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Abstract

Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size,
and disparate usage, and is not well understood. Battery life simulation scenarios that capture varying
ambient temperature profiles, battery sizes, and driving patterns are of great value to battery manufacturers
and vehicle original equipment manufacturers. This study seeks to improve understanding of battery wear in
PEVs by implementing a predictive battery wear model, developed by the National Renewable Energy
Laboratory, that is capable of capturing the effects of multiple cycling and storage conditions in a representative
lithium chemistry. In particular, this paper explores the sensitivity of battery wear rates to ambient conditions,
maximum allowable depth of discharge, and vehicle miles traveled. The analysis focuses on two midsize vehicle
platforms: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric
vehicle (PHEV) with 40 mi (64 km) of nominal charge-depleting range. Current U.S. hybrid electric vehicle
populations are used to focus analysis on markets where consumers have shown a tendency towards early
adoption of advanced vehicle technology. Both cross-sectional and longitudinal driving distance distributions are
implemented to represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. In the scenarios
examined, battery wear over an 8-year period was found to be dominated by ambient conditions for the BEV
with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth
of discharge with capacity fade ranging from 16% to 24%. In addition, the BEV and PHEV were found to be
comparable in terms of petroleum displacement potential after 8 years of service due to the BEV’s limited utility
for accomplishing long trips. Future work may include incorporating the effects of temperature on pack

internal resistance/available capacity and analyzing a range of vehicle-to-grid scenarios.
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petroleum consumption by storing and using
1 Introduction energy from the electric grid in an on-board
battery. Widespread adoption of PEVs will be

Plug-in electric vehicles (PEVs) are an advanced impacted by the ability of original equipment

vehicle technology capable of reducing liquid
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manufacturers to accurately predict battery life to
produce durable vehicles at a reasonable price.
Unfortunately, battery life in PEVs is inherently
variable with factors such as ambient temperature,
vehicle miles traveled (VMT), and charging
behavior all interacting to produce potentially
disparate power and energy fade rates. Battery
wear is also sensitive to maximum allowable depth
of discharge (DoD) and pack thermal management.
The degree to which these sizing and usage
conditions impact battery wear rates and the
variability of wear rates is explored.

2 Project Approach

To explore the sensitivity and variability of battery
wear rate in PEVs to various parameters, a
predictive battery wear model developed by the
National Renewable Energy Laboratory (NREL)
was implemented [1]. The life model is informed
by vehicle powertrain and battery pack thermal
modeling capabilities developed internally at
NREL. By leveraging these existing capabilities, it
was possible to capture the effects of drive cycle-
based loading and ambient conditions on battery
wear rates in a predictive and robust method. An
overview of this integrated approach is provided,
followed by an explanation of various sizing and
usage scenarios examined.

2.1 Battery Life Model

Battery aging is caused by multiple phenomena
related to both cycling and calendar age. Battery
degradation is accelerated with the DoD of
cycling, elevated temperature, and elevated voltage
exposure, among other factors. At the battery
terminals, the observable effects of degradation are
an increase in resistance and a reduction in
capacity. These two effects can be correlated with
power and energy loss that cause battery end-of-
life in an application. Mechanisms for resistance
growth include loss of electrical conduction paths
in the electrodes, fracture and isolation of electrode
sites, growth of film layers at the electrode surface,
and degradation of the electrolyte. Mechanisms for
capacity loss include fracture, isolation, and
chemical degradation of electrode material, as well
as loss of cyclable lithium (Li) from the system as
a byproduct of side reactions.

Under storage or calendar-aging conditions, the
dominant fade mechanism is typically growth of a
resistive film layer at the electrode surface. As the
layer grows, cyclable Li is also consumed from the
system, reducing capacity. In the present model,

resistance growth and Li-capacity loss are assumed
to be proportional to the square-root of time, t*2,
typical of diffusion-limited film-growth processes
[2]. Under cycling-intense conditions, degradation
is mainly caused by structural degradation of the
electrode matrix and active sites. Cycling-driven
degradation is assumed to be proportional to the
number of cycles, N. Cell resistance growth due to
calendar- and cycling-driven mechanisms are
assumed to be additive:

R =a, + a;t’? + a,N 1)

Cell capacity is assumed to be controlled by either
loss of cyclable Li or loss of electrode sites,

Q = min(Qui, Qsites) )

where
Qui = by + byt ©)
sites = Co TC1N 4)

Models (1), (3), and (4) are readily fit to a
resistance or capacity trajectory measured over
time for one specific storage or cycling condition.
Using multiple storage and cycling datasets,
functional dependence can be built for rate
constants a,(T, V, DoD), a(T, V, DoD), b(T, V,
DoD), and c,(T, V, DoD). The present battery life
model was fit to laboratory aging datasets [3]-[6]
for the Li-ion graphite/nickel-cobalt-aluminum
(NCA) chemistry as described in [6]. The
graphite/NCA chemistry has generally graceful
aging characteristics and is expected to achieve 8
or more years of life when sized appropriately for
a vehicle application.

The life model employed in this analysis was
matched to experimental data for a graphite/NCA
Li-ion cell with up to 25% battery capacity fade.
Beyond this level of wear, fade rates may
accelerate, as  sometimes evidenced in
experimental data by a sharp drop in remaining
capacity with continued cycling. The present life
model does not capture possible accelerating fade
mechanisms that could occur beyond 25% capacity
fade.

