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Abstract

During the development of electric vehicles and non-road mobile machinery, dynamic system-level sim-
ulations are utilized to validate the design and the sizing of components as well as to validate the control
software. The model needs to predict e.g. the open-circuit voltage, terminal voltage, and state-of-charge
under various load profiles. Electrical battery models are commonly used, because they are simple
and computationally relatively light but still provide good accuracy. Despite the simplicity and low
number of parameters, the complex behavior of electrochemical batteries still make the parameter ex-
traction a tedious process. The problematic nature of the parameters to depend on the state-of-charge,
temperature, current-rate, current-direction, and aging causes challenges in the parameterization. This
paper describes and demonstrates the model parameter extraction process for a Thevenin-based electrical
model, and presents a set of experiments and a methodology to extract the parameters. A commercial

lithium-manganese-nickel-cobalt-oxide battery module is used in the experiments.

Keywords: battery model, modeling, simulation, EV, off-road

1 Introduction

The multidisciplinary nature of batteries has led
to many different kinds of modeling approaches,
which can be generally divided into electro-
chemical, mathematical, and electrical modeling.
For system-level simulation of electric vehicles
(EVs), electrical models are commonly used [1],
because they are fast to execute, simple and in-
tuitive to analyze, and provide accurate state-of-
charge (SOC) and open-circuit voltage (OCV)
prediction. The model can rather easily be aug-
mented to predict also e.g. the state-of-health and
temperature, which are often needed in the simu-
lations. Parameter extraction of electrical models
can be done with simple experiments without any
need of battery-specific proprietary information
of the used materials.

Electrical models are electrical equivalent cir-
cuits (EECs) that mimic battery’s electrical be-
havior, e.g., steady-state voltage, OCV, and tran-
sient voltage. Electrical equivalent circuits are
typically combinations of electrical sources, re-
sistors, capacitors, and inductors. For electrical
engineers electrical models are very handy and
intuitive, and those models can be easily used in
circuit simulators and other system simulators.
The accuracy of electrical models is good, the
percentual error is usually in the order of few per-
cents.

Lots of electrical battery models for differ-
ent battery chemistries have been developed.
Generally, for system-level dynamic simulations
of EVs, usually Thevenin-based or impedance-
based models are used. Thevenin-based models
are typically parameterized based on some sort
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of current-pulse (CP) experiments [2-5], while
the parameter extraction of the impedance-based
models rely on electrochemical impedance spec-
troscopy (EIS) measurements at different operat-
ing points. For the EIS methodology, the time
to make the impedance measurements take long,
and also a frequency analyzer is needed to per-
form the tests. For the CP tests, programmable
power supply and load are needed accompanied
with extensive data log?ng, temperature sense,
and measurement of electrical quantities such
as current, voltage, and ampere-hours. The ba-
sic experiments at the typical temperature and
current-rate can be done quite fast, but if the tem-
perature and current-rate effects need to be ex-
tracted also, the duration of the tests increase sig-
nificantly.

This paper represents a Thevenin-based electrical
battery model, and describes the parameter ex-
traction process for the model. Parameter extrac-
tion is based on pulse-discharge (PD) and pulse-
charge (PC) experiments, which are sequences
of CP experiments with a rest-time between con-
secutive current pulses. Also the general picture
of the inclusion of temperature, current-rate, and
aging effects is covered.

The rest of the paper is organized as follows. In
section 2, the model structure and dynamic anal-
ysis of the model are explained in detail. The
model parameter extraction is covered theoreti-
cally in section 3 and experimentally in section
4. Section 4 covers also the model validation.
Section 5 concludes the paper.

2 Model

The EEC of a battery is shown in Fig. 1, where
Uoc 18 the open-circuit voltage, uy, is the ter-
minal voltage, 7, is the terminal current, Ry
is the ohmic DC resistance, Rl,Rg,...,Rn
are the dynamic resistances, and C1,Cy,...,Cy
are the corresponding dynamic capacitances.
All resistances and capacitances are functions
of the SOC, temperature, current-rate, current-
direction, calendar life, and cycle life.
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Figure 1: Electrical equivalent circuit.

What is not explicitly shown in the EEC is that
also the SOC is predicted by the model, and
that the self-discharge behavior is included in the
SOC prediction. The controlled voltage-source
then provides the predicted OCV as a function
of SOC. Generally, also temperature-dependency
and charge/discharge-history dependency can be
included into the OCV prediction. By represent-
ing the OCV as a function of SOC only, the pre-
diction is simplified and the OCV can be repre-

sented e.g. as a lookup table (LUT) or as a math-
ematical expression, e.g. a polynomial function.

