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Abstract 

The use of information about the future vehicle trajectory is especially advantageous for the energy 

management strategies of Plug-in Hybrid Electric Vehicles. This is based on the fact that for minimal fuel 

consumption the stored electric energy should be consumed until the end of the trip, if the trip length 

exceeds the electric range of the vehicle. Therefore, best results are achieved by an optimization of the 

torque distribution between both electric motor and combustion engine knowing the whole trajectory until 

the next use of a recharging station. Due to the long recharging times this means usually an optimization 

until the end of the trip.  

A drawback of such long predictive horizons is the high computation cost. Another is the increasing model 

uncertainty due to the use of simplified powertrain models for the prediction algorithm and also the 

reliability of the predicted trip information. Therefore, one aim is to reduce the prediction horizon as much 

as possible without increasing significantly the fuel consumption. To save computation cost of the 

optimization and decrease the influence of model uncertainties, in this paper an energy management for 

Plug-in HEV calculating the global optimum for the whole trip is compared to optimization with different 

prediction horizon lengths. To define the desired SOC at the end of the prediction horizon a linear reference 

SOC function is used. Depending on the chosen prediction length the trajectory is divided into several 

sections, each one standing for one prediction horizon. At the entrance to every section the energy 

management calculates the optimal torque set point for the whole next section (prediction horizon). In order 

to exclude the influence of the optimization algorithm, Dynamic Programming is used to calculate the 

global optimum. 
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1 Introduction 

With the upcoming of Plug-in Hybrid Electric 

Vehicles (PHEV) and the expected increase of 

sales numbers in the next years, the use of 

predictive energy management strategies (EM) 

gain importance. In comparison to autonomous 

HEV, PHEV dispose of a recharging possibility 



EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  2 

along with a battery which has a significantly 

higher capacity than in autonomous HEV.  

 

The difference to strategies for autonomous HEV 

is the possible use of two independent energy 

sources, the fuel and the electric energy. While 

for autonomous HEV the stored electric energy 

at the end of the trip is of minor importance, for 

PHEV it should minimized as much as 

reasonable as it can be refilled after the trip 

without the use of the combustion engine. In that 

way, fuel consumption can be minimized [1]. 

The easiest energy management implementation 

without the necessity of prediction is the all-

electric-range strategy (AER) [2]. With the AER 

strategy the vehicle which behaves in the 

beginning of the driving cycle like an electric 

vehicle. After having consumed the stored 

electric energy in the battery the battery switches 

to a normal HEV driving mode. This strategy is 

easy to implement, but it is suffering of the 

drawback to use the stored electric energy 

already in the beginning of the trip and so having 

less potential to avoid afterwards bad efficiency 

regions of the combustion on trips longer than 

the electric autonomy of the vehicle. Therefore, 

to minimize fuel consumption, a predictive 

strategy is needed which distributes the stored 

electric energy over the whole driving cycle. It 

has been shown that compared to the AER 

strategy the fuel consumption can be reduced 

when distributing the electric energy on the 

whole driving cycle [3], [4]. 

This prediction is only necessary for cycles 

which are longer the electric range of the vehicle, 

as for shorter cycles it is sufficient to stay during 

the whole cycle in electric mode. That is why a 

predictive strategy is only needed for longer trip 

and, therefore, the prediction part of the strategy 

can reach high computation cost. As the 

computation costs increase with the prediction 

horizon, a compromise between fuel saving and 

prediction horizon length has to be found.  

In the following, simulation results for a parallel 

plug-in HEV using an AER strategy are 

compared to Dynamic Programming (DP) 

optimized strategies using different prediction 

horizon lengths. 

 

For the presented predictive EM strategy, it is 

supposed that information about the whole trip 

length and additionally velocity and road slope 

information about the current prediction section 

are available to the strategy. This information 

will be in future available due to satellite 

navigation systems as GPS and the central 

collection and processing of tracking data of 

mobiles and vehicles. 

 

2 Vehicle Structure 
In the following section the structure and 

parameters of the simulated vehicle are described. 

