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Abstract

Rose-Hulman is competing in ECOCARZ2, a three year competition where teams design, build, and test a hybrid-

vehicle architecture. Teams are required to generate vehicle models that will be used throughout the life of the

competition. The model is used to choose a hybrid architecture, design a robust control scheme, implement

fault mitigation strategies, and optimize vehicle performance. Modelling techniques include Model-in-the-

Loop, Software-in-the-Loop, and Hardware-in-the-Loop. This paper will discuss the techniques developed to

build a model that can be actively used for the life of the three year competition and maintained across the MIL,

SIL, and HIL modelling levels.

Contryl system, controller, hardware-in-the-loop (HIL), simulation, modeling,

1 Introduction

Rose-Hulman Institute of Technology is one of 16
universities competing in EcoCAR2: Plugging in
to the Future [1], a three year international
competition where teams are challenged to design,
build, and test a hybrid vehicle architecture
utilizing alternative fuels to reduce the energy
consumption and emissions production of a 2013
Chevrolet Malibu. Teams are presently in year
one of the competition where students choose an
architecture, specify components, and design the
vehicle. Design includes both the mechanical
integration of the parts as well as design of the
supervisory control system for the hybrid system.
Year two of the competition is the build phase, and
year three is the optimization and refinement
phase.

To facilitate the process, teams are required to
generate vehicle models that will be used
throughout the life of the competition. In year one,

the model is used to model stock vehicle
performance, choose a hybrid architecture, and come
up with a basic control scheme. In year two, the
model is used to develop a robust hybrid control
scheme, implement fault mitigation strategies, and
gracefully start up and shut down the vehicle. In year
three the model is used to optimize vehicle
performance and increase the amount of fault
detection and mitigation. As a result, the model is
used throughout the life of the competition, from
initial design concepts to final enhancements. Safety
in the competition is paramount. Any changes to the
control systems of the vehicle must be tested
extensively before the vehicle is given clearance for
open road testing.

Teams are required to use several modeling
techniques including Model-in-the-Loop  (MIL),
Software-in-the-Loop (SIL), and Hardware-in-the-
Loop (HIL) [2, 3]. Changes to the controller require
that it be subjected to a prescribed battery of tests
using all three levels of simulation before the
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Figure 1: Top-level system model

modified control algorithm is deployed in the
vehicle. Thus, the three models are to be used
throughout the life of the competition. This will be
the third advanced vehicle technology competition
in  which Rose-Hulman has participated.
Experience has shown that it is very difficult to
keep three different models consistent, especially
when one model involves hardware and introduces
signals required in the hardware realization but not
required to simulate vehicle performance. Example
signals are a heartbeat signal to enable the power
steering controller or a signal to enable the
instrument cluster. These signals are needed in the
hardware realization of the controller deployed in
the vehicle, but not necessary in the MIL and SIL
simulations where vehicle performance is
modeled. Typically, these signals are added at a
later time, and may not be added to all three
models. If care is not taken, the supervisory control
blocks in the MIL, SIL, and HIL models diverge
over time and it becomes difficult to test controller
charges at all three levels.

To avoid this problem, the same control block
must be used for all three models. Thus, if the
controller is changed in one model, the entire
controller can/should be copied and pasted into the
other two models. (Or, the controller can be
maintained in a library and changes in the
controller are reflected in all models that reference

the library.) Implementing a model that can be used
for MIL, SIL, and HIL requires a certain structure in
the model layout, careful choice in selecting the
boundary between subsystem components, and
discipline in choosing and routing signals.

This paper will discuss the model architecture and
methodology used by Rose-Hulman to build a model
that can be actively used for the life of a three year
competition and maintained across the MIL, SIL, and
HIL modeling levels. The three levels of modeling
and rules for maintaining the models will be
discussed.

The top-level layout of the model is shown above in
in Fig. 1. For purposes of discussion in this paper, we
will discuss the Hybrid Vehicle Supervisory
Controller (HVSC) block. However, the layout
discussed applies to the plant and two other
controllers contained in the model. Note that the
HVSC block is labeled as “HVSC Target” meaning
that everything contained within this block will be
deployed or realized on a microcontroller target. The
contents of the HVSC Target block are shown below
in Fig. 2.

The HVSC Logic block is the same for the MIL, SIL,
and HIL models. In the MIL model, the block
contains only MathWorks Simulink blocks. To
impose that the HVSC Logic subsystem use only
non-continuous blocks, the subsystem is declared as
atomic and given a fixed time step. In the SIL Level,
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Figure 2: HVSC target block

the HVSC Logic block is compiled into C code,
the same code that will be deployed on the target.
At the MIL and SIL levels, the Physical Input and
output subsystems are pass-through blocks. At the
HIL Level, these blocks are replaced by Analog
I/0 and CAN communication blocks. In all cases
(MIL, SIL, and HIL), the logic for the HVSC
Logic block and the signals are the same. Thus a
change in the HVSC Logic in one model is
automatically changed for the other models as the
blocks are logically identical.