2.1 Usable capacity

The usable capacity Qs is expressed as follows:

Qus(Nytva) = Qn X fl(N) X fQ(ty) X f3(T)
(D

where (), is the nominal capacity in A-s, IV is the
cycle number, T' is the temperature, ¢ is the time
in years, f1(IN) is the cycle-dependent correc-
tion factor, f2(t,) is the calendar-time dependent
correction factor, and f3(7") is the temperature-
dependent correction factor. Battery manufac-
turers usually have some information about the
cycle-life and calendar-life aging that can be used
as a basis for the correction factors fi(/N) and
fa(ty). Manufacturers also usually have a graph
about the discharge and charge curves at different
temperatures that can be used as a basis for the
temperature-dependent correction factor f3(7").
It is also relatively easy to obtain it experimen-
tally, if isothermal conditions can be provided.

2.2 State of charge
The SOC is predicted by coulomb counting:

1
5Q = 5Q¢ — On / (ib +isa)dt  (2)

where sg is the SOC, sq, is the initial SOC,
and igq is the self-discharge current. The self-
discharge characteristics may be obtained experi-
mentally, and based on the experiment, the equiv-
alent self-discharge current 54 may be obtained.

2.3 Open-circuit voltage

The nonlinear relation between the SOC and
OCV is represented as a controlled voltage

source Uoc(sg). The relation can be obtained

from experimental tests. It is usually sufficient
to represent the OCV as a function SOC only.

2.4 Transient response

Under loading the terminal voltage differs from
the OCV. In the model, resistor R represents the
battery’s electronic resistance, i.e. the ohmic re-
sistance, which encompasses the resistivity of the
actual materials such as metal plates and contact
resistances. The dynamic resistances R ... R,
represent the ionic resistances, which are caused
by various electrochemical factors such as elec-
trolyte conductivity, ion mobility, and electrode
surface area. These polarization effects happen
more slowly than the effect of electronic resis-
tance, which is instantenous. This slowly in-
creasi % effect is modeled as parallel capaci-
tances .Ch.
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Because there are many electrochemical reac-
tions that occur at different time scales, the num-
ber of RC-branches depends on the desired accu-
racy of the model. A comprehensive analysis of
the selection of proper number of RC branches
can be found in [6]. As a summary, the choice
of number of RC networks is a compromise be-
tween accuracy and computational complexity,
the latter being more of an issue if the model is
changed into an online model that is executed in
a real-time application such as a BMS. In [6], it
was shown that after two RC branches, the ac-
curacy increments get small compared to the ex-
ponentiallf' increasing computational complex-
ity. Usually, one to three branches are used, two
being a good compromise.

2.5 Dynamic analysis

Consider the equivalent circuit of Fig. 1 with n
RC branches. The following equations describe
the dynamic behavior:

d 1 1

—U; = —ip — ——u;, 1=1,2,..., 3

TR e AL Rl e LA n (3)
Uy = Uoe — Kol — U1 — U2 — ... — Uy (4)

These equations can be formulated in state-space
representation:

x = Ax+ Bu ®))
y = Cx + Du (6)
where
X = [ul us Un]T
T
u= [uoc Zb] y Y =Up
— 1 -
— 0 0
R101 1
0 — 0
A= RyCy
o o 1
L R,C,
- T
0 0 0
B—|1 1 1
1 C1 Co Chn
C=[-1 -1 -+ —1], D=[1 —Ry

State-space representation can be transformed
to transfer-function representation by Laplace-
transformation and solving x and then substitut-
ing it to (6):

x(s) = (sI — A) "' Bu(s) (7)
y(s) = [C(I—A)'B+D|u(s) (8

where ®(s) is state-transition matrix. Input-to-

state and input-to-output transfer functions can
then be expressed as

) " P(s)B )
?1’(3 =C®(s)B+D (10)

2.6 Curve-fitting methodologies

The OCV as well as the resistors and capacitors
of the transient response RC network are func-
tions of SOC. The easiest method to implement
their characteristics is to represent them with
LUTs and utilizing linear interpolation between
data points. Another possibility is to utilize
curve-fitting techniques [7] and to represent the
characteristics as mathematical functions. For
example, the OCV can be represented with a
polynomial

f(x) =po+p1x+pra?

