vehicle increases its speed
to the driver’s velocity setting for minimum
acceleration. If signal A is red at this time, in the
lower limit velocity pattern, the controlled
vehicle increases its speed sufficiently to pass
through the intersection before the light changes
from green to yellow using the same timing as in
the upper limit velocity pattern.

Second, case 2 in the figure shows that the
controlled vehicle can observe Signal B. If the
controlled vehicle can observe more than two
foreseeable signals, this study presumes that the
controlled vehicle is driven to the previous signal
using the upper limit velocity pattern calculated
for the previous signal. In the figure, the
controlled vehicle is driven to signal A using the
upper limit velocity pattern calculated for signal
A. The controlled vehicle then generates the
upper and lower limit velocity patterns from

Signal A to Signal B in the same way as in case 1.

Additionally, if the controlled vehicle path goes
through signal A at the next light switch from red
to green and signal A has the same timing as
described previously, the upper and lower limit

velocity patterns are updated. This is done to look
for the most energy-saving path.

Third, case 3 in the figure shows that the
controlled vehicle can observe Vehicle A. Long-
term foreseeable behavior of vehicles is limited on
a street mixed with ordinary vehicles. However, if
the controlled vehicle can observe the behaviour of
Vehicle A through the intersection of Signal B, the
upper and lower limit velocity patterns of Signal B
are generated in the same manner as in cases 1 and
2 under the condition that the controlled vehicle
does not collide with Vehicle A.

Last, the velocity patterns for foreseeable obstacles
overlap those of unforeseeable obstacles, and the
velocity patterns for all obstacles are the lowest
upper and highest lower limit velocity patterns.
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Figure 3: Velocity Pattern Generation for Foreseeable
Obstacles

2.2 Optimal Velocity Control Algorithm

The proposed optimal velocity control algorithm
solves the optimal control problem of energy
consumption for a vehicle from the current time to
a previously defined assessment period, and
controls the vehicle directly. The optimal velocity
control operates under the condition that the
vehicle maintains the range between the upper and
lower limit velocity patterns calculated by the
velocity pattern generation algorithm and does not
collide with any obstacles.

Specifically, the optimal velocity control solves
the optimal control problem using model
predictive control. The control architecture is from
reference [3].

Figure 4 shows the relationship between the
controlled vehicle and a forward obstacle. The
figure expresses the forward obstacle as a
passenger vehicle. In addition, the forward
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obstacle is nearest obstacle and s
interchangeable with an intersection with a red
signal light.

First, the movement model of the controlled
vehicle is expressed according to the following
equation.

1 1
Vyp = —— - - + ay,
b m, fab my, fgb my, fub b
db = —TpQqy +Tbub,

1 2
fap = —EPAbeVb )

fgb =m,gsinf(xy), €]
where v; and v, are the velocities of the forward
obstacle and controlled vehicle, respectively; a,
is the acceleration of the controlled vehicle; uy is
the drive and brake force of the controlled
vehicle; &) is the road gradient angle; f,, is the
air resistance; fyy is the road resistance (constant);
my is the mass; 7, is a time constant; pis the air
density; C,, is the air resistance coefficient; A, is
the frontal projected area; and g is gravity
acceleration.
Second, the equations for the state of the
controlled vehicle and forward obstacle are as
follows.

x = f(x,u),
x=[vy df ap vp %], U =up,
[ as(t) 1
Vf — Vp
1
frw=| (@ +w) @

1
_m_b(fab + fgb +fub) +ap

| Vp |
where x is the state vector, u is the input vector,
as(.) is the acceleration of the forward obstacle,
and d; is the distance between the controlled
vehicle and forward obstacle.

Third, the control problem is formulated based
on model predictive control. The proposed
optimal velocity control algorithm solves the
optimal control problem for every control period,
and updates input u,. The assessment function is
configured as follows.

t+T
J= f Ldt (3)
t
L= WSLS + WvuLvu + WUlLvl + Wdedf'
Ly = E(up,vp),

Lar =45 J(ar — 4" ow))

+ (df - df*(vb)) ,

N[ =

Ly = \/(vb - Uu*(xb))z
+ (vb - vu*(xb)) s
1
Ly = > (Ub - Uz*(xb))z

- (Ub - vl*(xb)) 4)

L. is a term for assessing the energy consumption
of the controlled vehicle. It uses the current energy
consumption value calculated based on the
velocity and drive force. In addition, L, and Ly
are terms assessing the maintenance of the range
between the upper and lower limit velocity
patterns. When the current velocity of the
controlled vehicle maintains the range between the
upper and lower limit patterns, L,y and L,q become
zero. In addition, Ly is a term that assesses the
distance from the obstacle. This study is designed
such that if the controlled vehicle comes close to
the collision limit distance following the velocity,
the controlled vehicle does abruptly decelerate for
safety reasons. When the current distance is farther
than the collision limit distance, L4 becomes zero.
Additionally, W,, W,,, W4, and Wy are invariable
weight coefficients adjusted by the designer, and T
is the assessment period, which is set at 10 s.
Fourth, the following equation creates a condition
of constraint to guard from a divergent input:

ubz =< umasz (5)
where Umax IS @ constant value adjusted by the
designer. The following equation expresses the
necessary conditions that have to be fulfilled by
the optimal input u” that minimizes / during
assessment period T.

