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Abstract 
For a reliable integration of batteries into the vehicle, knowledge about battery behavior and especially the 

lifetime of the battery in the application is indispensible. This work aims at the development of a lifetime 

prediction approach based on an aging model for lithium-ion batteries. Extended accelerated lifetime tests 

are performed at different temperatures and states of charge (SOC) to investigate the impact of these 

conditions on the impedance rise and capacity loss. The results are used to find mathematical expressions 

describing the impact of storage time, temperature and voltage on aging, to build up a model coupling an 

impedance-based electric-thermal part with a semi-empirical (physically motivated) aging model. Based on 

these models different drive cycles, use patterns and management strategies can be analyzed with regard to 

their impact on the lifetime. This is an important tool for vehicle designers and for the implementation of 

business models. The strength of this paper is the good data basis and the detailed modeling approach. 
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1. Introduction 
Lifetime prediction for lithium-ion batteries 
under real operation is a key issue for a reliable 
integration of the battery into the vehicle and for 
warranty issues. As aging tests using real 
operation conditions are very time and cost 
intensive, accelerated aging tests are discussed to 
be a powerful method. To extrapolate data 
obtained from accelerated aging test to real life 
conditions, aging models are required. So far 
simple model approaches for lifetime predictions 
have been reported in literature, like e.g. 
approaches based on neuronal networks [1]. 
These approaches usually lack the ability to 
make extrapolations to conditions that were not 
used in the learning test set. This work aims to a 
more physically based approach, able to 

extrapolate the data from accelerated aging tests to 
get real life condition lifetime predictions. 
Aging in lithium-ion batteries leads to increase of 
inner resistance, capacity and power loss as well as 
to changes in impedance spectra due to 
electrochemical and mechanical processes. Aging 
strongly depends on temperature, SOC or rather 
electrode potential, cycling depth and charge 
throughput [2-4]. Few studies are reported in 
literature, investigating the calendar and cycle life 
of different cells using large test matrixes [4-7]. 
These studies illuminate the aging characteristics 
of lithium-ion batteries. But so far, this knowledge 
has not been utilized to develop an aging model 
that is able to predict the lifetime cycle of real 
application. Aging models based on mathematical 
functions obtained from extended aging tests can 
be directly linked to impedance-based models, 
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which determine electrical and thermal behavior 
of the battery [8, 9]. Coupling of impedance-
based thermo-electrical battery models with 
aging models enables investigation of the 
dynamical interaction between thermal, electrical 
and aging behavior of the battery. A higher 
temperature for example causes a faster aging 
and therefore a faster increase in the inner 
resistance, affecting the electrical performance of 
the battery. These relations have been 
investigated in [10] but lacking a profound 
parameterization of the developed model using 
aging test results. This work will focus on the 
parameterization of the aging model by 
experimental data using extended aging test 
results. 
 
2. Experimental 
To parameterize impedance-based aging models, 
extensive aging tests are necessary. In this work 
a lithium-ion high power pouch cell with a 
nominal capacity of 6 Ah and a nominal voltage 
of 3.6 V was used. The anode consists of hard 
carbon, the cathode of LiNi1/3Mn1/3Co1/3O2 
(NMC) as active material. Cells with similar 
characteristics are typically used in HEV 
applications. 
 
Extended accelerated calendar aging tests have 
been performed by storing batteries at constant 
voltage at different temperatures and different 
SOC. The test matrix is shown in Table 1. Three 
cells have been tested under the same condition 
in order to get statistic relevance. At regular 
intervals of 6 weeks capacity tests, measurements 
of the inner resistance of the battery and 
electrochemical impedance spectroscopy (EIS) 
were performed at room temperature. Some cells 
were stored at float conditions (constant voltage), 
whereas for other cells storage conditions were 
applied (open circuits). The cells stored with 
open circuits showed self-discharge processes 
over time. Therefore, the average voltage during 
the 6 weeks of storage is used for evaluation of 
the data. In general, aging tests performed at float 
conditions are more desirable for the 
parameterization of aging models, as they ensure 
constant conditions. 
 