In addition, the life model has been shown to have
weak sensitivity to normal battery temperature
variation over the course of a single day,
particularly when the thermal mass of the battery is
taken into account [7]. As such, this analysis uses

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2



average monthly temperatures as inputs to the life
model to capture the effect of seasonal variability
in disparate climate regions of the United States.

While high heat generation rates resulting from
aggressive driving are correlated to increased
battery temperature, the impact of fast charging as
it relates to rate-induced wear is not considered in
the present model.

2.2 FASTSim Vehicle Model

Vehicle modeling was performed using a high-
level tool developed at NREL known as FASTSIim
(Future  Automotive  Systems  Technology
Simulator). The analysis focuses on two midsize
vehicle platforms: a battery electric vehicle (BEV)
with a nominal range of 75 mi (121 km) and a
plug-in hybrid electric vehicle (PHEV) with 40 mi
(64 km) of nominal charge-depleting (CD) range
followed by charge-sustaining (CS) operation via a
gasoline-fueled internal combustion engine. Table
1 summarizes the platform and component
parameters selected for the BEV and PHEV
models, which are roughly similar to the
configuration of the production Nissan Leaf and
Chevrolet Volt, respectively [8]-[9].

Table 1. FASTSim vehicle model inputs (baseline

values).

BEV PHEV
Drag Coefficient (Cy) 0.29 0.28
Frontal Area (m%) 2.27 2.13
Vehicle Mass (kg) 1663 1850
Engine Power (kW) NA 53
Battery Capacity (kWh) 24 16
Maximum SOC 95% 85%
Maximum Allowable DoD | 90% 65%
Battery Thermal No active | Liquid
Management System cooling cooling
Accessory Load (W) 300 300
Approx UDDS
CD Range (mi) 100 50
Approx Adjusted
CD Range (mi) » 40

Battery internal heat generation rates were

correlated with drive cycles through vehicle
simulations informed with cell-level test data for a
representative  Li chemistry. Nominal heat
generation rates were determined using the
California Air Resources Board LA92 drive cycle,
which was found to produce moderate heat

generation rates characteristic of real-world drive
cycles (see Table 2).

Table 2. Cycle attributes determined through simulation
of BEV and PHEV.
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2.3  Vehicle Thermal Model

To correlate ambient conditions to battery
temperature, a detailed thermal vehicle model was
implemented. Based on previous analysis done by
NREL on a Toyota Prius [10], the thermal model
captures heating due to both ambient temperature
profiles and solar loading (see Figure 1). These
inputs are merged with battery internal heat
generation profiles during driving and charging to
calculate the average battery temperature over the
course of a 24-hour period. In addition to passive
heat transfer to ambient, the PHEV battery pack is
equipped with an active thermal management
system (TMS) capable of maintaining the battery
temperature within a desired band when driven or
plugged in. An active TMS was used to mitigate
the effects of greater heat generation rates and
smaller thermal mass in the PHEV pack whereas
the modeled BEV employed passive thermal
management. This methodology reflects current
approaches of original equipment manufacturers
and provides a means for evaluating different TMS
strategies.

Ambient

. dead Radiation

Battery

Figure 1. Vehicle thermal model employed to calculate
battery temperature with respect to ambient temperature,
solar loading, and thermal insulation.

Battery temperature was correlated to ambient for
the passively cooled BEV in two steps (see Figure
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2). First, an annual average battery temperature
above ambient temperature in three different
climates (shown in blue) was calculated according
to the total solar loading for a given day (shown in
green). In addition to solar loading, a second
temperature differential was calculated as a result
of battery heat generation and passive dissipation
during driving and charging (shown in red). The
temperature increase resulting from driving is a
function of both daily driving distance and average
ambient temperature.

30 1 M Average Ambient BEV
M w/ solar effects
M w/ solar + driving effects
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Figure 2. Average yearly battery temperature
contributions from ambient, solar loading, and internal
heat generation for simulated BEV.

Noticeably, contributions to average battery
temperature from driving are relatively small,
accounting for an increase of less than one degree
Celsius in all climates. For the BEV, this can be
attributed to both the large percentage of drive
days with zero miles (approximately 16%) and the
number of trips omitted due to distances greater
than the range of the vehicle (see section 2.4.3).

Unlike for the BEV, contributions to battery
temperature for the PHEV cannot be assumed to be
additive due to the ability of the active TMS to
heat or cool the battery as necessary. Contributions
to battery temperature in the PHEV are attributed
to three sources: (i) ambient temperature, (ii) solar
loading and (iii) heat generation plus active
cooling while driving/charging. A baseline battery
temperature (shown in blue) is calculated as the
difference above the ambient temperature due to
solar loading (shown in Figure 3 in green). The red
bar shows the adjusted temperature due to heat
generated during driving/charging and the effects
of the active TMS. The TMS is assumed to only
operate when the vehicle is being driven or while
plugged in. All scenarios assume that the PHEV is
left unplugged and stationary (implying an inactive
TMS) for approximately 8 hours during the course
of the day.

While battery temperature calculations are
performed to account for variations in driver
aggression, active versus passive TMS, and daily
distance, the cell-level effects of temperature on
internal resistance and capacity are not captured in
the present model. For example, a BEV battery
pack in Minneapolis may experience significantly
lower temperatures and subsequently reduced
vehicle efficiency and range. In addition, auxiliary
loading placed on the PHEV resulting from
operation of the active TMS with the potential to
limit CD range is not considered. