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Abstract 

Rose-Hulman is competing in EcoCAR2, a three year competition where teams design, build, and test a hybrid-

vehicle architecture. Teams are required to generate vehicle models that will be used throughout the life of the 

competition. The model is used to choose a hybrid architecture, design a robust control scheme, implement 

fault mitigation strategies, and optimize vehicle performance. Modelling techniques include Model-in-the-

Loop, Software-in-the-Loop, and Hardware-in-the-Loop. This paper will discuss the techniques developed to 

build a model that can be actively used for the life of the three year competition and maintained across the MIL, 

SIL, and HIL modelling levels. 

Contryl system, controller, hardware-in-the-loop (HIL), simulation, modeling,  

1 Introduction 
Rose-Hulman Institute of Technology is one of 16 
universities competing in EcoCAR2: Plugging in 
to the Future [1], a three year international 
competition where teams are challenged to design, 
build, and test a hybrid vehicle architecture 
utilizing alternative fuels to reduce the energy 
consumption and emissions production of a 2013 
Chevrolet Malibu.  Teams are presently in year 
one of the competition where students choose an 
architecture, specify components, and design the 
vehicle. Design includes both the mechanical 
integration of the parts as well as design of the 
supervisory control system for the hybrid system. 
Year two of the competition is the build phase, and 
year three is the optimization and refinement 
phase.  
To facilitate the process, teams are required to 
generate vehicle models that will be used 
throughout the life of the competition. In year one, 

the model is used to model stock vehicle 
performance, choose a hybrid architecture, and come 
up with a basic control scheme. In year two, the 
model is used to develop a robust hybrid control 
scheme, implement fault mitigation strategies, and 
gracefully start up and shut down the vehicle. In year 
three the model is used to optimize vehicle 
performance and increase the amount of fault 
detection and mitigation. As a result, the model is 
used throughout the life of the competition, from 
initial design concepts to final enhancements. Safety 
in the competition is paramount. Any changes to the 
control systems of the vehicle must be tested 
extensively before the vehicle is given clearance for 
open road testing.  
Teams are required to use several modeling 
techniques including Model-in-the-Loop  (MIL), 
Software-in-the-Loop (SIL), and Hardware-in-the-
Loop (HIL) [2, 3]. Changes to the controller require 
that it be subjected to a prescribed battery of tests 
using all three levels of simulation before the 
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modified control algorithm is deployed in the 
vehicle. Thus, the three models are to be used 
throughout the life of the competition. This will be 
the third advanced vehicle technology competition 
in which Rose-Hulman has participated. 
Experience has shown that it is very difficult to 
keep three different models consistent, especially 
when one model involves hardware and introduces 
signals required in the hardware realization but not 
required to simulate vehicle performance. Example 
signals are a heartbeat signal to enable the power 
steering controller or a signal to enable the 
instrument cluster. These signals are needed in the 
hardware realization of the controller deployed in 
the vehicle, but not necessary in the MIL and SIL 
simulations where vehicle performance is 
modeled. Typically, these signals are added at a 
later time, and may not be added to all three 
models. If care is not taken, the supervisory control 
blocks in the MIL, SIL, and HIL models diverge 
over time and it becomes difficult to test controller 
charges at all three levels. 
To avoid this problem, the same control block 
must be used for all three models. Thus, if the 
controller is changed in one model, the entire 
controller can/should be copied and pasted into the 
other two models. (Or, the controller can be 
maintained in a library and changes in the 
controller are reflected in all models that reference 