The capacity was determined by a 1C discharge 
following a standard charge of the cell. For 
calculation of the inner resistance a high pulse 
power characterization profile as defined by 
VDA (German association of the automotive 
industry) [11] at different depths of discharge 

was used. Therefore a 18s 4 C-rate discharge pulse 
followed by a 40 s rest period and a 10s 3 C-rate 
charge pulse also followed by a 40 s rest period 
was employed. In this work the so called overall 
discharge resistance at 20 % DOD calculated by 
the ratio of voltage change and current during the 
40 s rest period after the 4 C-rate discharge pulse is 
used for the aging analysis. 
 
T / SOC 20 % 

(3,05 V) 
50% 

(3,51 V) 
80 % 

(3,92 V) 
100 % 

(4,10 V) 

25 °C   X  

35 °C X X  X 

50 °C X X X X 

65 °C  X  X 

Table 1: Test matrix of calendar aging tests 
performed on 6Ah high power lithium-ion batteries 
with NMC as cathode material. 

 
Impedance spectra were measured at room 
temperature at different DOD (0%, 20%, 50%, 
80%) in galvanostatic mode using frequency range 
from 5 kHz to 10 mHz. All spectra were measured 
without superposed DC current at 23°C.  
 
3. Calendar Aging Results 
In order to develop and parameterize an aging 
model, the calendar aging tests were evaluated. In 
this section the most important results of the aging 
data are discussed and summarized in order to 
support the assumptions made for the setup of the 
model. 
It is widely known from literature, that electrolyte 
decomposition and the corresponding formation of 
solid electrolyte interphase (SEI), is the dominant 
aging process in most graphite-based lithium-ion 
batteries during storage leading to capacity decline 
(due to loss of active lithium) and impedance rise 
(due to increase in film layer thickness) [3, 12-14]. 
Theoretical derivations of the time dependency of 
the SEI growth rate are quite opposing. Broussely 
et al. [3] for example describe a formation process 
taking place at the SEI/electrolyte interface, 
leading to the conclusion, that the electronic 
conductivity of SEI is the rate limiting step of 
formation. Ploehn et al [12] in contrast state a SEI 
formation that takes place at the anode/SEI 
interface and is limited by solvent diffusion 
process. Nevertheless all theories lead to the 
conclusion that the formation process evolves with 
a square root of time dependency. A similar trend 
can be seen in the aging behavior of capacity loss 



EVS26 In

and inter
measured
condition
and Figu
time for c
temperat
the squar
the best f
other fitt
evolution
spike in t
weeks (F
where th
 

Figure 1:
and inner
over time
and diffe
cells stor
 
Figure 2 
(Figure 2
on aging
2 is plott
temperat
tendencie
conclude
and temp
aging beh
internal r

a) 

b) 

nternational Ba

rnal resistance
d in this work
ns. Figure 1a 

ure 1b the inne
cells stored a
tures. In secti
re root of tim
fitting result i
ing functions
n of the exper
the resistance

Figure 1) is du
e cells were n

: Capacity no
r resistance n
e is shown fo
erent tempera
red at the sam

shows the in
2a) and storag
. The logarith
ted over volta
ture, respectiv
es can be obs
ed, that capac
perature in an
havior was al
resistance of t

attery, Hybrid a

e growth char
k for different
shows the ac
er discharge r

at 50% SOC a
on 5 it will b

me dependency
in comparison
s describing th
rimental agin
e and capacita
ue to a measu
not well conn

ormalized to i
normalized to 
or cells stored
atures. Mean v
me conditions 

nfluence of sto
ge temperatur
hm of capacit
age and over i
vely. In both 
served. There
city fade depe
n exponential 
lso observed 
the cell. This

and Fuel Cell E

racteristics 
t storage 

ctual capacity
resistance ov
and different 
e shown, that
y indeed give
n to various 
he time 

ng data. The 
ance after 30 
urement error
nected.  

