EVS26
Los Angeles, California, May 6 - 9, 2012

Early Simulation and Testing of Virtual ECUs for Electric
Vehicles

Lars Stockmann, Dominik Holler, Dr. Dirk Spenneberg
dSPACE GmbH, Rathenaustrafse 26, 33102 Paderborn, LStockmann@dspace.de

Abstract

Testing new concepts in the field of closed-loop control is an important matter to the automotive in-
dustry. Especially in the domain of electric vehicles, there is a lot of ECU functionality targeting en-
ergy management and engine controlling that has to be developed and evaluated. Over the last decade,
hardware-in-the-loop simulation has successfully been used to test new ECUs. However, in early stages
of development, the target hardware is often not known and only parts of the final implementation is
available. Furthermore, there are different domains involved in the development process, from an early
behavioral model to the final integration into an ECU.

In our project we propose a methodology and tool chain that uses the simulation of virtual ECUs across
multiple domains. Virtual ECUs enable testing the functionality together with hardware-independent
non-application relevant aspects (e.g. some parts of the basic software or the run-time environment),
which effectively postpones the need for a close-to-production ECU prototype.

In this paper, we compare different levels of ECU abstractions regarding their convergence to a real ECU
and certain requirements that are imposed when developing electric vehicles. Here, we specifically aim
at finding the best suitable level for the early stages of development, where many aspects of the final
ECU are still not known and a HIL setup is not feasible. Nevertheless, one major goal of our project is to
experiment and test the virtual ECU in the same tool environment that is commonly used in HIL setups
to provide a certain reusability. In this context, this paper also presents current approaches for the reuse
of tests across domains, which will be addressed further as our project advances.

Keywords: control system, hardware-in-the-loop (HIL), modeling, optimization, simulation

1 Introduction mathematical models of the functionality (e.g. a
MATLAB®/Simulink® model) to the full-fledged

ECU software, including the operating system

Today’s automotive industry faces many chal-
lenges when developing zero emission cars that
use hydrogen fuel cells or battery-based solu-
tions. Even though both fields benefit from the
industry’s well-established methodologies and
know-how, it is especially in the area of closed-
loop control where many aspects require new
concepts and approaches. One example is the in-
tegration of new, highly efficient energy manage-
ment solutions.

To meet the high safety requirements of the ve-
hicle industry, all electric control units (ECUs)
must undergo a long series of tests, from the early

and bus communications. Many of these tests are
performed using closed-loop simulations that use
environment models to generate the proper feed-
back. Furthermore, modern standards emerge
that address the growing complexity of automo-
tive software. The AUTomotive Open System
ARchitecture or AUTOSAR for short provides a
standardized automotive software architecture. It
facilitates the exchangeability of ECU software
and hardware [1].

In early phases, functional models are developed
and tested using model-in-the-loop (MIL) sim-

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1

ulation. In a next step, a software developer
uses the functional model as a specification and
implements the C code or an implementation
model. In the latter case, an ECU autocoding tool
like dSPACE TargetLink uses this implementa-
tion model to generate the C code. This appli-
cation code is then tested with software-in-the-
loop (SIL) or, if an evaluation board is available,
with processor-in-the loop (PIL) simulation (e.g.
to verify that a target compiler produces correct
code). The results of this simulation are com-

ared to the former MIL simulation. Tests us-
ing SIL/PIL simulation in this context allow to
find issues that are induced by integer arithmetic
(as opposed to floating-point arithmetic in a MIL
simulation) like integer overflow or quantization
errors. It should be noted though, that the soft-
ware components are tested individually. Errors
that result from interacting with other compo-
nents remain undiscovered.

Until that point, the code can be tested on off-the-
shelf personal computers (if the target hardware
is known, an evaluation board can be used). Af-
terwards, the tested code is passed to the software
integrator who integrates it with non-application-
related code (often named basic software, e.g.
operating system, diagnostic event manager, I/S,
bus drivers), and produces flashable code for the
real hardware-target. This basic software layer
is often also referred to as hardware-dependent
software [8], which can be misleading as this pa-
per shows that not all aspects of this layer might
actually depend on the final hardware.

Beyond that, in modern architectures like
AUTOSAR a run-time environment is imple-
mented as a middleware between the application
layer and basic software layer. The AUTOSAR
Runtime Environment (RTE) abstracts inter- and
intra-ECU communication of the application
software. Thus, the application software does not
need to be aware of the communication specifica-
tion, which can be configured independently.

The integrated ECU code together with a first
version of the ECU hardware must now be
tested using hardware-in-the-loop (HIL) simula-
tion. HIL simulation has become a firmly estab-
lished means for the late phase of development
[22, 24].

However, such tests need expensive ECU pro-
totypes that often are not available at an early
phase of development. Moreover, basic software
modules might not yet be implemented or ready
for integration. Still, it would be interesting to
know, ﬁow the software components interact
with each other and/or with an already config-
ured basic software module like a diagnostic
event manager. Thus, it would be great benefit
if the simulation of the application software
in combination with available aspects of basic
software would be possible even when a real
ECU prototype is not at hand. This needs a
model of an ECU that adequately abstracts
its hardware and the missing basic software
components. With such a model of an ECU it is
possible to use conventional PCs as simulation a
platform. A key difference to a HIL simulation
1s that the simulation is usually not done in
real-time. This means that a whole simulation

can be done in less time, only depending on
the speed of the underlying PC. Also, it allows
pausing the simulation at any time for debugging
purposes. However, it is also the reason why
such a simulation will never replace the later
HIL tests, because there are hardware-dependent
aspects of the ECU software that need the ECU
prototype and the real-time capabilities of a HIL
simulator. If anything, such a model can be seen
as a link between the pure z%pplication software
and the ECU prototype. If, for example, the
simulation of the ECU model is sufficiently
close to the real behavior and allows the use
of the typical experimentation and test tools
used with a real HIL simulator, it would be
possible for the HIL tester to implement and
execute his/her tests for the later HIL simulation
beforehand. Ideally, tests (especially functional
tests) could be reused on the HIL setup. This
would significantly reduce the time needed for
later HIL test preparation.