the library.) Implementing a model that can be used 
for MIL, SIL, and HIL requires a certain structure in 
the model layout, careful choice in selecting the 
boundary between subsystem components, and 
discipline in choosing and routing signals. 
This paper will discuss the model architecture and 
methodology used by Rose-Hulman to build a model 
that can be actively used for the life of a three year 
competition and maintained across the MIL, SIL, and 
HIL modeling levels. The three levels of modeling 
and rules for maintaining the models will be 
discussed. 
The top-level layout of the model is shown above in 
in Fig. 1. For purposes of discussion in this paper, we 
will discuss the Hybrid Vehicle Supervisory 
Controller (HVSC) block. However, the layout 
discussed applies to the plant and two other 
controllers contained in the model. Note that the 
HVSC block is labeled as “HVSC Target” meaning 
that everything contained within this block will be 
deployed or realized on a microcontroller target.  The 
contents of the HVSC Target block are shown below 
in Fig. 2. 
The HVSC Logic block is the same for the MIL, SIL, 
and HIL models. In the MIL model, the block 
contains only MathWorks Simulink blocks. To 
impose that the HVSC Logic subsystem use only 
non-continuous blocks, the subsystem is declared as 
atomic and given a fixed time step. In the SIL Level, 

Figure 1: Top-level system model 
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the HVSC Logic block is compiled into C code, 
the same code that will be deployed on the target. 
At the MIL and SIL levels, the Physical Input and 
output subsystems are pass-through blocks. At the 
HIL Level, these blocks are replaced by Analog 
I/O and CAN communication blocks. In all cases 
(MIL, SIL, and HIL), the logic for the HVSC 
Logic block and the signals are the same. Thus a 
change in the HVSC Logic in one model is 
automatically changed for the other models as the 
blocks are logically identical.  

2 Development Model Flow 
Throughout the controller development process, 
the model moves through the MIL, SIL, and HIL 
testing stages in that respective order.  The overall 
flow is linear but highly iterative since any 
changes made due to results in later stages can 
force the model back to earlier stages for retesting, 
depending on the extent of the alteration.  Figure 3 
below illustrates the model flow, including 
deployment. 

 

Figure 3: Model Development Stages 

At the initial MIL stage, the model is run in the 
native development environment, such as Simulink 
in the case of this writing.  The connection 
between subsystem components takes the form of 
a signal bus, regardless of how the signals may be 

implemented physically and the model runs in 
processor-time, that is to say often much faster than 
real-time and not necessarily at a fixed time-step.  At 
the SIL stage the nature of the connections between 
subsystem components remains the same as in MIL, 
but the model is now compiled into C code and run 
with a fixed time-step.  At the HIL stage, the model is 
separated into two distinct subsections; a plant model 
and a controlled.  The plant model is compiled and 
run on a real-time simulation platform, while the 
controller is compiled and programmed to the target 
hardware that will be used in deployment.  At this 
stage, the physical plant and controller subsystem 
component connections changes to reflect the 
physical implementation of the signals as will appear 
in the deployment hardware.  Instead of a single 
signal bus passing all data between components, the 
signals are now broken apart and communicated in 
different way such as serial busses, discrete digital 
lines, analog signals, and potentially other methods 
depending on the system being developed.  For 
deployment, the plant model is abandoned, and the 
compiled code on the target hardware is connected to 
the physical system.  The changes the model must go 
through in the development flow are mapped out 
below in Fig. 4. 

Figure 2: HVSC target block 
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Figure 4: Model Variations Throughout Development 

The figure illustrates the numerous changes a 
model must go through when progressing through 
the development cycle, as each break between 
blocks denotes a fundamental alteration to the 
model in terms of run-time, interfacing, or 
subdivision.  The progressive alteration of the 
model to meet the changing requirements at each 
stage of development is a core concern in system 
modeling since it impacts development overhead, 
reusability, and model fidelity. 

3 Model Concurrency 
As different subsystem communication types and 
compilation requirements are present at each of the 
different stages of development, a single model is 
not sufficient to serve all the development 
purposes.  The initial approach to solving this 
problem was to develop multiple models and 
maintain them concurrently.  In this way, a model 
with pass-through oriented subsystem 
communication as used by the SIL and MIL stages 
was developed, and then an implementation-
oriented model was developed for use in the HIL 
and deployment stages.  The advantage to this 
approach was that the models could be heavily 
integrated in nature, thereby making initial 
development simpler.  The cost of the approach 
was in the difficulty of maintaining multiple 
models concurrently.  Since two full system 
models were being kept and maintained, any 
functional alteration had to be made twice.  This 
lead to an eventual abandonment of the MIL/SIL 
stage model as the overall project moved into the 
HIL/Deployment stages, thereby crippling the 
ability to go back and do full MIL-SIL-HIL testing 
of functional changes.   