initial value (
initial value 

d at 50% SOC
values of thre
are displayed

orage voltage
re (Figure 2b)
ty fade to bas
invers of 
graphs linear
fore it can be

ends on voltag
way. Similar
regarding the
 result is in 

Electric Vehicl

y 
ver 

t 
es 

r, 

 
(a) 

C 
ee 
d. 

e 
) 

sis 

r 
e 
ge 
r 
e 

goo
the 
tem
only
can
con
elec
corr
inte
and
sho
NM
rate
LiM
an i
elec
rang
The
inve
nec
 

Figu
loga
for 
50°
scal
diff
50%
test
 
Sim
the 
acc
tem

a)

b)

le Symposium

od accordance
exponential d

mperature. As 
y due to para

n be applied h
ntrast can be q
ctrode materi
responding p
ercalation. De
d phase chang
w different a

MC based batt
e could be me
Mn2O4 Materi
increase of ag
ctrolyte and a
ge where elec
erefore, depen
estigation of 
essary in ord

ure 2: a) norm
arithmic scali
different stat
C. b) normal
ling to basis 2
ferent state of
% SOC. The m
ted are shown

milar to capac
obtained imp
ording to agin

mperature and 

) 

) 

e with Arrhen
dependency o
aging effects
sitic side reac
ere. The volta

quite differen
al used in the
hase transitio

epending on t
ges during cyc
ging behavio
teries even a m
easured e.g. at
ials also Mn d
ging at lower 
additives acco
ctrolyte decom
nding on the c
the impact of
er to understa

malized capac
ing to basis 2
e of health. T
ized capacity
2 over the inv
f health. The c
mean values o
n here. 

ity fade and r
pedance spect
ng dependenc
voltage. Figu

nius law, desc
of reaction ra
s during stora
ctions, Arrhe
tage dependen
nt, depending 
e cell and the 
ons, during 
the existing p
cling, the mat

or. In some ca
minimum of 

at SOC around
dissolution ca
SOC [15]. A

ount for the v
mposition is 
cell more det
f voltage can 
and its influe

city fade in a 
2 over storage
The cell was s
y fade in a log
vers temperat
cell was store
of the three c

resistance inc
tra were evalu
cies on storag
ure 3a shows

 3

cribing 
ate on 
age are 
nius law 
ncy in 
on the 

phases 
terial can 

ases of 
aging 
d 80%. In 
an lead to 

Also the 
voltage 
favored. 
tailed 
be 
nce. 

 

e voltage 
stored at 
garithmic 
ture for 
ed at 
cells 

crease, 
uated 
ge time, 
the 



EVS26 In

evolution
a cell sto
seen, tha
axis, usu
resistanc
increasin
the mid-f
accountin
charge tr
behavior
these ten
network,
inductanc
elements
spectra. T
resistanc
parallel, 
[16, 17]: 
 

ZARC =Z

 
1,0[∈Φ

 
The indu
the spect
the real a
for the m
ZARC-el
diffusion
 

Figure 3:
65°C and
The impe
and 80%
was used
 

b) 

a) 

nternational Ba

n of impedanc
ored at 65°C a
at especially th
ually related to

e of current c
ng with proce
frequency sem
ng for the inc
ransfer resista
r of double lay
ndencies in de

 shown in Fig
ce, a serial re

s, was used to
The ZARC-e
e and a const
described by 

(jω1 CR+
R=

]1   

uctance descri
tra, the serial 
axis, the first 

mid-frequency
lement was u

n behavior.  

: a) Impedanc
d 50% SOC a
edance spectr

% SOC. b) elec
d to evaluate t

a) 

attery, Hybrid a

ce spectra du
and 50% SOC
he intercept w
o ohmic resis
collector and 
eding aging. 
mi-circle is en
crease of SEI 
ance and chan
yer capacity. 
etail, an electr
gure 3b, cons
esistance and 
o describe the
lement consis
tant phase ele
the paramete

)Φω
, 

  

ibes the induc
resistance the
ZARC-eleme

y semi-circle 
used to describ

ce spectra of 
at different sta
ra were measu
ctric circuit n
the impedanc

and Fuel Cell E

uring aging fo
C. It can be 
with the real 
stances like 
electrolyte is
Additionally 
nlarging, 
resistance, 

nges in the 
To evaluate 

ric circuit 
sisting of an 
two ZARC-

e impedance 
sts of a 

ement in 
ers R, C and Φ

(1) 

ctive part of 
e intercept wi
ent accounts 
and the secon
be the 

a cell stored a
ate of health. 
ured at 23°C 

network that 
ce spectra. 