There are a number of approaches provid-
ing different levels of abstraction: i.e. the virtual
EéU (V-ECU) that appeared in 2007 [21] and,
during the last years, has become an established
means for virtual simulation-based validation
and verification [15]. A V-ECU emulates the
behavior of the later ECU based on software that
already exists in early stages (i.e. parts of the
application software, and certain basic software
configurations). This enables testing the ECU
software on a higher integration level (compared
to the individual simulation of application code)
before it is implemented on a real target (front-
loading of tests). Thus, errors can be found early
in the development process and development
costs can be reduced.

The question is whether this approach can be also
used in the context of electric vehicles, where
new control concepts are developed from the start
and time-to-market pressure is high. Also, com-
pared to fuel-based cars, the whole topology of
the electric control units may have to be realized
differently due to the special need for weight re-
duction and a more compact design. These are
only two use cases typical for developing elec-
tric vehicles. Of course many other use cases are
inherited from conventional automotive develop-
ment. Therefore we want to investigate:

e which level of abstraction is actually re-
quired in the early development stages of
electric vehicles

e how such a model of an ECU can be used in
a methodology and tooling for simulation-
based testing

e and finally, how such an approach can be
advanced, especially regarding the reuse of
models (e.g. environment models) and ide-
ally automated tests throughout the whole
development process.

For this purpose, the “Simulation-based De-
velopment for Electric Vehicles” (in German:
,Simulationsgestiitzter Entwurf fiir Elektro-
fahrzeuge* [Shortname ,,E-Mobil*“]) project was

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2

set up. On the one hand it aims at finding the
most suitable ECU abstraction. On the other
hand, we want to establish a proper tooling
that best fits the needs of the early development
stages. A recuperation scenario, which is a
common test scenario in the electric vehicle
domain, is used for evaluation. This paper
presents our current research and the first results
(the project runs until October 2013).

The following section will start with an
overview of how ECUs can be abstracted on the
architecture level.

2 State of the Art

2.1 ECU Architecture Abstraction

In section 1 it was already suggested that
V-ECUs can be used to test both the application
software and some of the non-application-related
code without using the actual ECU hardware.
Therefore, the V-ECU must adequately abstract
an ECU. The first question is to which degree the
ECU can be abstracted. The second question is
if a certain level of abstraction can be considered
‘adequate’ for early stages of development.
There is a trade off between a minimized level of
abstraction and the ability to simulate even if an
in-depth knowledge of the final hardware as well
as the final production code is not available. E.g.,
if the basic software is to be simulated on the
lowest possible level of abstraction, the produc-
tion basic software must be available as binary
object code. The most accurate simulation for
this would be a cycle-accurate simulation of
the microarchitecture. This makes little sense if
the target hardware is not known and if not the
whole ECU production code (the basic software
alone would not be enough) is available. If, on
the other hand, the application software C code
is to be tested in combination with just one
aspect of the basic software, like a diagnostic
event manager (DEM) on configuration level, a
much higher level of abstraction is needed.

In a first step, we analyzed different levels
of ECU abstraction. This section presents our
findings in the form of a classification. Two
things should be noted. First, we concentrate on
abstracting AUTOSAR ECUs, which is required
in our project. Second, we remain on the
architecture level. Lower levels like the digital
logic, circuit and physical implementation are
not considered, because they have no influence
on the development of the software.

Each ECU abstraction is modeled on a certain
platform. In this context, a platform is charac-
terized by an execution environment that offers
an interface which hides implementation-specific
details of the platform to the model (adapted
from [17]). For example, MATLAB®/Simulink®
as a platform allows modeling functional behav-
ior, using a graphical block diagram. In model-
based development, the analysis of the functional
behavior is done using a specification model, ide-
ally without the impact of any implementation

abstraction | la | 1b |2 | 3 [4a |4b |5
level
SWC
RTE
BSW
oS
MCAL
ISA
p-arch.

(s) | s
(s)

7o llseolsc o Mo}
» v o oo
~

%)

N

2]

2]

» »w o oo oo

Table 1: The table shows if aspects are not considered
(empty), simulated (s) or if the production (p) imple-
mentation is used in different levels of the architecture
abstraction of AUTOSAR ECUs.

specific aspects. This is classified as the fifth
level of abstraction, which is depicted in the last
column of table 1. The software component
(SWC) is simulated, but the model uses means
of computation that are different from the later
production code (e.g. it uses floating-point math
as opposed to integer math).

An example for a level five ECU abstraction is a
model of a controller in MATLAB®/Simulink®,
which specifies the desired functional behavior
of an ECU.

The simplest approach to analyze the func-
tional correctness of the implementation of
the hardware-independent application software
under test (SUT) is to execute it on the host CPU
of a standard PC running a common desktop
operating system. Thus, platform-specific
properties, such as computation time, can not be
considered.

For an open-loop unit test, it is enough to trigger
the application SWC and to access signals or
at least the elements of its interface. However,
the typical purpose of an embedded system is
its interaction with an environment. Thus, to
analyze the dynamic behavior of the application
software, it 1s necessary to connect it to an
environment model. Solutions exist that help to
connect the application software to environment
models. They also provide an interface to
access signals and to trigger the execution of the
application software as well as the environment
model.

The standardization of application software
components by AUTOSAR allows the for-
mal description of the software components’
interfaces. Based on this software compo-

nent description and additional information',
the AUTOSAR methodology [2] enables the
automatic generation of glue code, which en-
closes the application software components. In
AUTOSAR the glue code is called the Runtime
Environment (RTE). Besides generating code,

'The RTE is generated based on the ECU configuration
description, which references the used software component
descriptions.

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 3

tools like dSPACE TargetLink use the software
component description to create an adapter to
the execution platform automatically (level 4b
in table 1). This mechanism is used to embed
the software-in-the-loop-simulation of dSPACE
TargetLink in MATLAB®/Simulink®. In this
SIL simulation the environment model is still
in MATLAB®/Simulink®, while TargetLink
generates a wrapper to embed the implemen-
tation in MATLAB®/Simulink®. If software
components depend on AUTOSAR services,
e.g. on the AUTOSAR NVRAM Manager
to access non-volatile data, it is necessary to
provide a simulation of the needed standardized
AUTOSAR services (level 4a in table 1). How-
ever, the triggering of the runnables is different
from the one of the target system, because there
is n(l) simulation of the operating system on this
evel.