1D
+ ...+ ppa”
where n is the degree of the polynomial, con-
stants pg to p, are the corresponding constants
from the fitted curve, and z is the variable,
i.e., SOC. Exponential fit may be useful for func-
tions that exhibit exponential growth or decay:

f(a) = a1 ™" 4 ag e

(12)

+ .t ayen®
where n is the number of exponential terms, a,,
and b,, are the corresponding constants from the
fitted curve, and x is the variable, e.g., SOC. As
will be seen later, the characteristics of the EEC’s
resistances are similar to an exponential function,
and hence, exponential functions are often well-
suitable to characterize the resistances.

2.7 Cycle-life and calendar-life effects

The cycle-dependent correction factor f1(N) in
(1) can be implemented e.g. as a LUT or a poly-
nomial function, if the relation between the cycle
number and the capacity is known accurately. If
there is no exact information available other than
cycle life at 80 % DOD, a linear polynomial can
be used as a first approximation:

0.2

v =1-§

x N (13)

where Ny, is the nominal cycle life of the bat-
tery.

In hybrid vehicles, the battery is usually never
fully charged or discharged. Instead, the loading
profile consists of repetitive short-time charging
and discharging pulses. Consequently, the SOC
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is usually kept in a small area around some op-
erating point, e.g. 50 %. These shallow cycles
need to be converted to full cycles for the func-
tion f1. If there is no better knowledge available,
it is possible to convert the nominal cycle life
value to ampere-hours and to integrate the charge
or discharge current to get the actual cumulative
ampere-hour value of the battery. One cycle is
then equal to 80 % of the nominal capacity of a
fresh battery, e.g. for a 10 Ah battery, one cycle is
achieved when 8 Ah is discharged from the bat-
tery in total. Discharging need not be continous,
and there may be charge intervals in between.

The calendar-life correction factor f(ty) can be

implemented in the same way as the cycle-life
correction factor.

fa(ty) =1 —pity (14)

where p; is the slope of the curve. However, bat-
tery specification does not usually give any infor-
mation about the calendar life.

Aging increases also the ohmic and ionic resis-
tances. Therefore, LUTSs can be added that in-
crease the resistance values as a function of ag-
ing.

2.8 Temperature effects

Function f3(7") can be determined from exper-
iments at different temperatures, or from man-
ufacturer’s datasheet, which usually includes
charge and discharge curves with relative capac-
ity at different temperatures. Lower temperatures
increase cell impedance due to diffusion kinetics.
The function f3 can also be slightly larger than
one at elevated temperatures. A linear mapping
can be presented as

f3(T) =1+ p1 (T = To) (15)

where p; is the slope of the curve, T is the tem-
perature in °C, and Ty is the normal temperature,
where the temperature-correction factor is unity.
Temperature affects also the ohmic and ionic re-
sistances. Therefore, LUTSs can be added that in-
crease or decrease the resistance values as a func-
tion of temperature. It is also possible to obtain
experimentally directly a multidimensional map
instead of 1D-map, if the experiments for the pa-
rameter extraction are made at several constant
temperatures in a temperature chamber. Then,
the resistance and capacitance values vary as
function of SOC and temperature.

2.9 Current-rate effects

The current rate affects the resistance and capac-
itance values of the model. As the current-rate
increases, the resistance values decrease. The
relation between the current-rate and the resis-
tance values can be extracted from the PC and
PD experiments. The function can be easily im-
plemented in the model as a LUT, but also math-
ematical expressions can be used. It is also possi-
ble to include the current-rate effect directly into

the resistance and capacitance mappings as an
extra dimension, similarily as the temperature ef-
fect.

3 Model extraction

Model extraction is based on simple experimen-
tal tests that can be done in cell-level, module-
level, or pack-level test environment.

The following characteristics need to be ex-
tracted for the model:

Nominal capacity

OCYV mapping

Ohmic resistance

RC parallel branches

Self-discharge behavior

Temperature effect

Current-rate effect

Cycle-life and calendar-life effects
Different characteristics during charging
and discharging

The first four items are the most important ones
and are necessary properties, which describe the
characterics of a fresh battery in its nominal op-
erating point. The rest of the items are more or
less optional and can also be added later on.