2 Development Model Flow
Throughout the controller development process,
the model moves through the MIL, SIL, and HIL
testing stages in that respective order. The overall
flow is linear but highly iterative since any
changes made due to results in later stages can
force the model back to earlier stages for retesting,
depending on the extent of the alteration. Figure 3
below illustrates the model flow, including
deployment.
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Figure 3: Model Development Stages

At the initial MIL stage, the model is run in the
native development environment, such as Simulink
in the case of this writing. The connection
between subsystem components takes the form of
a signal bus, regardless of how the signals may be

implemented physically and the model runs in
processor-time, that is to say often much faster than
real-time and not necessarily at a fixed time-step. At
the SIL stage the nature of the connections between
subsystem components remains the same as in MIL,
but the model is now compiled into C code and run
with a fixed time-step. At the HIL stage, the model is
separated into two distinct subsections; a plant model
and a controlled. The plant model is compiled and
run on a real-time simulation platform, while the
controller is compiled and programmed to the target
hardware that will be used in deployment. At this
stage, the physical plant and controller subsystem
component connections changes to reflect the
physical implementation of the signals as will appear
in the deployment hardware. Instead of a single
signal bus passing all data between components, the
signals are now broken apart and communicated in
different way such as serial busses, discrete digital
lines, analog signals, and potentially other methods
depending on the system being developed. For
deployment, the plant model is abandoned, and the
compiled code on the target hardware is connected to
the physical system. The changes the model must go
through in the development flow are mapped out
below in Fig. 4.
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Figure 4: Model Variations Throughout Development

The figure illustrates the numerous changes a
model must go through when progressing through
the development cycle, as each break between
blocks denotes a fundamental alteration to the
model in terms of run-time, interfacing, or
subdivision. The progressive alteration of the
model to meet the changing requirements at each
stage of development is a core concern in system
modeling since it impacts development overhead,
reusability, and model fidelity.

3 Model Concurrency

As different subsystem communication types and
compilation requirements are present at each of the
different stages of development, a single model is
not sufficient to serve all the development
purposes. The initial approach to solving this
problem was to develop multiple models and
maintain them concurrently. In this way, a model
with pass-through oriented subsystem
communication as used by the SIL and MIL stages
was developed, and then an implementation-
oriented model was developed for use in the HIL
and deployment stages. The advantage to this
approach was that the models could be heavily
integrated in nature, thereby making initial
development simpler. The cost of the approach
was in the difficulty of maintaining multiple
models concurrently.  Since two full system
models were being kept and maintained, any
functional alteration had to be made twice. This
lead to an eventual abandonment of the MIL/SIL
stage model as the overall project moved into the
HIL/Deployment stages, thereby crippling the
ability to go back and do full MIL-SIL-HIL testing
of functional changes.

An additional challenge was creep in signal addition
at the deployment stage. When the actual physical
system deviated from the physical plant model,
appropriate functionality was added to the controller.
The problem that arose with this is that the signals
needed for the functionality were added to the
controller, but not documented, and therefore not also
updated in the physical plant model to account for the
new understanding of the functionality.  This
unchecked addition of signals caused the physical
plant model to deviate widely enough from the actual
physical system that interfacing the controller to the
HIL became difficult and also resulted in a later
abandonment of the HIL system.

The heavy integration in each of the models was also
problematic when dealing with maintaining and
debugging. In many cases the models were heavily
integrated, causing functional and interface
components would be blended together, making it
difficult to tell if the problem was in the function or
how it was being communicated.

In an effort to resolve the problems with concurrent
model maintenance, a new approach has been
developed for the ECOCAR2 modeling process. In
this new approach, a high level of modularity is being
used to decouple the functional and interface
components of subsystems from each other. In this
way, the functional components will remain the same
at each of the MIL/SIL/HIL/Deployment stages, with
only the interface components changing to suit the
needs at the specific development stage. In this way,
only one functional model will need to be
maintained, and whether errors are functional or
interface-based will be more explicit.

4 Subsystem Component Layering
The core idea behind the modular approach to model
layout deals with the decoupling of the functional and
interface parts of subsystem components. In order to
accomplish this, the system was examined and a set
of layers defined. Figure 5 shows the breakdown of
these layers, and highlights that the primary concern
of the modeling lies in the software breakdown into
functional and interface layers atop the hardware.
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Figure 5 - Model Layering Breakdown

The hardware is the target hardware being used to
run the model, and includes the processor,
memory, interfacing, and any other physical
components of the system. The software is either
the control code or physical plant simulation code.
The division of the software into a functional layer
and interface layer serves to allow development of
a single functional layer that can then be united
with different functional layers to allow use in the
different development stages without having to
alter the functional logic or maintain multiple
copies of it across different model variants.