Electric Vehicl

or 

s 
y 

Φ 

ith 

nd 

 

at 
 

Figu
imp
sen
the 
agin
ove
bee
in c
that
in th
resu
root
tem
para
dep
form
beh
the 
mor
whi
coll
SOC
para
dep
foll
 

Figu
R1 a
cell
norm
diff
wer
 

b

a)

le Symposium

ure 4a shows
pedance param
sitivity of the
parameters o

ng is small an
er time. There
en conducted.
comparison to
t SEI formatio
he cell. Simil
ults, the impe
t of time depe

mperature and 
ameters on ag

pendency, as e
mation. The o
havior was fou

impedance p
re parabolic d
ich can be rel
lector, increa
C, or aging o
abolic functio

pendency of R
lowing. 

ure 4: a) show
and C1 norma
ls stored at 50
malized to in
ferent states o
re measured a

b) 

) 

 the time evo
meters Rser, R
e Impedance p
of the second 
nd the data re
efore no furth

The paramet
o Rser leading 
on is the dom
lar to the larg
edance param
endency over
voltage depe

ging reveal an
expected from
only deviation
und for the vo
arameter Rser

dependency o
lated to corro
sing the ohmi
f the electroly
on is used to f
Rser to the agin

ws the imped
alized to initia
0°C and 100%
nitial value ov
of health. The
at 23°C and 8

olution of the 
R1 and C1. The
parameters L
ZARC-eleme

eveal a large s
her investigati
ter R1 increas
to the conclu

minant aging p
ge signal mea

meter show a s
r lifecycle. A
endency of im
n exponential
m the theory o
n from expon
oltage depend
r. Figure 4b sh
of Rser on volt
osion of curren

mic resistance 
yte. Therefor
fit the voltag
ng data in the

dance paramet
al values over
% SOC. b) sh
ver storage vo
e impedance s
80% SOC. 

 4

e 
, φ1 and 
ent on 
scattering 
ion has 
ses faster 
usion, 
process 
surement 
square 
lso the 

mpedance 
l 
of SEI 

nential 
dency of 
hows a 
tage, 
nt 
at low 

re a 
e 

e 

 
ters Rser, 
r time for 

hows Rser 
oltage for 
spectra 



EVS26 In

Figure 5 
over agin
SOC. In 
normaliz
the OCV
capacity 
nominal 
aging. U
capacity 
same. Fo
that it is n
according
to simply
order to a
 

Figure 5:
at 50°C a
states of 
normaliz
over DOD
 
4. Ma

Agi
Based o
section, 
empirica
shown i
following
used: 
• As th

far th
cycle 

a) 

b) 

nternational Ba

shows the ev
ng for cells st
Figure 5a the

zed to nomina
V over DOD n

is shown. Us
capacity, the 
sing the DOD
in contrast, th

or the use in a
not necessary
g to the state 
y use the latte
adjust the OC

: OCV curves
and 50% SOC
health. a) sho

zed to nomina
D normalized

athematic
ing Behav
on the consi

a lifetime 
al approach ca
in the exten
g simplificati

he cycle life 
he requireme

aging is n

attery, Hybrid a

volution of th
tored at 50°C
e OCV over D
al capacity an
normalized to
sing the DOD
OCV curve c

D normalized
he OCV curv

an aging mod
y to change th
of health of t

er definition o
CV. 