An additional challenge was creep in signal addition 
at the deployment stage.  When the actual physical 
system deviated from the physical plant model, 
appropriate functionality was added to the controller.  
The problem that arose with this is that the signals 
needed for the functionality were added to the 
controller, but not documented, and therefore not also 
updated in the physical plant model to account for the 
new understanding of the functionality.  This 
unchecked addition of signals caused the physical 
plant model to deviate widely enough from the actual 
physical system that interfacing the controller to the 
HIL became difficult and also resulted in a later 
abandonment of the HIL system.   
The heavy integration in each of the models was also 
problematic when dealing with maintaining and 
debugging.  In many cases the models were heavily 
integrated, causing functional and interface 
components would be blended together, making it 
difficult to tell if the problem was in the function or 
how it was being communicated.   
In an effort to resolve the problems with concurrent 
model maintenance, a new approach has been 
developed for the EcoCAR2 modeling process.  In 
this new approach, a high level of modularity is being 
used to decouple the functional and interface 
components of subsystems from each other.  In this 
way, the functional components will remain the same 
at each of the MIL/SIL/HIL/Deployment stages, with 
only the interface components changing to suit the 
needs at the specific development stage.  In this way, 
only one functional model will need to be 
maintained, and whether errors are functional or 
interface-based will be more explicit. 

4 Subsystem Component Layering 
The core idea behind the modular approach to model 
layout deals with the decoupling of the functional and 
interface parts of subsystem components.  In order to 
accomplish this, the system was examined and a set 
of layers defined.  Figure 5 shows the breakdown of 
these layers, and highlights that the primary concern 
of the modeling lies in the software breakdown into 
functional and interface layers atop the hardware.   
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Figure 5 - Model Layering Breakdown 

The hardware is the target hardware being used to 
run the model, and includes the processor, 
memory, interfacing, and any other physical 
components of the system.  The software is either 
the control code or physical plant simulation code.  
The division of the software into a functional layer 
and interface layer serves to allow development of 
a single functional layer that can then be united 
with different functional layers to allow use in the 
different development stages without having to 
alter the functional logic or maintain multiple 
copies of it across different model variants. 
The functional layer is defined as any portion of 
the model which is responsible for making 
decisions based on data, or performing any 
dependent processing such as combining data or 
performing dynamic scaling.  The interface layer is 
defined as any portion of the model which is 
responsible for data entering or leaving a 
subsystem.  Some data operations are permissible 
within the interface blocks, but must be static in 
nature, such as a fixed scaling or offset. 
Centralizing the functional logic will eliminate the 
variants used in the prior multi-model approach, 
and thereby decrease the work required to update 
more than one model when functional changes are 

made.  More importantly, the centralization aids with 
model integrity.   When multiple variants of a model 
must be maintained, there is an increased risk of 
model drift, whereby the variants may become 
differentiated in unintended ways, causing 
undesirable behavior, and increasing the difficulty of 
debugging. 
The separation of the functional and interface layers 
means that when moving between development 
stages, only the interface layer must be changed if the 
model is correctly designed using the layering 
approach.  If the interaction between the layers is 
standardized, which will be discussed later in this 
paper, then a socket-style approach may be used.  In 
this approach, a single functional block for a 
subsystem may be developed, and then connected to 
any different interface layer “socket” within a 
development stage-specific system-level model that 
will appropriately alter the signals used by the 
functional block to exist in the that development 
stage.  This allows a specific system skeleton to be 
developed for each development stage, one each for 
MIL, SIL, and HIL.  Deployment does not require a 
system skeleton, is reuses the HIL variant without the 
physical plant model.  Using the socket approach, 
multiple variants still have to be maintained, but they 
are lighter-weight models, and do not contain any 
functional logic, only interfacing layers.   
An example of layered model implementation is 
given below in Figure 6 6.  The example is analogous 
to Error! Reference source not found., but is 
simplified and shows to which layer the model blocks 
would belong.  The figure clearly shows that any data 
coming into or going out of the HVSC subsystem 
must pass through an interface layer block before 
being processed by the functional layer block.   
 