To analyze the interaction of multiple runnables,
a more precise triggering is required. This is
achieved by simulating the operating system
of the ECU on top of a PC running a common
desktop operating system (level 3 in table 1).
Operating systems of ECUs are standardized by
the OSEK-OS [19] specification. The operating
system module of AUTOSAR [3] is based on
OSEK-OS. Furthermore, there are solutions that
extend the simulation of the operating system
with 1/O, especially automotive networks. This
is necessary to connect the ECU model to an
environment model.

The following approach aims at emulating
the hardware-specific layers (level 2 in table
1), which is the operating system and the
hardware-dependent microcontroller abstraction
layer (MCAL) of the AUTOSAR basic soft-
ware. Here, the production code of all hardware-
independent basic software modules is used for
simulation. ~ This means that the simulated
AUTOSAR basic software very much resembles
that of the real ECU.

Note that before the simulation can be run, it
is necessary to configure the whole AUTOSAR
basic software using valid parameters. In ex-
change, this ap]proach enables analyzing basic
software modules and their configuration in
combination with the application software. This
approach can be realized both on consumer
desktop PCs and on a real-time prototyping
platform to connect the 1/O of the ECU model to
the real environment.

Other approaches simulate parts of the basic
software and hardware, particularly automotive
networks, in system-level design languages, like
SystemC. In [14] the mapping of the AUTOSAR
architecture on SystemC is described. This
work is focused on modeling the timing of a
communication connection. [5] concentrates on
modeling the timing of a single ECU. The execu-
tion times were measured using a real evaluation
board and then used in the simulation. In [4]
the dynamic execution times are estimated by

an extension of QEMU?. In all this approaches,

http://gemu.org/

the operating system is emulated by a model
of a real-time operating system that has been
designed in SystemC as well.

[7] presents an approach to simulate only
the hardware, especially the microprocessor, of
an ECU (level 1 in table 1). This can be achieved
in two different ways. One is the Instruction
Set Simulation (ISS) where the instruction set
architecture (ISA) of the target microprocessor
is simulated (level 1b in table 1). The ISA
includes native data types, instructions, registers,
addressing modes, interrupts, exception handling
and external I/O. The simulator is able to execute
the production binary object code of the ECU
software, including the operating system.

A Cycle Accurate Simulation (éAS) even simu-
lates the microarchitecture of the target process-
ing unit. This, as already mentioned in the intro-
ductory example, is the lowest level of abstrac-
tion (level 1a 1n table 1) that we consider in this
classification. The CAS respects the exact tim-
ing behavior of the ECU, because it includes the
simulation of caches, pipelines, branch predic-
tion and other details o? tﬁe microprocessor.

All of the presented levels of ECU abstraction
can be used for simulation-based testing. To act
as a link between early simulation of pure appli-
cation software simulation and HIL simulation,
it would be advantageous, if the tests that are de-
veloped for early behavioral simulations, could
be reused across the different levels of abstrac-
tion. This ideally includes ‘level 0’ (the ECU
prototype) that is used later in the development
process. The next section gives an overview of
the current research situation on this matter be-
fore section 3.1 uses the presented classification
to find the most suitable ECU abstraction for our
purpose. This essentially boils down to the ques-
tion, which of these levels are relevant for the
early phases of electric vehicle development.

2.2 Reuse of Tests Across Domains

To increase the benefit of using abstract mod-
els of ECUs for early simulation-based testing,
it is one major goal of our project to find ways
of modeling tests that can be used through dif-
ferent levels of ECU abstraction (from the be-
havior specification to a real ECU) seamlessly.
This chapter presents some research that will
help us to develop our own approach later in the
project. As a first step, we had a look at stan-
dardized ways of software testing. The interna-
tional standard ISTQB, for example, formulates
seven principles. Principle three suggests that
testing should be started as early as possible [6].
This supports our claim of frontloading tests us-
ing ECU abstractions.

The model with the highest level of abstraction
(level 5 in table 1) is the first testable model
in the development process. Here, the set of
possible faults is the smallest. Generally, it
holds that the lower the level of abstraction, the
more information is required. This information
may not be defined in an early stage of the
development process. For example, an ECU
of abstraction level 2 requires an in-depth

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 4

granularity

Figure 1: The granularity of abstraction different lev-
els of ECUs.

knowledge of the configuration of the basic
software to enable the simulation of a concrete
implementation. In exchange, a platform that
models a low ECU abstraction level enables the
detection of many more faults. These include
the faults that are introduced through adding
more detail, but also those of higher levels of
abstraction. Figure 1 visualizes this relation.
Different platforms are suitable to analyze and
test different aspects of the target software.

The transition to a model with a lower level of
ECU abstraction is an enrichment of details. To
ensure the correctness of the additional details,
back-to-back testing is used. Back-to-back
testing means testing the model of higher
abstraction level and then testing the model of
lower abstraction level using the same test cases
and scenarios, including the same environment
model, and comparing the results. ISO 26262
[13] recommends back-to-back tests for all auto-
motive safety integrity levels (ASILs). dSPACE
Tar%etLink already provides back-to-back tests
of the model (level 5) and the application imple-
mentation (level 4b). It is necessary to ensure
that the implementation (level < 5) adequately
approximates the specification model (level
5). Remember that it may now be triggered
by an operating system (level < 3) or relies
on input data provided by other components
such as communication (level < 4a). Finally,
it is necessary to test on the real hardware too,
because there is currently no ECU abstracting
model that represents all aspects of a real ECU.

An ideal test system is able to apply the
same test to the behavioral model, to any other
level of ECU abstraction and to the real ECU.
If feedback from the output of the tested artifact
through an environment model is needed, this
means that the same environment model must
be used in all test scenarios. For back-to-back
testing it is a further requirement that the tests
can be reused on different platforms. This
increases the quality and flexibility of the test
case and reduces the costs of recreating them.

Each level of abstraction (table 1) uses its
own representation of values. The level of the
behavioral model (level 5) uses physical values,
which are often normalized, but independent
of their technical representation. The software
implementation levels use a concrete technical

representation of the values, e.g. a scaled integer
in a logical communication data unit, like a
binary CAN frame.