A set of PD and PC experiments are used to re-
veal the capacity, SOC-OCV mapping, ohmic re-
sistance values, and RC circuit network param-
eter values. Also current-rate effect can be de-
duced from the same experiments. In each exper-
iment, a full battery is discharged with constant-
current pulses, which are followed by rest peri-
ods. There are two purposes for the rest periods:

e to reveal the voltage relaxation characteris-
tics, and consequently, the ohmic resistance,
RC circuit parameters, and the OCV in case
of OCV characterization experiment

e to let the battery temperature to cool down

To obtain best results, the internal temperature of
the battery should stay constant during the exper-
iments, i.e. isothermal conditions are preferred.
This can be achieved by placing the battery into a
thermal chamber, or by providing effective cool-
ing, e.g. by using liquid-cooling plates between
the cells.

3.1 Experimental test setup

A programmable electronic load and a charger
are needed for battery characterization experi-
ments. The current rating for the equipment
should be high enough to provide the specified
maximum current for loading and charging.

The sampling rate should be fast enough to catch
the rapid voltage change caused by the ohmic re-
sistance at the current pulse starting and ending
time instants as well as the fast dynamics of the
voltage response after that. The sampling rate
for the ohmic resistance should be in the order of
hundreds milliseconds. Also the fastest time con-
stant of the equivalent circuit may be in the order
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of seconds, and hence, there should be enough
data points to fit the model parameters. On the
other hand, the experiments are long, yielding to
huge amount of data if very short sampling time
is used. Therefore, a compromise between the
amount of data and accuracy must be made.
Cell-level testing is the simplest and fastest ap-
proach to characterize batteries. Single cells are
easy to order, deliver, and handle. Also the volt-
age rating of the electronic load and 1Power sup-
ply are low, and therefore, the price of the equip-
ment is low. In addition, no BMS or other aux-
iliary electronics is needed, which makes it easy
to set up the experiment.

During the development of a full battery pack
and vehicle control software, the BMS function-
ality must be tested in the laboratory. Therefore,
a module-level test system is often needed any-
way to test the BMS and vehicle control soft-
ware. In addition, the module-level test environ-
ment gives information about the tolerances be-
tween the cells in a module, resulting in a more
realistic model of the battery module compared
to a model that is constructed using the num-
ber of series and parallel connected cells with
the characteristics of the single cell that was
tested. Module-level testing gives also informa-
tion about the cooling needs of the battery mod-
ule, which is of major importance when develop-
ing a battery system.

When moving into a pack-level testing, every-
thing gets more complicated. First, pack-level
electronic loads and power supplys are very ex-
pensive and big in volume and weight. Second,
the full-scale batteries for EVs are expensive to
obtain for evaluation purposes, and the delivery,
handling, and setting up of the experiment are
time-consuming procedures.

Temperature measurements from the surface of
a cell are very important. Modules and packs
usually have numerous temperature sensors in-
side them, and the data can be accessed from
the BMS. In that case, the data from the BMS is
enough, and that data should be combined with
the other measurement data. Otherwise, temper-
ature sensors should be attached inside the mod-
ule or pack into the surface of cells.

In order to extract efficiently and accurately also
the temperature-effects, a temperature chamber
is needed. Otherwise, experiments at cold or hot
temperatures cannot be made. In addition, liquid-
cooling helps to keep the temperature constant
during the experiment.

3.2 Model extraction

Generally, all model parameters—except the
self-discharge behavior—can be extracted from
the PD and PC experiments. However, also
other experiments such as constant-current dis-
charge may be used e.g. to determine the capac-
ity or OCV. If the current-rate and temperature
effects are neglected, the whole characterization
can be made with one PD experiment followed
by one PC experiment. Then, the characteriza-
tion should be made with the typical current-rate
of the application at the typical temperature.

The number of current pulses in PD and PC ex-
periments is a compromise between the desired
accuracy and duration of the experiment. Obvi-
ously, the duration increases with the pulses, be-
cause after each pulse a rest period is employed.
With ten current pulses, i.e. 10 % SOC per pulse,
the behavior of a battery can be characterized
with good accuracy for dynamic simulation pur-
poses. For example, with 10 % pulse-rate and
10 min rest period at 1C current-rate, the duration
of the PD experiment becomes approximately 2 h
40 min. The accuracy can be increased by hav-
ing more current pulses or longer rest periods.
The lenght of the rest period can be selected ar-
bitrarily. However, with very short rest periods
the long time constant may not be extracted reli-
ably nor accurately. On the other hand, with very
long rest periods the duration of the experiment
becomes long.

Before starting the characterization, the battery
needs to be fully charged. If two or more cells
are connected in series, the total available ca-
pacity is affected also by the charge balance as
well as the differences of the cells. The weak-
est cell with the lowest capacity determines the
maximum available capacity of the battery. That
is why the BMS needs to first balance the battery,
and only after that is done, the model extraction
should be started.