s over aging f
C are shown a
ows the OCV
al capacity an
d to actual ca

al Descrip
vior 
iderations of
model follo

an be develop
nded aging 
ions and assu

of the batter
nts of applic

neglected in 

and Fuel Cell E

e OCV curve
and 50% 

DOD 
nd in Figure 5
o actual 
D normalized 
changes over

d to actual 
ve stays the 
el, this means
he OCV curv
the battery, b
of DOD in 

for cells store
at different 

V over DOD 
nd b) the OCV
apacity. 

ption of 

f the previo
owing a sem
ped. It has be
tests, that t

umptions can 

ries exceeds 
cation in HE
the followin

Electric Vehicl

e 

5b 

to 
r 

s, 
ve 
but 

 
ed 

V 

ous 
mi-
een 
the 
be 

by 
EV, 
ng. 

•

•

•

•

•
L

Bas
equ
cale
 

[1
LL
+

 
whe
inne
F(t)
to 
com
 
F(
 
ca i
refe
spe
elec
agin

A(T
pote
acc
 

le Symposium

Cycle tests w
60% and 80
equivalent fu
end of capa
reached. 
Different res
over aging. 
resistance wa
of the aging m
The calendar
square root 
seen in fitti
functions to 
experimental
The rate of 
exponentially
Only for th
parabolic dep
the aging dat
The aging be
accounted fo
nominal capa
As the sensit
L, R2, C2, Φ1
data reveal n
they are taken
sed on the
uations can 
endaric aging

),(
),,(
FVTA

VTtLcal

⋅+
=

ere LLcal is u
er resistance
) describes th

the domin
mbination:  

βtct a ⋅=)(  

is a coefficie
erence condit
cific proces
ctrolyte deco
ng process, β

T,V) describe
ential on 
ording to: 

where cells 
% SOC have

ull cycles can
acity life (C

sistances evo
Therefore, 

as chosen for
model. 
r aging of the
of time depe
ing results 
describe the 

l aging data (s
calendar de

y with temp
he voltage d
pendency on 
a. 
ehavior of th

or, using the 
acity for the d
tivity of the I
1 and Φ2 on a

no significant 
n to be consta
ese assumpt
be derived 

g data: 

])(
,( 0

tF
TtLLcal=

used for the e
or impedan

he time depe
nant aging 

 . 

ent describing
tions T0 and 
ss. Under 
omposition 
becomes 0.5

s the impac
the calenda

were cycled
e shown, tha

n be obtained
Cact = 70% 

olve in a sim
the total 

r the parame

e cells evolv
endency. Thi
using variou
time evoluti

see Table 1). 
egradation ac
perature and
dependency o
n voltage is u

he OCV curv
actual inste

definition of D
Impedance p
aging is sma
correlation o

ant over time
tions the 
to fit the 

),VT ⋅
   , 

evolution of 
nce paramete
endency and 

processes 

 

g the rate of
V0 dependin
the assump
being the 

5.  

ct of tempera
ar degradat

 5

d between 
at 30 000 
d until the 

CBOL) is 

milar way 
discharge 

eterization 

ves with a 
is can be 
us fitting 
ion of the 
 

ccelerates 
d voltage. 
of Rser a 

used to fit 

ve can be 
ad of the 
DOD.  
arameters 
ll and the 
over time, 
e.  
following 
measured 

(2) 

capacity, 
ers either. 
is related 
or their 

 (3) 

f aging at 
ng on the 
ption of 
dominant 

ature and 
tion rate 



EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  6

V
VV

VT
TT

T ccVTA Δ
−

Δ
−

⋅=
00

),(   (4) 
 
The first factor describes the temperature impact 
on the aging rate, the second one the impact of 
the potential. cT and cV are fitting parameters, 
describing the impact of temperature and voltage 
on aging, respectively. T0 and V0 are reference 
temperature and voltage and can be chosen 
arbitrarily. For the following we chose T = 25°C 
and V0 = 3.5V. ΔT was set to 10°C, meaning, that 
an increase in temperature by 10°C results in an 
increase in aging by a factor cT compared to 
reference conditions T0. Similarly ΔV was set to 
0.1V. Similar equations have been also used by 
Bohlen et al. [8, 9] to describe the aging behavior 
of super capacitors. 
The only exception has been found in the aging 
evolution of the impedance parameter Rser, where 
a parabolic dependency on voltage has been 
detected (see Figure 4b). Therefore to describe 
the aging evolution of Rser eq. (4) was substituted 
by: 
 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛

Δ
−

⋅⋅= Δ
−

1),(
2

00

V
VVccUTA VT

TT

T

       
(5) 

 
Eq. (2) was used to fit the extended aging data, 
leaving the parameters ca, cT and cV free for 
regression analysis. Non-linear least square 
algorithm was used for regression. The fits 
include data of the test matrix, introduced in 
section 3, containing about 30 batteries stored at 
different temperatures and voltages. For 
comparison, beside square root of time 
dependencies also combinations of square root of 
time and linear time dependencies as well as 
combinations of square root of time and 
logarithmic time dependencies have been 
investigated in fittings. To assess the goodness of 
fit an analysis of correlation coefficient R² was 
carried out. Table 1 compares the fit results of 
the different approaches for the capacity fade. 

Especially considering the linear behavior, it can 
be seen, that the linear contribution to the fit is 
very small or even zero. Therefore apart from 
increasing the number of free parameters the linear 
term did not yield significant improvement 
compared to eq. (2). The fitting results for the 
functions including a logarithmic term show, that 
also logarithmic time dependency can be an 
approach to describe calendar aging. The 
difference to the square root dependency is that the 
logarithmic time dependency is steeper in the 
beginning and becomes flatter later. Therefore it 
overestimates the aging at the beginning, but yields 
better results after some time. As the logarithmic 
behavior lacks of physical explanation, we will 
focus on the square root dependency in the 
following. Square root function on time can be 
directly derived from theoretical investigation of 
SEI formation. The physical process behind the 
mathematical expression is the critical issue to 
ensure the ability of the model for extrapolations. 
 
In Table 2 the values of the resulting fitting 
parameters for capacity fade, resistance increase 
and impedance parameters using eq. (2) and the 
corresponding correlation coefficients R² are 
shown. The parameters describing the capacity 
evolution indicate an acceleration of aging by a 
factor of cT = 1.55 caused by a temperature 
increase of ΔT= 10°C compared to T0. For 
potential dependency of the capacity, fitting 
reveals an acceleration factor of cV = 1.15 for an 
increase of ΔV = 0.1 V. This differs from the rule 
of thumb, predicting that aging rate doubles by 
increasing the temperature by 10°C or the voltage 
by 0.1 V. The aging rate at reference conditions T0 
and U0 becomes ca = 0.0064. Similar results are 
received for the inner resistance and the impedance 
parameters Rser, R1, C1, differing slightly as they 
are impacted by different aging effects. Thus this 
approach convinces due to its simplicity and its 
physical correspondent. 
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Table 1: Fit results for different mathematical functionalities for the capacity fade are shown. 
 
 
 
 

 ca cV cT R² 

Capacity -0.0064 1.1484 1.5479 0.934 

Resistance 0.0484 1.0670 1.5665 0.96 

Rser 0.0206 0.0471 1.7586 0. 85 

R1 0.0766 1.0618 2.1437 0.89 

C1 -0.0457 1.0258 1.2248 0.79 

Table 2: Fitting parameters for capacity fade, 
resistance increase and impedance parameters 
Rser, R1 and C1 using eq. (2) and the 
corresponding correlation coefficients R² 
 
Fitting results for the evolution of capacity and 
overall resistance during storage at 50% SOC at 

different temperatures are shown exemplarily in 
Figure 6. The fittings for these values yield good 
results, with a R² of 0.934 and 0.96, respectively. It 
has to be kept in mind that data of about 30 cells at 
a variety of storage conditions have been fitted 
using one set of parameters. This of course yields 
deviations of the fit from the data at certain 
conditions. Nevertheless the overall fitting result is 
unquestionable. 
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