Finally, the real ECU is interfaced with real
analog or digital ports that are vulnerable to
physical effects such as electrical disturbances.
The diversity of platforms requires that the
reusable test has to be modeled in a way
which is platform-independent. This platform-
independent specification of a test is called an
abstract model of an test. Early approaches to
model tests on a high abstraction level can be
found in [20] and [12]. In [20] test descriptions
are generated from a formal test specification,
with the focus on data abstraction.

To execute these tests, they have to be mapped
on a concrete platform. One way of describing
such a mapping is given by [12]. This standard
defines the “Tree and Tabular Combined Nota-
tion”, which models data formats, behavior and
interfaces on a high abstraction level and handles
the mapping of interfaces to real systems.

One technique to model a test on a high
abstraction level in an platform neutral way is
presented by [9]. They use the unified model-
ing language (UML) to describe tests, which
are used as a basis for generating a concrete
implementation (e.g.JUnit tests). In a model
driven architecture (MDA), which is described in
the MDA Guide ([17]) a platform-independent
model (PIM) is described. This model focuses
on the application behavior, which is platform-
independent. The platform-specific model
(PSM) maps the PIM on a concrete platform. It
is furthermore the input for the generation of the
platform code. [25] combines the ideas of the
abstract test modeling using UML ([9]) with the
philosophy of model-driven architecture. Here
they refer to an older approach presented by
[23]. Therefor, they introduce two different test
models: the platform-independent test design
model (PIT) and a platform-specific test design
model (PST). Furthermore, they describe the
associated transformations. The basic idea is to
transfer a methodology, which is established in
software development, to the development of
tests.

Another approach is to formulate a test for
different levels of abstraction using a designated
language. [10] presents such a test language
called TestML. The goal was to exchange
testing systems between the behavioral model
(level 5), the implementation (level 4) and
the real ECU. They proved that a test case
formulated in that lanéuage could be run on
a MATLAB®/Simulink®model. There was no
proof in this work that other platforms can be
supported as well. However, we think that
this approach is promising. This is because
the language is formulated on an abstract test
system. They define this abstract test system to
consist of “a combination of test components
that [theﬁ] consider minimally necessary re-
garding the exchange of test descriptions.” The
system is separated into three components: the

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 5

Test Behavior

{]
SUT

S E—

|
Stimulation Unit L‘J

I Evaluation
ﬁj/ Capture Unit Unit

Figure 2: Abstract test system as used in [10].

test itself, the system under test (SUT) and the
evaluation unit. Figure 2 shows an illustration of
their abstract test system. The stimulation unit
generates stimuli, but it does not yet contain any
link to an environment model. The test behavior
is described by hybrid automata that have been
described by [16]. They are able to model
timed applications and systems with discrete
and continuous behavior. The capture unit is
responsible for recording the system reaction
and the stimuli. The verdict is provided by the
evaluation unit.

Anyway, the key is the description of the inter-
faces between these components. They abstract
the necessary link between the SUT and the other
components. This means that every platform
only needs a mapping for the interfaces and not
necessarily the whole system. Thus, although
the work did not mention an% other sup(gorted
platform besides MATLAB®/Simulink®, it
seems that not much effort is required to extend
the support to other platforms. However, in
our project it is explicitly required to reuse
the environment model on different platforms.
The TestML approach was not specifically
designed for in-the-loop tests. Here, it would
be necessary to enhance the stimulation unit so
it can hold an environment model. That is why
we intend to combine the platform-independent
approach of [10] with the model-based idea of
[25] mentioned earlier. With such a system it
would be possible to reuse tests on all levels of
ECU abstraction as well as on the real ECU.
However, the origin of such a test has not been
addressed yet. The test is usually derived from
a textual representation of the corresponding
requirement. The MDA Guide refers to this
as computation independent model (CIM) — “a
view of a system from the computation indepen-
dent viewpoint.’[17]. These requirements are
usually managed in tools like IBM Doors. [11]
shows, that it 1s possible to create a formal model
(SysML model) just from textual requirements.
Therefore the requirements must be given in a
language that is natural but also restricted in
terms of vocabulary and grammar. This is com-
monly known as controlled natural language. In
this special case a language called ‘requirement
patterns’ is used. A requirement formulated
in that language can be analyzed by extracting
a subsystem and function hierarchy including

inputs and outputs and using this information to
create a model in SysML. This representation of
the requirement creates a formal model in the
CIM. This could probably be used as reference
model to describe mappings of interfaces across
all levels of ECU abstraction and the real ECU.
However, further research is required here.
Fortunately, this section has shown that the
reusability of tests does not depend on the ECU
model. Thus, there is no need for a special
requirement regarding the choice of a suitable
level ECU abstraction in the next section.

3 Our Approach

3.1 A Suitable ECU Model

Before we can answer the question of which of
the ECU abstraction levels presented in section
2.1 is most suitable for our purposes, we have
to reflect upon the requirements we have to sat-
isfy. Our primary goal in the ‘E-Mobil’ project is
to enable the simulation of application code be-
havior under real ECU conditions in early devel-
opment phases. This first and foremost requires
a separation of the application-related and the
non-application related software running on the
ECU. Imagine the developer works in the appli-
cation layer. Ideally, it should not be necessary to
care about lower layers like the operating system
or network communication protocols. In early
stages of development, the developer has no or
only a little knowledge of those. In spite of that,
the application software should be able to use ser-
vices of lower layers as if they were already im-
plemented. This way, a high level of integration
can be achieved without the need for the final ba-
sic software. Furthermore, interaction between
several application software components should
be possible.

Another typical use case is that some configu-
rations of the system architecture (e.g. a BSW
module or a communication behavior) are al-
ready known (but not fully implemented). It
should be possible that the application software
can be simulated in an environment that emulates
these aspects.

In both cases, there have to be well-defined inter-
faces between the application software and the

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 6

non-application relevant software.

The AUTOSAR standard [1] defines those inter-
faces. They are called basic software (BSW).
Furthermore, AUTOSAR defines a layered and
modular software architecture for ECUs. Re-
garding section 2, this enables the simulation of
the ECU on different levels of abstraction.

