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Abstract

The use of information about the future vehicle trajectory is especially advantageous for the energy
management strategies of Plug-in Hybrid Electric Vehicles. This is based on the fact that for minimal fuel
consumption the stored electric energy should be consumed until the end of the trip, if the trip length
exceeds the electric range of the vehicle. Therefore, best results are achieved by an optimization of the
torque distribution between both electric motor and combustion engine knowing the whole trajectory until
the next use of a recharging station. Due to the long recharging times this means usually an optimization
until the end of the trip.

A drawback of such long predictive horizons is the high computation cost. Another is the increasing model
uncertainty due to the use of simplified powertrain models for the prediction algorithm and also the
reliability of the predicted trip information. Therefore, one aim is to reduce the prediction horizon as much
as possible without increasing significantly the fuel consumption. To save computation cost of the
optimization and decrease the influence of model uncertainties, in this paper an energy management for
Plug-in HEV calculating the global optimum for the whole trip is compared to optimization with different
prediction horizon lengths. To define the desired SOC at the end of the prediction horizon a linear reference
SOC function is used. Depending on the chosen prediction length the trajectory is divided into several
sections, each one standing for one prediction horizon. At the entrance to every section the energy
management calculates the optimal torque set point for the whole next section (prediction horizon). In order
to exclude the influence of the optimization algorithm, Dynamic Programming is used to calculate the

global optimum.
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sales numbers in the next years, the use of
1 Introduction predictive energy management strategies (EM)
gain importance. In comparison to autonomous

With the upcoming of Plug-in Hybrid Electric HEV, PHEV dispose of a recharging possibility

Vehicles (PHEV) and the expected increase of
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along with a battery which has a significantly
higher capacity than in autonomous HEV.

The difference to strategies for autonomous HEV
is the possible use of two independent energy
sources, the fuel and the electric energy. While
for autonomous HEV the stored electric energy
at the end of the trip is of minor importance, for
PHEV it should minimized as much as
reasonable as it can be refilled after the trip
without the use of the combustion engine. In that
way, fuel consumption can be minimized [1].

The easiest energy management implementation
without the necessity of prediction is the all-
electric-range strategy (AER) [2]. With the AER
strategy the vehicle which behaves in the
beginning of the driving cycle like an electric
vehicle. After having consumed the stored
electric energy in the battery the battery switches
to a normal HEV driving mode. This strategy is
easy to implement, but it is suffering of the
drawback to use the stored electric energy
already in the beginning of the trip and so having
less potential to avoid afterwards bad efficiency
regions of the combustion on trips longer than
the electric autonomy of the vehicle. Therefore,
to minimize fuel consumption, a predictive
strategy is needed which distributes the stored
electric energy over the whole driving cycle. It
has been shown that compared to the AER
strategy the fuel consumption can be reduced
when distributing the electric energy on the
whole driving cycle [3], [4].

This prediction is only necessary for cycles
which are longer the electric range of the vehicle,
as for shorter cycles it is sufficient to stay during
the whole cycle in electric mode. That is why a
predictive strategy is only needed for longer trip
and, therefore, the prediction part of the strategy
can reach high computation cost. As the
computation costs increase with the prediction
horizon, a compromise between fuel saving and
prediction horizon length has to be found.

In the following, simulation results for a parallel
plug-in HEV wusing an AER strategy are
compared to Dynamic Programming (DP)
optimized strategies using different prediction
horizon lengths.

For the presented predictive EM strategy, it is
supposed that information about the whole trip
length and additionally velocity and road slope
information about the current prediction section
are available to the strategy. This information
will be in future available due to satellite

navigation systems as GPS and the central
collection and processing of tracking data of
mobiles and vehicles.

2 Vehicle Structure

In the following section the structure and
parameters of the simulated vehicle are described.

As vehicle base a SEAT Ibiza ST is used. The
drivetrain has a parallel structure, that is the
electric motor and combustion engine are mounted
on the same drive shaft so that their torques are
added. The 51 kW combustion engine can be
separated by a clutch to allow electric driving

(figure 1)
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Figure 1: Drivetrain of a parallel PHEV

The gearbox disposes of 7 gears to allow the
engine working in a high efficiency region. The
battery has a capacity of 4 kWh. To avoid damage
to the battery and allow at the end of the trip the
use of the vehicle without recharging, the strategy
leaves 1.2 kWh at the trip end in order to make it
possible to use a HEV charge sustaining operation
mode.