Parameters of the equivalent circuit of Fig. 1 can
be extracted by making a set of PD and PC ex-
periments with several discharge rates. In each
PD experiment, a full battery is discharged with
constant-current pulses, which are followed by
rest periods. Fig. 2 shows a typical PD experi-
ment for a 40 Ah battery, where a full battery is
pulse-discharged with 10 % pulses and 30 min
rest time.

3.2.1 Capacity

Perhaps the simplest method for capacity extrac-
tion is to discharge a full battery at its nomi-
nal temperature with a low rate until the cut-off
voltage is reached. The ampere-hours should be
measured during the experiment, preferably with
a power analyzer to get accurate result. If the
battery consists of several cells, the discharging
should be stopped when the first cell reaches the
cut-off voltage. However, because the terminal
voltage is affected by the internal resistance volt-
age drop and relaxation effect, there is still some
charge left in the battery that can be extracted
when the relaxation effect is over. The length
of the relaxation effect is in the area of hours.
Therefore, the discharging should be continued
after a long rest Period with a very low current.
This procedure of slow-rate discharging and rest-
ing may be done several times to obtain the best
result.

If the battery will not be used normally with SOC
levels below 10 %, the procedure of slow-rate
discharging and resting can also be omitted in or-
der to save time. The significance of extracting
the last available charge out of the battery can be
mainly seen if the battery is totally discharged.
Erroneous capacity results in notable error in the
voltage only during the steep OCV slope at the
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Figure 2: Typical PD experiment at 1C rate with 10 %
pulse rate, and 30 min rest time.

very end of the discharge, i.e., at very low SOC
levels.

If the battery characterization must be done in
minimum time, the capacity can also be deter-
mined from the PD experiments. The downside
is that the normal PD experiment’s end-of-test
criteria is met when the voltage hits the end-
of-discharge voltage for the first time. Thus,
the residue charge that could be extracted from
the battery after the relaxation effect is over is
missed. However, after the first PD experiment,
it is possible to further continue the discharging.
The actual measured capacity should then be
used as the nominal capacity in the calculation
of the usable capacity in (1).

3.2.2 Open-circuit voltage

The easiest method to characterize the OCV is
to make a PD experiment with at least 10 cur-
rent pulses and long enough rest times for the
OCYV to achieve steady-state condition, or at least
get to near steady-state condition. In [8], it was
shown that the relaxation time is in the order of
hours, and at a low SOC, the relaxation time still
increases significantly. However, the longer re-
laxation time near the depletion of a battery is
significant only if the battery operates regularily
at a very low SOC region, and especially, stays
there long times without loading. If that kind
of operation is likely and that behavior needs
to be modeled, either very long rest times at a
low SOC region or a rapid test method described
in [8] should be utilized. Otherwise, the signif-
icant prolonging of the relaxation time does not

need specific measures. Worth notice is also that
the rest time obviously needs not to be constant
for every current pulse, but the length may vary
as a function of SOC. That is, the very last pulses
at a low SOC may employ longer rest times than
the rest of the pulses.

Once the SOC-OCYV mapping has been obtained
from the experiment, the result may be repre-
sented as a LUT with linear interpolation, or as
a mathematical function, e.g. polynomial func-
tion. However, the problem with using a polyno-
mial function is that the order of the function gets
easily high, which yields to a high uncertainty of
the parameters, and thus, to poor result. On the
other hand, the problem with a low-order polyno-
mial function is that it cannot represent the OCV
curve accurately. Therefore, usually the best re-
sult is achieved by representing the SOC-OCV
mapping as a LUT with linear interpolation.

3.2.3 Ohmic resistance

At the time instants when a new discharge pulse
is beginning, the direct voltage drop is due to the
ohmic resistance . That is:

_ AU
AT

The resistance can be calculated at either or both
edge of each discharge pulse. This is illustrated
in Fig 3, which shows a part of a voltage response
for C/2 pulse discharge experiment. The data
points for AU extraction are shown as red cir-
cles, and they are shown at both edges. A LUT
or curve fitting can be utilized in order to express
the resistance as a function of SOC.

Ry (16)
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Figure 3: Voltage response for PD experiment. Red
circles mark data points for R extraction.