Figure 6 - Example Model Layering Implementation 
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Figure 7 7 shows an expanded version of the same 
HVSC subsystem model, but this time illustrates 
the socketing idea.   
In the interface layer of the MIL/SIL variant the 
input and output blocks are simply pass-throughs 
that allow a signal bus to be feed directly in from 
another block in the model, and directly out in the 
same fashion.  At the HIL stage though, the signals 
must be input and output over physical 
connections, and so the blocks contain appropriate 
components to read and write data physically, and 
the direct data connection to the rest of the system 
is done away with.  The importance is that in both 
cases, the same functional block is used regardless 
of how data is transferred.  Following this 
principle, so long as the functional block receives 
and generates the appropriate raw signals, any 
number of interface blocks can be mated with it to 
alter how the data is communicated to the rest of 
the system. 

5 Layer Interfacing Standards 
In decoupling the functional and interface layers 
within the model, care must be taken to maintain a 
high level of cohesion between the layers as well.  
Maintaining high cohesion becomes additionally 
difficult as more interface sockets are generated, 
since the functional layer must connect to all of the 
matched interfaced layers.  Because of this need for 
cohesion with multiple variants, standardization of 
the layer interaction is important.  To establish these 
standards, the general nature of the interaction 
between layers must first be examined.  Figure 8 8 
shows the model layers again, and shows the general 
nature of what is passed between the layers.   

Interface Functional Interface

HVSC Logic

Output 
Blocks

Input 
Blocks

HVSC_OutHVSC_In

Interface Interface

Output BlocksInput Blocks

Figure 7 - Multi-Stage Model Laying Implementation 
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Figure 8 - Layer Interfaces 

The communication between the functional and 
interface layers takes the form of raw signals.  
These are comprised of named data and the values 
therein.  Being raw, any specifics of transmission 
such as scaling or offsets do not need to be applied 
to the data values.  Between the interface layer and 
the hardware the interaction is denoted as physical 
signals.  At this point, the raw signals have been 
processed by the interface layer, and are have been 
appropriately transformed for transmission 
between subsystem blocks. 
The standards applied for the physical signals will 
be dictated by the specific nature of the hardware 
used at each of the development stages, such as 
processor architectures, communication protocols, 
and other hardware standards.  As such, the 
interface-hardware layer interactions are beyond 
the scope of this writing, and instead the raw 
signals will be closely examined. 

The requirements placed upon the raw signals are 
that all physical signals expected by the system from 
the subsystem must be produced by the functional 
layer, and all physical signals provided to the 
subsystem must be provided to the functional layer.   
Additionally, all raw signals produced by the 
functional or interface layer must be within a given 
bound for the particular signal, as dictated by the 
signal documentation.  The importance herein is that 
all signals must exist and have a specific range.  In 
this way, multiple layers may be produced, and so 
long as they provide all existing signals within 
bounds, they will be able to communicate.   
In the case of this writing, since Simulink is being 
utilized for model development the standardization of 
communication between the layers is accomplished 
by requiring that the blocks representing each layer, 
as shown previously in Figure 6 6, may only 
communicate via a single bus structure.  A portion of 
this bus structure for the communication between the 
input and logic blocks of the HVSC example is 
shown in Figure 9.  The bus structure allows each 
signal to be checked; therefore helping ensure the 
aforementioned existence requirement is met for each 
signal expected by the HVSC logic block this bus is 
connected with. 

Figure 9 - HVSC Input Block Bus Structure Example 
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Based on this bus structure, how the different 
versions of the HVSC input blocks are created can 
be examined to show how both the pass-through 
approach of MIL-SIL and the physical 
communication blocks for HIL-Deployment can be 
applied to generate the same bus.  The MIL-SIL 
version is shown below in Figure 11, and shows a 
single bus structure input from the plant model that 
is then expanded, buffered, and connected to the 
bus generation structure from Figure 9.  
Alternatively, the HIL-Deployment version in 
Figure 10 shows that no external inputs from the 
plant model exist, rather physical communication 
blocks supply the data values, which is then again 
connected to the bus generation structure from 
Figure 9.  