¢ = HA ,i—aH
X = 5 _a}
At+T)=0 aH_O 6
- s au_ ()
H=L+AG @)
G =ub2 +ud2 _umaxz' ®
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where H is a Hamiltonian matrix, A is a Lagrange
multiplier, and uq is a dummy variable.

In this study, the proposed optimal velocity
control algorithm was developed using the
Receding Horizon Control, which is a part of the
Model Predictive Control series based on the
above solution of the optimal control problem.

L

Controlled Vehicle ?‘ Lciding \'chiclé
Figure 4: Energy-Saving Velocity Control Algorithm

3 Experimental Evaluation
Using Light Electric Vehicles

This study evaluates the proposed longitudinal
control algorithm using four light electric
vehicles and two signals. Figure 5 shows a
photograph of the light electric vehicles. The
following subsection describes the conditions,
scenario, and results of the experimental
evaluation.

Figure 5: xperimental
Electric Vehicles

Evaluation Using Light

3.1 Experimental Conditions

The implementation site of the experiment is the
ring course at Keio University. The four light
electric vehicles used are called Vehicles A, B, C,
and D. The two signals are termed Signals A and
B.

The steering equipment of each vehicle is altered
to enable self-steering using a servomotor.
During the experiment, the self-steering system
follows a prepared trajectory using a RTK-GPS.
The reason for this is to prevent the vehicle path
from affecting the experimental results.

Vehicles A, B, and C are the forward vehicles.
The longitudinal control of these vehicles uses

the recorded data of the target drive and brake
force values, the velocity, and the position. The
recorded data is obtained by human driver
previously. The driving and brake forces of
Vehicles A, B, and C are controlled by the
feedforward of the target drive and brake force
values, and the feedback of the velocity and
position. The reason for this is to prevent the
difference in the behaviour of the forward vehicle
from affecting the experimental results.

Vehicle D is the evaluated vehicle. Control of
Vehicle D is switchable between the proposed
longitudinal control and manual longitudinal
control. Vehicle D is driven by two drive motors in
the rear wheel, and braked using the regeneration
brake of these drive motors. The reason for this is
that driving and braking using the drive motors
only makes full use of the characteristics of the
electric vehicle, while the experiment tried to
equalize the experimental conditions between the
proposed longitudinal control and manually
longitudinal control. In addition, Vehicle D can
measure the power-supply voltage and ampere of
the inverter of the drive motors.

Signals A and B are located in the middle of two
straight sections of the experimental course.
Signals A and B have red, yellow, and green lights,
and switch lights through a prepared timing
sequence.

The longitudinal control system of Vehicle D
handles Vehicles A, B, and C as unforeseeable
obstacles and can obtain the current velocity and
position information of each vehicle during every
control period. In addition, the longitudinal control
system of Vehicle D handles Signals A and B as
foreseeable obstacles and can receive all period
information of the nearest forward signal during
every control period.

The speed limit on a straightaway of the
experimental course is 23 km/h. The speed limit on
a curved section of the experimental course is 12
km/h.

Figure 6 shows a sketch of the experimental course.

Vehicle D 1s
evaluated vehicle

Limit speed on straight || Three forward vehicles are
roads are 23[km/h] unforeseeable

<« «— A A[B - C{D
@
- Two signals
Limit speed on | | are foresceable.
curved roads @
are 12[km/h eBO

>
— ] >

J All vehicles go around course nine times.

Figure 6: Sketch of the Experimental Course
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3.2 Experimental Scenarios

Table 1 lists some of the experimental scenarios.
In the experiment, all vehicles go around the ring
course nine times. The travel distance of the
vehicles in the experiment at one time is about 2
km.

As mentioned previously, Vehicles A, B, and C
are steered, driven, and braked automatically,
and accurately repeat the same behavior in each
experiment. Signals A and B accurately switch
lights using the prepared timing.

For convenience, the following explanation of
the experimental scenario curtails descriptions of
yellow lights for Signals A and B, as well as
certain descriptions of vehicle D.

The experimental scenario is as follows:

Vehicles A, B, C, and D are parked a dozen
meters in front of Signal A. After the start of the
experiment, Vehicles A, B, and C start moving
progressively, and go through signal A, which is
green.

Vehicles A, B, and C go through Signal B, which
is also green.

Vehicles A, B, and C stop at Signal A, which is
red.

Next, Signal A switches from red to green, and
Vehicles A, B, and C start moving progressively,
going through Signal A.