3.2.4 RC parallel circuits

RC-network parameters can be extracted from
the voltage data during a current pulse as e.g. in
[3,4,9]. Another method is to extract the time
constants and initial voltages from the voltage
data during the rest period. Then, the preced-
ing current-pulse amplitude and duration may be
used to extract the resistance and capacitance
values. In this way, the measured voltage dur-
ing the rest period is affected only by the RC-
networks. The OCV as well as the values for the
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RC branches stay constant during the extraction
of the time constants and initial voltages. Also
least-squares identification as well as other sys-
tem identification methods may be used in the
parameter extraction.

3.2.5 Self-discharge

The self-discharge rate for lithium-ion batteries
is in the area of 5 % per month. This data can
be obtained from the manufacturer or by making
a dedicated experiment. Obviously, because the
self-discharge is a very slow process, the exper-
iment takes weeks. If there 1s no time for that
or long-time simulations are of no interest, the
self-discharge behavior can be neglected or the
general 5 % per month rate can be used.

3.2.6 Procedure for model extraction

e Preparation procedures. After this, the bat-
tery is fully charged and balanced and is
ready for tests.

o Characterization of the capacity. The ca-
pacity characterization is needed to deter-
mine SOC accurately during the model ex-
traction. For rapid characterization, the ca-
pacity can be extracted from the same PD
experiments, which are made for the tran-
sient response network parameter extrac-
tion. Another method is to use constant-
current discharging at low rate and to fin-
ish the discharging by continuing the dis-
charge after the voltage has recovered be-
cause of the relaxation effect until the bat-
tery is totally discharged. For a battery with
multiple series-connected cells, it must be
ensured that none of the cells is discharged
below the cut-off voltage. After the experi-
ment is done, the battery should be charged
back to full state. Temperature-dependency
should also be obtained either by making
multiple capacity experiments at different
temperatures or by extracting the informa-
tion from the specification or some other
datasheet provided by the manufacturer.

o Characterization of the OCV. The OCV can
be extracted e.g. with a PD experiment with
at least 10 current pulses and long rest times
in the order of 30-120 min. After the PD ex-
periment, it is preferred to make also a PC
experiment instead of normal charge, be-
cause that data can be used afterwards for
ohmic resistance and RC parallel branches’
parameter extraction as well as model vali-
dation. If the OCV from the PC experiment
differs notably from that of the PD experi-
ment, average value may be used.

e Characterization of the ohmic resistance.
The ohmic resistance can be extracted from
the PD and PC experiments. The best re-
sult is obtained by using a high number of
current pulses. Nevertheless, the duration of
the experiment can be kept relatively short,

because the rest period need not be long.
The rest period for obtaining only the ohmic
resistance can even be in the order of sec-
onds or tens of seconds. However, for high
current rates there may be a need to employ
a medium rest period in the area of minutes
to cool down the battery. Multiple experi-
ments with various current rates and temper-
atures should be made to achieve the best re-
sult. If there is only very limited time for ex-
periments, the ohmic resistance may also be
obtained from the same experimental data
that was obtained for the OCV-curve deter-
mination.

o Characterization of the RC branches. These
resistances and capacitances can be ob-
tained from the PD and PC experiments.
The experiments should have relatively long
rest time in order to be able to character-
ize also the long time-constant behavior.
Generally, the RC network parameters can
be extracted from the same experimental
data that were obtained from the OCV-curve
characterization, if the PD and PC exper-
iments with long rest times were used for
that. Otherwise, a new test with rest periods
preferably in the area of 10—60 min must be
made.

e Characterization of the self-discharge. Self-
discharge rate can be obtained from the
manufacturer or it can be measured. If the
model is used only for short-time simula-
tions, the self-discharge behavior can be ne-
glected.

o Addition of the aging effects. Aging effects
can be added into the model e.g. in the form
of LUTs or mathematical expressions. Gen-
erally, the capacity degrades and the resis-
teinces increase as a function of time and cy-
cles.

3.3 Model evaluation measures

The following error measures are used to evalu-
ate the model: mean absolute percentage error
(MAPE), and root mean square percentage error
(RMSPE):

n

1 . 7).
MAPE = - Y |£ =1 100 (17)
il Y
1 & vi — Ui 2
RMSPE = | =) < X 100) (18)
o N Y

where n is the number of samples, y; is the i th
measured value, and ; is the ¢ th predicted value,
i.e. the simulated value.
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4 Experimental results

4.1 Test environment

A module-level test environment for battery char-
acterization has been built in the laboratory. Bat-
tery modules can be loaded with any current pro-
file up to approximately 500 A discharge and
127 A charge current, respectively. In near fu-
ture, the laboratory will be upgraded to achieve
higher current ratings. Also extra equipment
such as temperature chambers will be installed.