For closed-loop simulations, the ECU model
must provide means to connect to an environ-
ment model.

To use the simulation for testing, measurement
and calibration support is obligatory. This ap-
plies for both, the environment model and the
ECU model. Here, the variable measurement of
the ECU model should be as close to that of the
later ECU prototype as possible.

In summary the requirements can be formulated
as follows:

e The ECU model should be able to include
and simulate AUTOSAR application soft-
ware components (SWCs), so the model
of the ECU must have an abstraction level
lower or equal than 4b.

e [t should be possible to simulate multiple
SWCs on a virtual functional bus (VEB)
level. This requires an RTE simulation
which is able to connect multiple SWCs.

e To simulate the effects of communication
between different application software com-
ponents, an RTE implementation must ex-
1st that abstracts intra- as well as inter-ECU
communication.

e For the inter-ECU communication a bus
simulation as well as the simulation of the
responsible BSW modules (COM Stack)
must exist. BSW modules are considered
in abstraction levels lower or equal than 4a.

o To simulate realistic task behavior and task
triggering, the V-ECU must include an
AUTOSAR OS implementation, which re-
qﬁlires an abstraction level not higher than
three.

e For O}Jen— and closed-loop simulation, the
model must provide interfaces to an envi-
ronment model. These interfaces should be
either bus interfaces or signal interfaces that
mimic the later I/O of the real ECU.

e Services for experimentation, debug and
test support should be included. The most
important service is the XCP service that
complies with the ASAM MCD-1 MC stan-
dard.

e It should be possible to analyze and simu-
late the afpplication software with aspects of
basic software that only require some con-
figuration (and no final implementation).

With these requirements in mind, it was obvious
that we need an ECU model that spreads across
several levels of ECU abstraction (see section
2.1). Yet, we found that on the lower end, a level

3 solution is sufficient here. Level 2 and level 1
seem to be too close to the real ECU prototype,
as they assume a comprehensive knowledge of
the final hardware and that a full configuration of
the basic software is available.

Anyway, it appears that the virtual ECU (V-ECU)
presented by [21] satisfies our requirements. It
allows a simulation of the application software
without the need to care about basic software.
However, if the developer is interested in real-
istic task behavior and task triggering, he/she is
able to configure the operating system and the
RTE. Furthermore, the V-ECU provides an im-
plementation of the AUTOSAR communication
layer (COM) and services of an AUTOSAR basic
software like a diagnostic event manager (DEM)
and an ECU state manager (ECUM), too.

In our opinion the V-ECU can act as a link
between the pure application software and the
ECU prototype, between simulating the applica-
tion code individually and a HIL simulation. To-
gether with the functional model, this results in
four concrete model characteristics that an ECU
runs through. These are depicted in Figure 3.
One can see which aspects of the ECU can be
tested on which model characteristic and what
type of simulation is used.

Functional Production V-ECU ECU
Model Code Prototype

MIL SIL/PIL SIL/PIL HIL

AuToSAR

Functional Behavior

Figure 3: The virtual ECU in the context of
simulation-based testing.

The next section presents a suitable tool chain
that integrates these characteristics except the
ECU prototype and their corresponding simula-
tion types.

3.2 Requirements for a Tooling

The main benefit of using V-ECUs in the con-
text of developing electric vehicles lies in early
simulation-based testing. Compared to a HIL
simulator that requires a close-to-production
ECU prototype, the virtual ECU allows for sim-
ulation even if many aspects of the production
ECU are still unknown. This, as already men-
tioned in section 1, is especially beneficial for the
development of electric vehicles.

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 7

However, both modeling and simulating the dif-
ferent levels of ECU abstraction (see section 2)
when developing an ECU from scratch, as well as
the architecture and first non-functional aspects
demand a good tooling. Our observation is that
although the application field of many commer-
cially available tools is expanding continuously,
there will not be a single tool handling all these
aspects adequately in the foreseeable future. In-
stead, there 1s always quite a number of special-
ized tools that form a dedicated tool chain. These
tools’ capabilities are employed by the domain
they are used in. We see domains as separate
jgroups of developers that, due to their particu-
ar task in the development process, are special-
ized in different areas and therefore have differ-
ent technical knowledge and orientations. For the
early stages of development we consider mainly
three domains involved: The function developer
domain, the software architect domain and the
tester domain. A function developer usually has
a very different background than a software ar-
chitect. The former focuses on mathematical
modeling of control algorithms whereas the latter
is specialized in software development. Hence,
our goal is to establish a methodology across
the named domains and an adequate simulation-
based tool chain that is particularly well suited to
design, implement and test software for electric
vehicles in early development stages. As a con-
sequence, we impose certain requirements:

e Every domain should be able to use sim-
ulation. This ranges from open-loop sim-
ulation using simple stimulation to in-the-
loop simulation using a designated environ-
ment model as a means for validation, test-
ing and/or optimization. In this context it is
important to note that an environment model
can be (re-)used across multiple domains
(and therefore across different tools).

e The tool chain should provide means for ex-
perimenting and testing these early artifacts
1n an environment that is commonly used in
HIL scenarios. This allows frontloading of
tests as described in section 1.

e The tool chain must handle AUTOSAR-
compliant software. AUTOSAR facilitates
the exchange of the software components
between tools and domains and furthermore
separates the functional aspects (application
software) from the non-application relevant
aspects (RTE and basic software).

e The tool chain should feature tool-assisted
transitions beyond tool boundaries and be-
tween the three domains mentioned above.
This includes the reuse of artifacts across
multiple domains (e.g. the plant model)
as well as an appropriate model conver-
sion/import/export. For example, between
the function developer and the system ar-
chitect there is a point of contact where
the controller functionality gets integrated
into the AUTOSAR-compliant architecture.
Here, we have domain-specific tools on both

sides. This bears a risk of tool gaps which
must be bypassed.

e The tool chain should allow for model-
based or at least model-driven design and
development. This, despite the fact that
there is still plenty of hand-written code
even in recent ECUs, is imposed by the
growing complexity of automotive software
paired with high safety standards. Further-
Lnoye, it enables changes on a prototyping

asis.

e The tool chain should assist handling
the general problem of how true univer-
sal tests that originate from requirement
management tools (e.g. DOORS) can
be used across domains. This means
that one test can be performed on a
MATLAB®/Simulink®model, on a V-ECU
a?d ideally even on a real ECU, for exam-
ple.