The functional layer is defined as any portion of
the model which is responsible for making
decisions based on data, or performing any
dependent processing such as combining data or
performing dynamic scaling. The interface layer is
defined as any portion of the model which is
responsible for data entering or leaving a
subsystem. Some data operations are permissible
within the interface blocks, but must be static in
nature, such as a fixed scaling or offset.
Centralizing the functional logic will eliminate the
variants used in the prior multi-model approach,
and thereby decrease the work required to update
more than one model when functional changes are

made. More importantly, the centralization aids with
model integrity. When multiple variants of a model
must be maintained, there is an increased risk of
model drift, whereby the variants may become
differentiated in  unintended ways, causing
undesirable behavior, and increasing the difficulty of
debugging.

The separation of the functional and interface layers
means that when moving between development
stages, only the interface layer must be changed if the
model is correctly designed using the layering
approach. If the interaction between the layers is
standardized, which will be discussed later in this
paper, then a socket-style approach may be used. In
this approach, a single functional block for a
subsystem may be developed, and then connected to
any different interface layer “socket” within a
development stage-specific system-level model that
will appropriately alter the signals used by the
functional block to exist in the that development
stage. This allows a specific system skeleton to be
developed for each development stage, one each for
MIL, SIL, and HIL. Deployment does not require a
system skeleton, is reuses the HIL variant without the
physical plant model. Using the socket approach,
multiple variants still have to be maintained, but they
are lighter-weight models, and do not contain any
functional logic, only interfacing layers.

An example of layered model implementation is
given below in Figure 6 6. The example is analogous
to Error! Reference source not found., but is
simplified and shows to which layer the model blocks
would belong. The figure clearly shows that any data
coming into or going out of the HVSC subsystem
must pass through an interface layer block before
being processed by the functional layer block.

Interface Functional Interface
Input . Output TN
HVSC_I » = HVSC_O )
@—> Blocks e ere Blocks \VSEout

Figure 6 - Example Model Layering Implementation
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Figure 7 - Multi-Stage Model Laying Implementation

Figure 7 7 shows an expanded version of the same
HVSC subsystem model, but this time illustrates
the socketing idea.

In the interface layer of the MIL/SIL variant the
input and output blocks are simply pass-throughs
that allow a signal bus to be feed directly in from
another block in the model, and directly out in the
same fashion. At the HIL stage though, the signals
must be input and output over physical
connections, and so the blocks contain appropriate
components to read and write data physically, and
the direct data connection to the rest of the system
is done away with. The importance is that in both
cases, the same functional block is used regardless
of how data is transferred.  Following this
principle, so long as the functional block receives
and generates the appropriate raw signals, any
number of interface blocks can be mated with it to
alter how the data is communicated to the rest of
the system.

5 Layer Interfacing Standards

In decoupling the functional and interface layers
within the model, care must be taken to maintain a
high level of cohesion between the layers as well.
Maintaining high cohesion becomes additionally
difficult as more interface sockets are generated,
since the functional layer must connect to all of the
matched interfaced layers. Because of this need for
cohesion with multiple variants, standardization of
the layer interaction is important. To establish these
standards, the general nature of the interaction
between layers must first be examined. Figure 8 8
shows the model layers again, and shows the general
nature of what is passed between the layers.
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The communication between the functional and
interface layers takes the form of raw signals.
These are comprised of named data and the values
therein. Being raw, any specifics of transmission
such as scaling or offsets do not need to be applied
to the data values. Between the interface layer and
the hardware the interaction is denoted as physical
signals. At this point, the raw signals have been
processed by the interface layer, and are have been
appropriately  transformed  for  transmission
between subsystem blocks.

The standards applied for the physical signals will
be dictated by the specific nature of the hardware
used at each of the development stages, such as
processor architectures, communication protocols,
and other hardware standards. As such, the
interface-hardware layer interactions are beyond
the scope of this writing, and instead the raw
signals will be closely examined.

[StrWhAng_Deg] 1

The requirements placed upon the raw signals are
that all physical signals expected by the system from
the subsystem must be produced by the functional
layer, and all physical signals provided to the
subsystem must be provided to the functional layer.
Additionally, all raw signals produced by the
functional or interface layer must be within a given
bound for the particular signal, as dictated by the
signal documentation. The importance herein is that
all signals must exist and have a specific range. In
this way, multiple layers may be produced, and so
long as they provide all existing signals within
bounds, they will be able to communicate.