Figure 4: Battery test setup.

A commercial lithium-ion polymer battery mod-
ule from Kokam was investigated in the exper-
iments. The battery consists of seven series-
connected SLPB 100216216H lithium-ion poly-
mer pouch-type cells. The positive electrode ma-
terial is lithium-manganese-nickel-cobalt-oxide
and the negative electrode material is graphite.
The specification of the battery is shown in Table
1 and a photo of the battery is shown in Fig. 5.

Table 1: Specification of the battery cell and module.

Property Unit Cell Module
Nominal capacity Ah 40 40
Nominal voltage \Y% 3.7 25.9
Max voltage \Y% 4.2 294
Cut-off voltage \ 2.7 18.9
Max charge current A 80 80
Cont. discharge current A 200 200
Peak discharge current A 400 400
Nominal temperature °C 25 25
Max temp. (charge) °C 40 40
Max temp. (discharge) °C 60 60
Cycle life @ 80 % DOD 1200 1200

Load current is made with a water-cooled pro-
grammable DC electronic load, model PLW12K-
120-1200 from Amrel, which has maximum cur-
rent, voltage, and power ratings of 1200 A,
120V, and 12 kW, respectively. A Powerfinn

Figure 5: Battery under test. Additional temperature
sensors have been attached inside the module.

PAP3200 is used as a power supply during charg-
ing. The power supply can be used as a con-
trolled voltage or current source with output volt-
age area of (%—36 V and current area of 0-127 A.
Its maximum output power is 3.2 kW at 24 V. A
Hioki 3390 power analyzer with either a Hioki
9278 or 9279 current clamp—depending on the
maximum current of the test—is used to measure
current, voltage, power, ampere-hours, and watt-
hours.

All equipment except the power analyzer is con-
trolled with a dSPACE MicroAutoBox (MABX)
DS 1401/1505/1507 rapid control prototyping
electronic control unit (ECU). Model-based soft-
ware development is utilized to produce code
for the ECU. Models are made with MAT-
LAB/Simulink/Stateflow. The ECU is connected
to the host computer via high speed link. All
measurements as well as other signals can be
monitored online from the host computer through
dSPACE ControlDesk software.

All relevant data are logged with 50 ms sampling
interval. Data from ControlDesk and power ana-
lyzer are merged and postprocessed afterwards to
make a unified data structure that has all relevant
information for model extraction and validation.

4.2 Model extraction

The capacity of the battery was measured to
be approximately 44.7 Ah at room temperature.
Manufacturer has also some relative capacity in-
formation for elevated as well as colder temper-
atures. A look-up table was made for f3(7).
The cycle-dependent correction factor f; (V) and
calendar-life dependent correction factor fa(ty)
were ignored.

Figure 2 shows the measured current pulses, bat-
tery average temperature, and voltage response.
Based on this experiment, OCV curve (Fig. 6)
was extracted at each SOC level. Next, a PD ex-
periment with a rate of C/2, pulse rate of 2 %, and
a rest time of 5 min was made (Fig. 7) to obtain
a detailed map of the ohmic resistance Rg. The
resulting mapping is shown in Fig. 8.

Then, the same experimental data than in the
OCV characterization, i.e. Fig. 2, was used to ex-
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Figure 6: OCV as a function of SOC.
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Figure 7: PD experiment at 1C rate, 2 % pulse rate,
and 5 min rest periods.

tract the RC parallel circuits’ parameters. Sim-
ulations were made with three RC-branches to
catch the dynamic characteristics at the whole
operating area. At very low SOC, the volt-
age response of the battery starts to slow down
rapidly and the the second time-scale resistance
increases at the same time. As a consequence, the
otherwise almost invisible second time-scale re-
sistance becomes visible. The simulation results
of a model are shown in Fig. 9. One part from the
middle of the experimented is shown in Fig. 10 to
get a better picture of the model accuracy.

As can be seen from the figures, the accuracy
of the model is very good. The very short-time
peaks in the voltage residual are caused by volt-
age differences during the current step rise and
fall times, the duration of the error peak is only
one timestep. They cannot be eliminated by
means of parameterizing and they should be ne-
glected in the analysis.

35

Resistance [m¢)]

0 20 40 60 80 100
SOC [%]

Figure 8: Series resistance as a function of SOC.
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(a) Battery voltage. Simulation result with 3 RC branches.