The next section shows how we plan to satisfy
these requirements. Therefore, we use state-
of-the-art tools within a tool chain that extends
across multiple domains.

3.3 The V-ECU Simulation Tool Chain

In order to meet the requirements presented in
section 3.2 we first estab(iished a basic tool chain
that will be continuously enhanced throughout
the project. For this purpose, it is going to be
used by us and our project partners to implement
a scenario, that is characteristic for electric
vehicles. We chose a recuperation scenario as
recuperation is a key feature of electric vehicles.
Our project partners will represent the members
of the different domains. This allows us to
evaluate the tool chain, especially regarding
unexpected use patterns and tool gaps. In the
following it is explained how this tool chain can
be used and how we plan to further enhance it.

In the beginning the function developer designs
the first behavioral models as a specification us-
ing MATLAB®/Simulink®, which can be seen in
the upper third of figure 4. He or she uses model
in-the-loop (MIL) simulation for validation (also
compare with the first column of figure 3 in
section 1). Therefore an environment model has
to be created. Our environment models are based
on the dSPACE Automotive Simulation Models
(ASMs). These already include a multi-body
system of a car, customizable maneuvers, roads
and ready-to-use models of electric components.
Due to the fact that these models are actually
intended for real-time simulations in a HIL con-
text, they offer good performance. Another big
advantage is that they can be easily parametrized
using the GUI-based parametrization environ-
ment ModelDesk. Furthermore, it is possible to
add own models to the ASMs and parametrize
them in ModelDesk as well.

After the behavior and the environment have
been modeled, the former must be transformed

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 8

Function developer

SWC Design

SWC Implementation
Plant-Model Design
Plant-Model Implementation

— &

Plant model
(i.e. ASM)

‘ Function integrator

T ed%

behavior

(model)

System architect ’:|
B Software Architecture

® Hardware Topology

B Network-Communications

B ECU Configuration

B RTE-Generation

AUTOSAR

SystemDesk

SWC
Description
= SWC
Code

A

Il

|_> YY

Offline Simulator

AuToSAR

AA AA AA
(Y i

Tester
B Experimentation

I ;
B Functional debugging

B Creation and Logging of automatic tests

ControlDesk v

AutomationDesk

MotionDesk =

B Visualization

—» Data exchange ([= file import/export) ---» Control the Offline Simulator (start, stop ...)
---» Measurement, calibration (V-ECUs, plant)

Figure 4: The three main domains and the tool chain.

into actual code. The transformation into an
implementation model can be done automat-
ically by tools like TargetLink. Therefore,
it converts the Simulink blocks into special
TargetLink blocks. It should be noted though
that not all Simulink blocks can be converted,
as the code generation and production-capable
ECU code itself by nature imposes certain
limits. Here, the function developer has to
keep in mind that through this transformation,
continuous models will be discretized with
regard to constants, interim results and signal
data that are now represented as integers instead
of floating-point numbers. Not to mention the
fixed-step nature of the solving mechanism itself.

After the implementation model is gener-
ated, the software developer has to configure bit
widths and scalings. However, this normally de-
pends on the target hardware (e.g. an 8-bit ECU
or a 16-bit ECU) which might not be known
at that time. Hence, the software developer
could just use any configuration that sufficiently
approximates the functional model.

With the generated production code, the
function/software developer can use software
in-the-loop (SIL) or, if a PIL device is available,
processor-in-the-loop simulation, also seen in
the second column of figure 3 in section 1. The
new behavior is compared with the results from
the earlier MIL simulations. Note, that the plant
model is not affected by the code generation.
In fact, the plant model being available to all

domains is one major requirement for universal
tests. A more detailed analysis is given in section
2.2.

Alongside the functional models, the sys-
tem architecture is being designed or adapted to
facilitate the integration of the application code.
This is depicted in the middle of figure 4. Note
that no chronological order is implied here: e.g.
the function developer and the system architect
both can start at the same time.

The system architecture includes the software
component frames (ports, interfaces), the config-
uration of runnables and any (re-)configuration
of non-application-relevant aspects (RTE, basic
software, the network communication, ...). Note,
that we distinguish two use cases here: On the
one hand the creation of a system architecture
from scratch which is used as a starting point for
the simulation of functional code together with
non-functional code, on the other hand the inte-
gration of new (or modified) function code into
an existing V-ECU topology. Both use cases
are common for the early development stages of
electric vehicles and both appear to be complex
tasks. In our project we use SystemDesk to assist
the system architect in that matter. SystemDesk
was created with system architectures in mind
and is especially targeting AUTOSAR-compliant
architectures. It supplies the user with the means
to compose AUTOSAR software components
with ports and interfaces and the respective data
elements in a model-driven fashion.

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 9

The software components can be mapped on the
modeled ECUs. Then the OS as well as other ba-
sic software (BSW) modules like the COM mod-
ule can be configured. Furthermore, the network
communication (IPDUs and signal mapping) and
an automotive bus can be modeled. The code for
the AUTOSAR Runtime Environment that acts
as a communication center for inter- and intra-
ECU information exchange on a logical level can
be generated automatically.

Out of this data SystemDesk generates the
V-ECU executable, which can be simulated with
the dSPACE Offline Simulator. The Offline Sim-
ulator can simulate several V-ECUs in combi-
nation with an environment model. The latter
originates from MATLAB®/Simulink®, where it
has automatically been converted into a simula-
tion executable. The simulation is performed on
a standard PC. As already mentioned in section
1, the V-ECUs are not simulated in real-time but
as fast as possible on the underlying PC hard-
ware. Note that the simulation speed often only
depends on the environment model, which usu-
ally uses much more computation time compared
to the ECU code.

The Offline Simulator is depicted between the
system architect domain and the tester domain
on figure 4. A detailed description of how tools
like SystemDesk enable the user to integrate the
existing software into a V-ECUand how they
are simulated with the Offline Simulator can be
found in [18].