Because Signal B is late to switch from red to
green, Vehicle A reduces its speed inevitably and
passingly, and Vehicles A, B, and C go through
Signal B.

Because Signal A is late to switch from red to
green, Vehicles A, B, and C reduce their speed
inevitably and passingly, and go through Signal
A

Vehicles A, B, and C stop at Signal B, which is
red.

Next, Signal B switches from red to green, and
Vehicles A, B, and C start moving progressively,
going through Signal B.

Because Signal A is late to switch from green to
red, Vehicles A, B, and C drastically reduce their
speed inevitably, and stop at Signal A.

Signal A then switches from red to green, and
Vehicles A, B, and C start moving progressively,
going through Signal A.

Vehicles A, B, and C go through Signal B, which
is green.

Because Signal A is late to switch from green to
red, Vehicle A goes through Signal A without
reducing speed, and Vehicles B and C reduce
their speed inevitably, stopping at Signal A.

Next, Signal A switches from red to green, and
Vehicles B and C start moving progressively,
going through Signal A.

Vehicles B and C stop at Signal A, which is red,
and join Vehicle A.

Signal B then switches from red to green, and
Vehicles A, B, and C start moving progressively,
going through Signal B. However, Vehicle C is
late to start moving, and thus increases its distance
from Vehicle B.

Next, Vehicles A, B, and C go through Signal A,
which is green. The larger distance between
Vehicles B and C remains constant.

Vehicles A, B, and C go through Signal B, which
is green. The distance between Vehicles B and C
decreases gradually.

Vehicles A, B, and C go through Signal A, which
is green. The distance between Vehicles B and C
gradually decreases.

Vehicles A, B, and C go through Signal B, which
is green. Vehicle C joins Vehicles A and B.

When Vehicles A, B, and C go through Signal A,
the signal switches from green to red. Vehicle D,
which is driven by a subject goes through or stops
at Signal A.

Vehicles A, B, and C stop at Signal B, which is red.
Next, Signal B switches from red to green, and
Vehicles A, B, and C start moving progressively,
going through Signal B.

If Vehicle D, which is driven by the subject, stops
at Signal A, it then starts moving through Signal A
after the signal switches from red to green.
Vehicles A, B, and C stop at Signal A, which is red.
If vehicle D, which is driven by a subject, stops at
signal B just before going through, signal A
switches from green to red. Vehicle D then goes
through or stops at signal B.

If vehicle D, which is driven by a subject, is
stopped at signal B, vehicle D starts moving and
goes through the signal after it switches from red
to green.

Vehicle D stops at signal A, which is red, and joins
vehicles A, B, and C.

Signal A then switches from red to green, and
Vehicles A, B, and C start moving progressively,
going through Signal A.

Vehicles A, B, and C go through signal B, which is
green.

Vehicles A, B, and C stop at Signal A, which is red.
When Vehicle D stops at Signal A, the experiment
is finished.
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Table.1: Experimental Scenarios

Vehicle
A B C
SigALapl Pass Pass Pass
SigB Lap1 Pass Pass Pass
SigA Lap 2
SigB Lap 2 Slow Pass Pass
SigALap 3 Slow Slow Slow

Sig B Lap 3
SigA Lap4
SigB Lap 4
SigALap5
SigB Lap 5

SigA Lap 6 Pass Pass Pass
SigB Lap 6 Pass Pass Pass
SigALap7 Pass Pass Pass
SigB Lap 7 Pass Pass Pass
SigA Lap 8

SigB Lap 8
SigALap9

Sig AEnd

3.3 Experimental Results

The participants of the experiment included
eighteen men and two women. All the
participants had a driver’s license. The proposed
longitudinal control algorithm was evaluated
twice.

Figure 7 shows the prepared trajectory followed
by all vehicles. As mentioned before, four light
electric vehicles and two signals were used in the
experiment. The experimental course includes
two curves and two straightaways.

Figure 8 shows a point diagram expressing the
relationship  between the average energy
consumption and arrival time at all experimental
trials. In the experiment, four subjects ignored
the signal once at Sig A Lap 8 or Sig B Lap 8.
Compared with the subjects who had driven
properly, the energy consumption was reduced
by over 12% using the proposed longitudinal
control algorithm.

The above results suggest that the proposed
longitudinal control algorithm is effective in
energy saving.
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Figure 7: Target Trajectory for All Vehicles
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Figure 8: Average Energy Consumption

4 Conclusion

This study proposed a longitudinal control
algorithm to save energy in electric vehicles. The
algorithm was divided into a velocity pattern
generation algorithm to save energy and an
optimal velocity control algorithm, because this
simplifies and clarifies the control structures and
enables a flexible response to forward vehicles and
signals.

In the experimental evaluation, the energy
consumption was reduced by over 12% using the
proposed longitudinal control algorithm as
compared with the subjects who had driven
properly.

This study suggests that the proposed longitudinal
control algorithm is effective in energy saving.
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