Error (%)

_2 -
0 3600 7200 10800 14400 18000 21600

Time [s]

(b) Voltage residual. MAPE = 0.211 %, RMSPE =
0.4949 %.

Figure 9: PD experiment at 1C rate, 10 % pulse rate,
and 30 min rest time.

Because battery’s charging characteristics are a
bit different from discharge characteristics, also
a similar charging experiment was made to ex-
tract the parameters during charging. However,
the charging was finalized with constant-voltage
charging instead of constant-current charging.
These experiments were repeated for different
current rates to get a relationship between the
current-rate and resistance values. The results of
the 4C experiment are shown in Fig. 11.

4.3 Model validation

Since there are no standard drive cycles for
NRMM, a battery current profile is formed based
on a measured power profile of an underground
mining LHD loader [10]. The mining loader has
a hydrostatic driveline and a hydrostatic imple-
ment. The loader was instrumented and test cy-
cles were run in a real test mine. The net power
is a sum of traction %)ump power and implement
pump power. An illustration of the duty cycle
of the loader and the measured power profile are
shown in Fig. 12.

One of many possible electrification schemes is
to downsize the ICE and to include a battery as
an energy buffer. Because of simplicity, a series-
hybrid topology with a battery in the DC link is
considered here to form a battery current profile
from the measured power profile, see Fig. 13.
The ICE is assumed to provide constant power.
Thus, the difference between the ICE power and
load power is taken from the battery. There-
fore, the battery power profile can be obtained
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Figure 11: PD experiment at 4C rate, 10 % pulse rate,
and 30 min rest time.

by shifting the total power profile of Fig. 12(b)
downwards equally to the engine power. The
battery current is then calculated in real-time in
the MABX ECU based on the measured module
voltage that is multiplied by the number of series-
connected modules.

A charge-depleting (CD) mode is considered
here. Two battery configurations with the same
battery module current profile are shown in Table
2. For validation purposes, the whole SOC range
is covered. The LHD CD cycle is done so many
times that the cut-off voltage is reached, i.e. the
first cell reaches the cut-off voltage of 2.7 V.
The results of the experiment and simulation are
shown in Fig. 14. As can be seen from the fig-
ure, the simulated voltage response follows very
closely to the measured voltage in the whole op-
erating area. The higher residual peaks, which
occur during instantenous current steps, last only

Empty bucket

(a) Duty cycle.

80

40

Power kW]

Power

0 60 120 180 240 300 360 420
Time [s]

(b) Net power of traction and implement hydraulics.

Figure 12: Duty cycle of an LHD loader. Total length
of the cycle is 680 m.

~v
000K | T | /A

Figure 13: Electrification scheme.

for one sampling period and can be neglected.
Thus, the residual of Fig. 14 stays within 1 %.
Based on the validation results, it can be con-
cluded that the accuracy of the model is very
good, the error is less than 1 % in the normal
operation area of 10-100 % SOC and current
rate of C/2—4C current-rate. In the experiments,
the temperature varied in the range of approxi-
mately 23-40 °C, and the temperature effect was
included into the model within that range. Better
accuracy for the wider temperature range could
be achieved by using a temperature chamber or
a controlled liquid-cooling system during model
parameter extraction process.

5 Conclusion

A versatile battery model for dynamic simula-
tions of EVs and electric NRMM was presented.
The model predicts the SOC, OCYV, terminal volt-
age, and SOH for any current profile. It also takes
temperature and current rate effects into account
in fairly easy and intuitive manner. Calendar life
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Table 2: Specification of the battery pack.

Property Unit 14S2P  28S1P
Modules in series 14 28
Modules in parallel 2 1
Nominal capacity Ah 80 40
Nominal voltage v 362.6 7252
Maximum voltage v 408.8  817.6
Cut-off voltage v 2646 5292
Maximum charge current A 160 80
Cont. discharge current A 400 200
Peak discharge current A 800 400
Energy kWh 30 30

and cycle life effects can also be easily included
into the model. The model is computationally
light, but still the error is within 1 %.

A commercial lithium-ion polymer battery with
LiMnNiCoO4 cathode andp graphite anode was
used in the experiments. The battery consists of
seven series-connected 40 Ah pouch-type cells
with a nominal voltage of 3.7 V and continuous
current rating of 200 A. A module-level lab-
oratory battery test environment was built and
used to make experiments and to collect data
for model extraction and validation. The model
parameters were extracted from a set of simple
pulse loading experiments. The model was vali-
dated by using a current profile that was formed
from a measured power profile of an under-
ground mining loader’s typical duty cycle.
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