Certain questions that arise are: How can
the function developer create the ECU functions
according to the structure and interfaces that
are developed in the system architect’s domain?
How, on the other hand, can the system architect
be sure that the functional code will fit into the
prepared V-ECU? How does the environment
model get integrated into a simulation with a
V-ECU topology? A transition between both
domains as mentioned in section 3.2 must be
realized. The answer is quite easy for the
environment model. As mentioned earlier, it
can be automatically converted into a simulation
executable, which can be simulated with the
Offline Simulator. Also, it is possible to connect
the environment model with a designated port
on a V-ECU. However, the transition of the
system architecture is not that easy. A simple
exchange of AUTOSAR files is not enough. The
function developer might lack a certain expertise
when it comes to AUTOSAR. What he or she
needs is a representation of the SWC frame as
a TargetLink frame that somehow includes the
necessary structures mapping to the correspond-
ing sender/receiver or client/server data access
points. TargetLink offers a data dictionary that
imports and stores the AUTOSAR information.
It provides mechanisms to create a frame of
model blocks that already has the appropriate
ports and signals set up. The function developer
only needs to put in the functionality for which
the code is to be generated. The code generation
of TargetLink implements the RTE calls accord-
ing to the system description. This way it can
easily be integrated by the system architect.

Nevertheless, there are some challenges that
have yet to be addressed. When a system is
created from scratch, many aspects of the ar-
chitecture such as the actual interfaces between
software components are still unclear due to the
fact that some requirements may change later.
The system architect then needs the function
developer to adapt the models to the new inter-
face to obtain an updated implementation. This
presupposes that the architectural changes are
propagated into the MATLAB®/Simulink® model
as well.

The last part of the tool chain are the ex-
perimentation and testing tools, which can be
seen on the lower third of figure 4. The V-ECU,
like a real ECU, supports measurement and
calibration according to the ASAM MCD-1 MC
(XCP) standard. This means that ASAP2 files
(according to ASAM MCD-2 MC standard)
are used to describe the mapping of the vari-
ables. This is important, as common HIL test
and experimentation tools need these variable
descriptions. For measurement and calibration,
ControlDesk Next Generation is used. Auto-
matic testing is done using AutomationDesk.
MotionDesk is used for plausibility tests as it
renders the simulated ASM model as a 3-D
animation. Furthermore, ControlDesk Next
Generation and AutomationDesk both support
the Offline Simulator. The Offline Simulator
in turn can simulate V-ECUsand models orig-
inating from MATLAB®/Simulink®. Hence,
experimentation and testing across multiple
domains is possible.

4 First Results and Future Plans

The project is still quite at the beginning. In the
first stage of the project we mainly concentrated
on the function developer domain. Together with
our project partners, the first behavior models for
the recuperation scenario were created. At the
same time, after having established the method-
ology and requirements presented in section 3.2,
some tool enhancements have been created.

Until now, the main focus laid on the transi-
tion between the function developer and the
system architect domain. There, we developed
a concept and a prototype implementation
for an update functionality of the model gen-
erator that creates a TargetLink subsystem
(MATLAB®/Simulink®model blocks) ~from
an AUTOSAR description. Here we link the
AUTOSAR data with the related TargetLink
blocks so that the implementation model is
‘aware’ of its underlying AUTOSAR architec-
ture. One challenge here is, for example, to
establish the link so that it is robust against
changes in both the TargetLink subsystem and
the AUTOSAR description. Furthermore, there
should be no need for additional files besides
the AUTOSAR description and the TargetLink
model that have to be transported across do-
mains. We expect the update functionality to be
frequently used (and therefore evaluated) during
the next months when the behavioral control

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 10

models (energy management, engine control,
brake control) are transformed into V-ECUs.
Besides that, we have already started to develop
means to ease up the work of a system architect
and increase the value for offline simulation
by introducing first concepts of new ways to
analyze an AUTOSAR-based V-ECU topology.
Simultaneously, further research will be done on
easing up the configuration of V-ECU topologies
paired with a consequent use of model-driven
design principles. Our goal here is to reduce
the time needed to create configurations ready
for simulation that enables the development
and modification of V-ECU topologies on a
prototyping basis.

Furthermore, the field of reusability of tests
across domains will be addressed in detail. The
final goal here is to allow for the definition of
tests on a semantic basis that can be executed on
various platforms. Even though the requirements
that form these tests are expressed as natural
text, e.g. in DOORS, they are in the view of the
computation-independent model. We hope to use
these findings to create links between test cases,
environments models, implementation artifacts
and requirements going beyond traceability.
Finally, we plan to implement the means to
create reusable tests and enable our project
partners to evaluate them.

At the end of the project, together with our
project partners, we are going to have a run-
ning demonstrator for the recuperation scenario.
Here, the control functionality will be realized as
a V-ECU and will be simulated tOéether with en-
vironment models from MATLAB®/Simulink®in
an offline simulation environment. As stipulated
in section 3.2, HIL test tools will be used for
evaluation. Furthermore, we aim at testing some
of the control functionality on a prototype device
against a real test bench.

5 Conclusions

In this paper we presented our research regard-
ing the early simulation and testing of virtual
ECUs for the development of electric vehicles.
We started with a brief presentation of the idea
behind virtualizing ECUs and presented a classi-
fication of recent approaches.

We then formulated the requirements and as-
sumptions on the V-ECU itself as well as on a
possible tool chain that allows frontloadin§ of
tests which usually can only be performed in later
HIL setups. We identified the domains involved
and their points of contact.

These considerations lead to the methodology
and tool chain described in section 3.3 that we
use as basis for our project. Here we examined
where the tool chain can be further enhanced to
avoid tool gaps and to accelerate the development
process in early stages of development.
Particular attention was paid to reuse of tests
across domains. It has been shown that there are
already promising approaches that we will fol-
low to allow for the creation of tests for various
platforms.

Last, but not least, we presented the first results
and provided a glimpse of our plans for the up-
coming project phase.

Acknowledgments

The presented work is funded by the Euro-
pean Union and the state of Nordrhein-Westfalen
(grant No. 64.65.69-EM-1008A). The project is
conducted together with the University of Pader-
born and the DMecS GmbH.