Table 1: Vehicle Parameter used in simulation

Vehicle Mass 1450 kg
Ar 2.2

Gear Number 7

PICE max 51 kW
TICE max 110 Nm
PEM.max 40 kW
TEM max 250 Nm
Ebattery 4 kWh
Ebattcry,min 0.8 kWh
Vbattcry 300V

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2



3 Driving Cycle

The simulation takes place on a real life driving
cycle from SEAT Technical Centre in Martorell
to Barcelona City. The distance is 33.3 km and
last 2306 s (figure 2). It consists of a short urban
part at the beginning and a longer one at the end.
The highway part has velocities up to 115 km/h.
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Figure 2: Vehicle velocity profile of the driving cycle
used in simulations

The cycle is hilly with a maximal slope up to 4%.
The characteristics of the cycle and the vehicle
cause that it is not possible to drive the whole trip
in pure electric driving mode, but that the
combustion engine has to be used.
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Figure 3: Height profile of the driving cycle used in
simulations

4 Vehicle Models

The used models are built in the simulation
environment Modelica/Dymola. Two different
kinds of models are used. The optimization with
DP takes place on a backward model, which is
stationary and therefore allows higher simulation
speed. This model is used for the optimization
algorithm. Afterwards, the obtained results are
applied to a forward model. This forward model
contains dynamic elements and is used to verify
the results from the optimization algorithm.

The forward model is validated with measurement
data from a roller test bench. In the following the
different model components are shortly described.

4.1 Combustion Engine

The fuel consumption of the combustion engine
and modeled by a measured consumption map of
the used engine. The revolution number and the
torque demand calculated by the model are used to
interpolate the corresponding fuel consumption.

4.2 Electric Motor

For the Electric Motor the electric losses are
modelled by an electric losses map. As for the
combustion engine the revolution number and the
torque are used to interpolate the corresponding
electric losses and so the electric power input or
output.

4.3 Battery and Inverter

The battery is modelled with discrete elements of
the internal resistance and capacitance in the
forward model while in the backward model is
used a fixed efficiency. Also for the inverter in
both model types a constant efficiency is assumed.

S Energy Management

The energy management has to control the energy
content of the battery during the trip. This is done
by the change of the torque distribution of the
demanded torque by the driver to the electric
motor and the combustion engine. By this way the
change between the different operating modes
recuperation, electric, boost and charge is
controlled. For plug-in HEV and trips longer than
the electric range it is wished to substitute as much
fuel energy by electric energy so that the fuel
consumption is minimized. That is, when starting
the trip with SOC,,.y, at the end of the cycle there
should remain SOC,;, with a before defined
cushion to allow to use the vehicle in charge
sustaining mode.
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The initial SOC of the battery is defined as 0.9.
This, with a minimal SOC of 0.25, leads to an
electric energy of Epyer,= 2.6 kWh which can be
consumed over the trip length.
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Figure 4: Electric energy used during the charge
depleting mode (CD) and the buffer reserved for
charge sustaining mode (CS) at the end of the cycle

5.1 AER

In AER the vehicle starts in pure electric mode
until the minimal SOC is reached. Then the
strategy switches to a charge sustaining strategy
as used in autonomous HEV. Due to the highway
section of the cycle, in second 693 of the cycle
the minimal SOC is already reached and the
vehicle leaves the pure electric mode. For the rest
of the cycle it stays in a charge sustaining mode
as it is also used for autonomous HEV.
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Figure 5: SOC evaluation with AER management

5.2 Dynamic Programming

Dynamic Programming is a common algorithm to
calculate the global optimal solution of a stochastic
optimization task. However, as here the
optimization task is assumed to be not stochastic,
the resulting problem is a shortest way problem
[5].

As it can be applied only on a discrete
optimization task, a discretization grid for the time
and the states of the model has to be defined. A
finer grid means higher exactness but lower
computation speed. As the algorithm is
considering all possible solutions of the problem,
the computation cost is quite high. Furthermore, a
simple problem has to be defined as the
computation cost increases exponentially with the
states of the optimization problem. Especially time
dependent states are problematic, as the
computation cost increase exponentially with the
number of states.

5.2.1 Algorithm

The system to which the optimization is applied
can be generally be described by

Xpn = fr(xpu,) (1)

where x,and u, are the state and the control

variable at time step k. Here the control variable
is the torque of the electric machine 7,, while the

state variable is the SOC of the battery.
The control problem can be described as finding
the optimal control sequence

7 ={u(1).u(2),...u(N)} @)

which minimizes
J7(x,) = minJ, (x,) 3)

where [1 is the set of all possible control
sequences, J the sum of the fuel consumption at
every time step and X, the system state at time

step Kk =0.

5.2.2  Application

To examine the influence of the prediction horizon
on the fuel consumption, three different prediction
section lengths are defined. Firstly, the section
length is the whole driving cycle, which means
that the DP seeks the global optimum of fuel
consumption for this driving cycle. Afterwards, the
trip length is first divided in two and later in four
parts, which leads to prediction section lengths of
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16666 m and 8333 m, respectively. The SOC to
be achieved at the end of one prediction section
is defined by a linear function over the distance.
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Figure 6: A linear function is used to define the SOC
points at the end of every prediction section. The red
rhombus shows the four defined points for the
prediction horizon length of 8.3 km, the blue circle for
16.7 km and the triangle for 33.3 km.

6 Simulation Results

The global optimum calculated by DP gives an
optimum of 1.95 1/100 km (table 2). This is an
improvement of 26 % in respect to the used AER
strategy which consumes 2.67 1/100. The change
of the prediction horizon length from 33.3 km to
the half of the cycle (16.7 km) shows in contrast
no significant change of the fuel consumption,
the difference is less than 1 %.