In the case of this writing, since Simulink is being
utilized for model development the standardization of
communication between the layers is accomplished
by requiring that the blocks representing each layer,
as shown previously in Figure 6 6, may only
communicate via a single bus structure. A portion of
this bus structure for the communication between the
input and logic blocks of the HVSC example is
shown in Figure 9. The bus structure allows each
signal to be checked; therefore helping ensure the
aforementioned existence requirement is met for each
signal expected by the HVSC logic block this bus is
connected with.
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Figure 9 - HVSC Input Block Bus Structure Example
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Figure 11 - MIL-SIL HVSC Input Block Example
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Figure 10 - HIL-Deployment HVSC Input Block Example

Based on this bus structure, how the different
versions of the HVSC input blocks are created can
be examined to show how both the pass-through
approach of MIL-SIL and the physical
communication blocks for HIL-Deployment can be
applied to generate the same bus. The MIL-SIL
version is shown below in Figure 11, and shows a
single bus structure input from the plant model that
is then expanded, buffered, and connected to the
bus generation structure from Figure 9.
Alternatively, the HIL-Deployment version in
Figure 10 shows that no external inputs from the
plant model exist, rather physical communication
blocks supply the data values, which is then again
connected to the bus generation structure from
Figure 9.

6 Signal Documentation

In order to maintain the model’s integrity and ensure
that layer standards are being followed, a strict signal
documentation system has been developed to track
the addition and deletion of signals within the system
as the model changes. The documentation ensures
that the name and bounds of signals being produced
by functional layers are known for consumption by
interface layers, and vice-versa. The same
documentation can later be utilized to specify the
physical implementation of the signal, and to track
the different consumers.

When a new signal is needed, a basic set of
information must be compiled describing it to begin
the signal addition process. The initial
documentation must provide the high-level name of
the signal as it will appear in the model, and bounds
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and/or states, what subsystem component will be
producing it, and what subsystem will be the
primary consumer. Once this information has been
established, the signal logic may be added to the
functional layer block(s) while the interface layer
blocks for both the producer and primary
consumer are modified to handle the new signal.
If an HIL or equivalent development stage exists
where the signal must be physically transmitted,
the documentation should be modified to define
the method of transmission, and all pertinent data
associated with that method such as scaled ranges,
addresses, or other information unique to that
signal. If additional subsystem components should
need to consume the signal as well, they should be
added to the documentation as secondary
consumers, at which point their interface layers
will be modified to handle the signal.

In order to avoid signal creep or accidental
addition/deletion, the functional and interface
layers will be controlled by different developers, or
else by a single developer, but shall require the
system architect’s authorization to alter the
functional layer. In all cases, the system architect
shall serve as the holder of the signal
documentation, and is responsible for authorizing
and alterations outside of a layer boundary. In this
way, a signal cannot be added without correctly
progressing though the layering correctly, causing
dependency problems between layers by coupling
them.

In the specific setup being used in the ECOCAR2
model development, the system architect is
responsible for assembling the top-level model and
maintaining all signal documentation. The top-
level model contain references the appropriate
interface and functional layers for each subsystem.
The different layers are in turn developed
separately based on the signal documentation. The
stop-level model is provided in a locked form that
can be run by the developers, but not modified.

7 Future Work

Future development will focus on generating an
automated test procedure for checking layer
interaction requirements. EXxisting tests must be
done by hand, with a check by developers that all
documented signals are in fact produced by the
appropriate layer in each subsystem. An
automated system would rely on the signal
documentation being held in a database which

could be queried by a requirements-check script that
would automatically compare the raw signals being
produced against the existence requirements and
notify developers if a required signal was missing, or
an undocumented signal was being produced.
Additional work is also planned on researching
automation of system-level testing to check model
integrity, signal bounds checks, external signal
dependencies.

8  Conclusion

By defining the model breakdown in terms of
functional and interface layers, and ensuring a
standard of communication between the two layers,
the layers may be successfully be decoupled while
maintaining a high level of cohesion. In this way, a
model can be moved through the different
development stages of MIL, SIL, and HIL without
having to maintain multiple variants of the full
model. Instead, only lightweight variants containing
just the interface layers need to be differentiated. In
this way, maintaining variants is made easier since
only a small subsection of the model needs to be
altered between variants.  More importantly, it
ensures integrity of the control logic since the
functional layer can be decoupled from the interface
layer and therefore be exactly the same in all variants
of the model, regardless of hardware dependencies
related to interfacing. With the future work in test
automation for layer compliancy and additional
testing on  bounds-checking and  external
dependencies, this methodology should be able to
provide a managed, integrity-focused approach to
multi-stage model development.
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