As vehicle base a SEAT Ibiza ST is used. The 

drivetrain has a parallel structure, that is the 

electric motor and combustion engine are mounted 

on the same drive shaft so that their torques are 

added. The 51 kW combustion engine can be 

separated by a clutch to allow electric driving 

(figure 1) 

 

 
 

Figure 1: Drivetrain of a parallel PHEV 

 

 

The gearbox disposes of 7 gears to allow the 

engine working in a high efficiency region. The 

battery has a capacity of 4 kWh. To avoid damage 

to the battery and allow at the end of the trip the 

use of the vehicle without recharging, the strategy 

leaves 1.2 kWh at the trip end in order to make it 

possible to use a HEV charge sustaining operation 

mode.   

 

Table 1: Vehicle Parameter used in simulation 

Vehicle Mass 1450 kg 

Af 2.2 

Gear Number 7 

PICE,max 51 kW 

TICE,max 110 Nm 

PEM,max 40 kW 

TEM,max 250 Nm 

Ebattery 4 kWh 

Ebattery,min 0.8 kWh 

Vbattery 300 V 

 

 



EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  3 

3 Driving Cycle 
The simulation takes place on a real life driving 

cycle from SEAT Technical Centre in Martorell 

to Barcelona City. The distance is 33.3 km and 

last 2306 s (figure 2). It consists of a short urban 

part at the beginning and a longer one at the end.  

The highway part has velocities up to 115 km/h. 
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Figure 2: Vehicle velocity profile of the driving cycle 

used in simulations 

The cycle is hilly with a maximal slope up to 4%. 

The characteristics of the cycle and the vehicle 

cause that it is not possible to drive the whole trip 

in pure electric driving mode, but that the 

combustion engine has to be used.  
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Figure 3: Height profile of the driving cycle used in 

simulations 

 

4 Vehicle Models 
The used models are built in the simulation 

environment Modelica/Dymola. Two different 

kinds of models are used. The optimization with 

DP takes place on a backward model, which is 

stationary and therefore allows higher simulation 

speed. This model is used for the optimization 

algorithm. Afterwards, the obtained results are 

applied to a forward model. This forward model 

contains dynamic elements and is used to verify 

the results from the optimization algorithm. 

The forward model is validated with measurement 

data from a roller test bench. In the following the 

different model components are shortly described. 

4.1 Combustion Engine 

The fuel consumption of the combustion engine 

and modeled by a measured consumption map of 

the used engine. The revolution number and the 

torque demand calculated by the model are used to 

interpolate the corresponding fuel consumption. 

4.2 Electric Motor 

For the Electric Motor the electric losses are 

modelled by an electric losses map. As for the 

combustion engine the revolution number and the 

torque are used to interpolate the corresponding 

electric losses and so the electric power input or 

output. 

4.3 Battery and Inverter 

The battery is modelled with discrete elements of 

the internal resistance and capacitance in the 

forward model while in the backward model is 

used a fixed efficiency. Also for the inverter in 

both model types a constant efficiency is assumed. 

5 Energy Management 
The energy management has to control the energy 

content of the battery during the trip. This is done 

by the change of the torque distribution of the 

demanded torque by the driver to the electric 

motor and the combustion engine. By this way the 

change between the different operating modes 

recuperation, electric, boost and charge is 

controlled. For plug-in HEV and trips longer than 

the electric range it is wished to substitute as much 

fuel energy by electric energy so that the fuel 

consumption is minimized. That is, when starting 

the trip with SOCmax, at the end of the cycle there 

should remain SOCmin with a before defined 

cushion to allow to use the vehicle in charge 

sustaining mode. 
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The initial SOC of the battery is defined as 0.9. 