6 Signal Documentation 
In order to maintain the model’s integrity and ensure 
that layer standards are being followed, a strict signal 
documentation system has been developed to track 
the addition and deletion of signals within the system 
as the model changes.  The documentation ensures 
that the name and bounds of signals being produced 
by functional layers are known for consumption by 
interface layers, and vice-versa.  The same 
documentation can later be utilized to specify the 
physical implementation of the signal, and to track 
the different consumers. 
When a new signal is needed, a basic set of 
information must be compiled describing it to begin 
the signal addition process.  The initial 
documentation must provide the high-level name of 
the signal as it will appear in the model, and bounds 

Figure 11 - MIL-SIL HVSC Input Block Example 

Figure 10 - HIL-Deployment HVSC Input Block Example 
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and/or states, what subsystem component will be 
producing it, and what subsystem will be the 
primary consumer.  Once this information has been 
established, the signal logic may be added to the 
functional layer block(s) while the interface layer 
blocks for both the producer and primary 
consumer are modified to handle the new signal.  
If an HIL or equivalent development stage exists 
where the signal must be physically transmitted, 
the documentation should be modified to define 
the method of transmission, and all pertinent data 
associated with that method such as scaled ranges, 
addresses, or other information unique to that 
signal.  If additional subsystem components should 
need to consume the signal as well, they should be 
added to the documentation as secondary 
consumers, at which point their interface layers 
will be modified to handle the signal. 
In order to avoid signal creep or accidental 
addition/deletion, the functional and interface 
layers will be controlled by different developers, or 
else by a single developer, but shall require the 
system architect’s authorization to alter the 
functional layer.  In all cases, the system architect 
shall serve as the holder of the signal 
documentation, and is responsible for authorizing 
and alterations outside of a layer boundary.  In this 
way, a signal cannot be added without correctly 
progressing though the layering correctly, causing 
dependency problems between layers by coupling 
them. 
In the specific setup being used in the EcoCAR2 
model development, the system architect is 
responsible for assembling the top-level model and 
maintaining all signal documentation.  The top-
level model contain references the appropriate 
interface and functional layers for each subsystem.  
The different layers are in turn developed 
separately based on the signal documentation.  The 
stop-level model is provided in a locked form that 
can be run by the developers, but not modified. 

7 Future Work 
Future development will focus on generating an 
automated test procedure for checking layer 
interaction requirements.  Existing tests must be 
done by hand, with a check by developers that all 
documented signals are in fact produced by the 
appropriate layer in each subsystem.  An 
automated system would rely on the signal 
documentation being held in a database which 

could be queried by a requirements-check script that 
would automatically compare the raw signals being 
produced against the existence requirements and 
notify developers if a required signal was missing, or 
an undocumented signal was being produced.   
Additional work is also planned on researching 
automation of system-level testing to check model 
integrity, signal bounds checks, external signal 
dependencies.   

8    Conclusion 
By defining the model breakdown in terms of 
functional and interface layers, and ensuring a 
standard of communication between the two layers, 
the layers may be successfully be decoupled while 
maintaining a high level of cohesion.  In this way, a 
model can be moved through the different 
development stages of MIL, SIL, and HIL without 
having to maintain multiple variants of the full 
model.  Instead, only lightweight variants containing 
just the interface layers need to be differentiated.  In 
this way, maintaining variants is made easier since 
only a small subsection of the model needs to be 
altered between variants.  More importantly, it 
ensures integrity of the control logic since the 
functional layer can be decoupled from the interface 
layer and therefore be exactly the same in all variants 
of the model, regardless of hardware dependencies 
related to interfacing.  With the future work in test 
automation for layer compliancy and additional 
testing on bounds-checking and external 
dependencies, this methodology should be able to 
provide a managed, integrity-focused approach to 
multi-stage model development. 
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