Table 2: Fuel and electric consumption in charge

depleting mode

Energy Prediction | Fuel AEBbattery
Manage- | Section consumption | /kWh
ment Length/m | /1/100 km

DP 33333 1.95 2.6
DP 16666 1.96 2.6
DP 8333 2.37 2.6
AER 0 2.65 2.6

The evaluation of the SOC during the cycle using
prediction section lengths of 33.3km and
16.7 km are almost identical (figure 7), which
explains the small deviation of the fuel
consumption. This very slight difference occurs
because of the fact that the beforehand fixed
SOC point (by the linear SOC curve, figure 6) at

0.6 at the half the trip distance corresponds very
well to the curve of the global optimum. However,
a further reduction of the prediction section to one
quart of the cycle (8.3 km) raises the fuel
consumption to 2.37 1/100 km. Here the SOC
curve shows obvious differences to the global
optimum during the highway part of the cycle.
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Figure 7: SOC profile of DP with different prediction
horizon lengths

The higher consumption using the 8.3 km
prediction section length is caused by the fact, that
the beforehand defined SOC points at the end of
the prediction sections do not coincide with the
global optimum (table 3). So is the SOC after the
first quarter of the trip distance fixed to 0.75, while
the optimal value is 0.783.
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Figure 8: Driving modes during trip with prediction
horizon of 33.3 km
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Also at the end of the third quarter, the linear
SOC function does not coincide with the global
optimum, causing the strategy to behave sub-
optimal. So is the optimal SOC value at the end
of the third quarter 0.406, while the linear
function defines here 0.45 (table 3). Due to this,
the vehicle spends more time in charge mode on
the highway than optimal.

The reason for the deviation between the global
optimum and the linear function in this point is
that during the second half of the used cycle the
slope is negative (figure 3). This and the lower
average speed during this part in the urban area
lead to a lower electric cosumption. Therefore, in
the global optimal strategy only the electric an
drecuperation mode is used (figure 8). As this
information is not included in the linear SOC
curve, the consumption cannot be optimal.

The described effect shows clearly the negative
effect of a reduced prediction horizon. Due to the
negative slope and the lower average vehicle
speed of the last urban part of ther trip there is
less electric energy necessary. The strategies
using the longer prediction section can anticipate
that. This is possbile because there is always one
part of the highway cycle included in which it is
possible to consume electric energy which is not
needed for the last trip part. However, the
strategy using the shorter prediction horizon
makes less use of the boost mode on the highway
part at the end of the third quart. As a result, the
engine operating points concentrate in less
efficient regions than the global optimum
(figures 9, 10).

Table 3: SOC at end of every quarter of the trip
distance according to the used prediction section

length

t/s 0 536 807 1133 2231
s/m 0| 8333 | 16666 | 25000 | 33333
DP

33333 m 0.9 | 0.783 | 0.608 | 0.406 0.3
DP

16666 m 0.9 | 0.777 0.6 0.406 0.3
DP

8333 m 09 | 0.75 0.6 0.45 0.3

It can be stated that even for the global optimum
the engine operating points do not concentrate in
the highest efficiency regions. Comparing the
efficiency engine map to the one of the used
electric motor (figure 11), it can be seen that

when both engine and motor are used at the same
time, the strategy chooses a compromise between
the highest efficiency regions of both machines.
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Figure 9: Engine Operating Points during trip using a
prediction horizon of 33.3 km
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Figure 10: Engine Operating Points during trip using a
prediction horizon of 16.7 km

7 Conclusions

As the controlled variable of the energy
management of a PHEV is the SOC, using a
predictive strategy the desired SOC value at the
end of the perdiction horizon has to be known.
Therefore, beside the question of the prediction
horizon length the question arises of the function
which defines the desired SOC at the end of the
prediction horizon. If the prediction horizon
comprises the whole trip, the final SOC depends
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only on the necessary buffer to allow driving in
charges sustaining mode. If the prediction
horizon is chosen to be only one part of trip, a
function is needed to calculate the respective
final SOC value.
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Figure 11: Motor Operating Points during trip using a
prediction horizon of 33.3 km

Here, a linear function in respect to the trip
distance is used. It can be shown, that the use of
a linear SOC function in respect to the trip
distance allows appropriate results, if the
prediction horizon is sufficiently long. This is
especially important if the trip changes its
characteristics. In the used cycle there is in the
last part negative slope combined with low
vehicle speed, leading to a small energy demand
of the drivetrain. This leads to non-optimal
results for  short prediction  horizons.
Nevertheless, the achieved results are still better
than the not optimal AER strategy.

To avoid not optimal fuel consumption when
using a linear SOC function, the prediction
horizon has to be chosen appropriately long in
respect to trip parts with energy demand which is
over or below the average.

Another approach would be to choose another
function to calculate the final SOC of the
prediction horizon which also considers certain
cycle characteristics, as urban or highway
sections and the slope of the road.
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