This, with a minimal SOC of 0.25, leads to an 

electric energy of Ebattery= 2.6 kWh which can be 

consumed over the trip length.  
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Figure 4: Electric energy used during the charge 

depleting mode (CD) and the buffer reserved for 

charge sustaining mode (CS) at the end of the cycle 

5.1 AER 

In AER the vehicle starts in pure electric mode 

until the minimal SOC is reached. Then the 

strategy switches to a charge sustaining strategy 

as used in autonomous HEV. Due to the highway 

section of the cycle, in second 693 of the cycle 

the minimal SOC is already reached and the 

vehicle leaves the pure electric mode. For the rest 

of the cycle it stays in a charge sustaining mode 

as it is also used for autonomous HEV. 
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Figure 5: SOC evaluation with AER management 

5.2 Dynamic Programming 

Dynamic Programming is a common algorithm to 

calculate the global optimal solution of a stochastic 

optimization task. However, as here the 

optimization task is assumed to be not stochastic, 

the resulting problem is a shortest way problem 

[5]. 

As it can be applied only on a discrete 

optimization task, a discretization grid for the time 

and the states of the model has to be defined. A 

finer grid means higher exactness but lower 

computation speed. As the algorithm is 

considering all possible solutions of the problem, 

the computation cost is quite high. Furthermore, a 

simple problem has to be defined as the 

computation cost increases exponentially with the 

states of the optimization problem. Especially time 

dependent states are problematic, as the 

computation cost increase exponentially with the 

number of states. 

5.2.1 Algorithm 

The system to which the optimization is applied 

can be generally be described by 

),(1 kkkk uxfx =+  (1) 

where kx and ku are the state and the control 

variable at time step k . Here the control variable 

is the torque of the electric machine EMT while the 

state variable is the SOC of the battery. 

The control problem can be described as finding 

the optimal control sequence 

{ }),....u(N)),u(u(o 21=π   (2) 

which minimizes  

)(min)( oo

o xJxJ ππ Π∈
=  (3) 

where Π  is the set of all possible control 

sequences, J the sum of the fuel consumption at 

every time step and 0x  the system state at time 

step 0=k . 

5.2.2 Application 

To examine the influence of the prediction horizon 

on the fuel consumption, three different prediction 

section lengths are defined. Firstly, the section 

length is the whole driving cycle, which means 

that the DP seeks the global optimum of fuel 

consumption for this driving cycle. Afterwards, the 

trip length is first divided in two and later in four 

parts, which leads to prediction section lengths of 
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16666 m and 8333 m, respectively. The SOC to 

be achieved at the end of one prediction section 

is defined by a linear function over the distance.  
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Figure 6: A linear function is used to define the SOC 

points at the end of every prediction section. The red 

rhombus shows the four defined points for the 

prediction horizon length of 8.3 km, the blue circle for 

16.7 km and the triangle for 33.3 km. 

6 Simulation Results 
The global optimum calculated by DP gives an 

optimum of 1.95 l/100 km (table 2). This is an 

improvement of 26 % in respect to the used AER 

strategy which consumes 2.67 l/100. The change 

of the prediction horizon length from 33.3 km to 

the half of the cycle (16.7 km) shows in contrast 

no significant change of the fuel consumption, 

the difference is less than 1 %.  

 

Table 2: Fuel and electric consumption in charge 

depleting mode  

Energy 

Manage-

ment 

Prediction 

Section 

Length /m 

Fuel 

consumption 

/ l/100 km 

∆Ebattery 

/kWh 

DP 33333 1.95 2.6 

DP 16666 1.96 2.6 

DP 8333 2.37 2.6 

AER 0 2.65 2.6 

 

The evaluation of the SOC during the cycle using 

prediction section lengths of 33.3 km and 

16.7 km are almost identical (figure 7), which 

explains the small deviation of the fuel 

consumption. This very slight difference occurs 

because of the fact that the beforehand fixed 

SOC point (by the linear SOC curve, figure 6) at 

0.6 at the half the trip distance corresponds very 

well to the curve of the global optimum. However, 

a further reduction of the prediction section to one 

quart of the cycle (8.3 km) raises the fuel 

consumption to 2.37 l/100 km. Here the SOC 

curve shows obvious differences to the global 

optimum during the highway part of the cycle.  
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Figure 7: SOC profile of DP with different prediction 

horizon lengths 

 

The higher consumption using the 8.3 km 

prediction section length is caused by the fact, that 

the beforehand defined SOC points at the end of 

the prediction sections do not coincide with the 

global optimum (table 3). So is the SOC after the 

first quarter of the trip distance fixed to 0.75, while 

the optimal value is 0.783.  
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Figure 8: Driving modes during trip with prediction 

horizon of 33.3 km 
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Also at the end of the third quarter, the linear 

SOC function does not coincide with the global 

optimum, causing the strategy to behave sub-

optimal. So is the optimal SOC value at the end 

of the third quarter 0.406, while the linear 

function defines here 0.45 (table 3). Due to this, 

the vehicle spends more time in charge mode on 

the highway than optimal. 