References

[1] AUTOSAR (automotive open system architec-
ture). http://www.autosar.org/.

[2] Autosar. AUTOSAR Methodology, 2008.

[3] Autosar. Specification of Operating System, Oc-
tober 2010.

[4] Markus Becker, Henning Zabel, and Wolfgang
Mueller. A Mixed Level Simulation Environ-
ment for Stepwise RTOS Software Refinement.
Technical report, University of Paderborn/C-
LAB, 2010.

[S] Markus Becker, Henning Zabel, Wolfgang
Miiller, and Ulrich Kiffmeier. Integra-
tion abstrakter RTOS-Simulation in den En-
twurf eingebetteter automobiler E/E-Systeme.
In Methoden und Beschreibungssprachen zur
Modellierung und Verifikation von Schaltungen
und Systemen, Berlin, Germany, March 2009.

[6] International Software Testing Qualificytions
Board. Certified Tester - Foundation Level Syl-
labus, 2011.

[7] Mikaél Briday, Jean-Luc Béchennec, and Yvon
Trinquet. Modelisation of a Distributed Hard-
ware System for Accurate Simulation of Real
Time Applications. In Proceedings of 5th IFAC
International Conference on Fieldbus Systems
and their Applications (FeT’03), july 2003.

[8] Rainer Domer, Andreas Gerstlauer, and Wolf-
gang Miiller. Introduction to hardware-
dependent software design hardware-dependent
software for multi- and many-core embedded
systems. In Proceedings of the 2009 Asia and
South Pacific Design Automation Conference,
ASP-DAC °09, pages 290-292, Piscataway, NJ,
USA, 2009. IEEE Press.

[9] Hans-Gerhard Gross. Testing and the UML. A
perfect fit. Technical report, Frauenhofer Institut
fiir experimentelles Software Engineering, Oc-
tober 2003.

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 11

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

Jirgen Grossmann, Ines Fey, Mirko Con-
rad, Alexander Krupp, Wolfgang Miiuller, and
Christian Wewetzer. TestML — A Test Ex-
change Language for Model-based Testing of
Embedded Software. In Proceedings of Automo-
tive Software Workshop ’06, Oct. 2007, October
2007.

Jorg Holtmann, Jan Meyer, and Matthias Meyer.
A Seamless Model-Based Development Process
for Automotive Systems. In Software Engineer-
ing 2011 - Workshopband (inkl. Doktoranden-
symposium), 2011.

ISO. Information technology — Open Systems
Interconnection — Conformance testing method-
ology and framework — Part 3: The Tree and
Tabular Combined Notation (TTCN), 1992.

ISO. ISO 26262-6: Road vehicles — Functional
safety — Part 6: Product development at the soft-
ware level, 2011.

Matthias Krause, Oliver Bringmann, and Wolf-
gang Rosenstiel. Verification of AUTOSAR
Software by SystemC-Based Virtual Prototyp-
ing. In Rainer Domer Wolfgang Ecker, Wolf-
gang Miiller, editor, Hardware-dependent Soft-
ware - Principles and Practice. Springer, 2009.

Karsten Kriigel and Klaus Lamberg. Virtuelle
Steuergerite als Grundlage einer friihzeitigen
Absicherungsstrategie. Contribution to the 2nd
Workshop “Automotive Software Engineering:
Virtuelle Absicherung”, February 2011.

Eckard Lehmann. Time partition testing: sys-
tematischer Test des kontinuierlichen Verhal-
tens von eingebetteten Systemen. PhD thesis,
TU-Berlin, Berlin, 2004.

Joaquin Miller and Jishnu Mukerji. MDA Guide
Version 1.0.1. OMG, 2003.

Oliver Niggemann, Anne Geburzi, and Joachim
Stroop. Benefits of system simulation for auto-
motive applications. In Proceedings of the 2007
International Dagstuhl conference on Model-
based engineering of embedded real-time sys-
tems, MBEERTS 07, pages 329-336, Berlin,
Heidelberg, 2010. Springer-Verlag.

OSEK/VDX.
2005.

Operating System, February

T. J. Ostrand and M. J. Balcer. The category-
partition method for specifying and generating
fuctional tests. Commun. ACM, 31:676-686,
June 1988.

Dr.-Ing. Rainer Otterbach, Dr. Oliver Nigge-
mann, Joachim Stroop, Dr. Axel Thiimmler, and

[22]

(23]

[24]

[25]

Dr. Ulrich Kiffmeier. Durchgehende Systemver-
ifikation im Entwicklungsprozess. ATZ - Auto-
mobiltechnische Zeitschrif, 4:298-307, 2007.

Herbert Schuette and Peter Waeltermann.
Hardware-in-the-Loop Testing of Vehicle Dy-
namics Controllers — a Technical Survey. In
2005 SAE World Congress, 2005.

Jon Siegel and Object Management Group. De-
veloping in OMG’s New Model-Driven Archi-
tecture. 2001.

Peter Wiltermann. Hardware-in-the-Loop : The
Technology for Testing Electronic Controls in
Automotive Engineering. Translation of the 6th
Paderborn Workshop in Designing Mechatronic
Systems, 2009.

Justyna Zander, Zhen Ru Dai, Ina Schiefer-
decker, and George Din. From U2TP Models to
Executable Tests with TTCN-3 - An Approach
to Model Driven Testing. In TestCom2005,
2005.

Authors

Lars Stockmann received his de-
gree in computational visualistics
in the university of Magdeburg.
After that, he worked three years as
a developer of audio related appli-
cations for mobile devices.

In 2011 he joined dSPACE and
since the beginning of 2012 works
as technical project manager in the
research project “E-mobil .

Dominik Holler received his de-
gree in computer science from the
University of Kassel. Now he

o works as a concept software devel-
-~ oper at dSPACE since 2011. His

particular research interest is the
reuse of tests in the software devel-
opment process.

Dr. Dirk Spenneberg worked at
the dSPACE as project manager for
the AUTOSAR architecture tool
SystemDesk from 2008 till the end
of 2011. Furthermore, he was one
of the initiators and leading coor-
dinator of the research project “E-
Mobil”.

He now works as a project manager
for Bombardier Transportation.

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 12