The reason for the deviation between the global 

optimum and the linear function in this point is 

that during the second half of the used cycle the 

slope is negative (figure 3). This and the lower 

average speed during this part in the urban area 

lead to a lower electric cosumption. Therefore, in 

the global optimal strategy only the electric an 

drecuperation mode is used (figure 8). As this 

information is not included in the linear SOC 

curve, the consumption cannot be optimal. 

 

The described effect shows clearly the negative 

effect of a reduced prediction horizon. Due to the 

negative slope and the lower average vehicle 

speed of the last urban part of ther trip there is 

less electric energy necessary. The strategies 

using the longer prediction section can anticipate 

that. This is possbile because there is always one 

part of the highway cycle included in which it is 

possible to consume electric energy which is not 

needed for the last trip part. However, the 

strategy using the shorter prediction horizon 

makes less use of the boost mode on the highway 

part at the end of the third quart. As a result, the 

engine operating points concentrate in less 

efficient regions than the global optimum 

(figures 9, 10).  

 

Table 3: SOC at end of every quarter of the trip 

distance according to the used prediction section 

length 

t / s 0  536 807 1133 2231 

s / m 0  8333 16666 25000 33333  

DP 

33333 m 
0.9 0.783 0.608 0.406 0.3 

DP  

16666 m 
0.9 0.777 0.6 0.406 0.3 

DP 

8333 m 
0.9 0.75 0.6 0.45 0.3 

 

 

It can be stated that even for the global optimum 

the engine operating points do not concentrate in 

the highest efficiency regions. Comparing the 

efficiency engine map to the one of the used 

electric motor (figure 11), it can be seen that 

when both engine and motor are used at the same 

time, the strategy chooses a compromise between 

the highest efficiency regions of both machines.  
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Figure 9: Engine Operating Points during trip using a 

prediction horizon of 33.3 km 
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Figure 10: Engine Operating Points during trip using a 

prediction horizon of 16.7 km 

7 Conclusions 
As the controlled variable of the energy 

management of a PHEV is the SOC, using a 

predictive strategy the desired SOC value at the 

end of the perdiction horizon has to be known. 

Therefore, beside the question of the prediction 

horizon length the question arises of the function 

which defines the desired SOC at the end of the 

prediction horizon. If the prediction horizon 

comprises the whole trip, the final SOC depends 
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only on the necessary buffer to allow driving in 

charges sustaining mode. If the prediction 

horizon is chosen to be only one part of trip, a 

function is needed to calculate the respective 

final SOC value.  
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Figure 11: Motor Operating Points during trip using a 

prediction horizon of 33.3 km 

 

Here, a linear function in respect to the trip 

distance is used. It can be shown, that the use of 

a linear SOC function in respect to the trip 

distance allows appropriate results, if the 

prediction horizon is sufficiently long. This is 

especially important if the trip changes its 

characteristics. In the used cycle there is in the 

last part negative slope combined with low 

vehicle speed, leading to a small energy demand 

of the drivetrain. This leads to non-optimal 

results for short prediction horizons. 

Nevertheless, the achieved results are still better 

than the not optimal AER strategy.  

To avoid not optimal fuel consumption when 

using a linear SOC function, the prediction 

horizon has to be chosen appropriately long in 

respect to trip parts with energy demand which is 

over or below the average.  

Another approach would be to choose another 

function to calculate the final SOC of the 

prediction horizon which also considers certain 

cycle characteristics, as urban or highway 

sections and the slope of the road.  
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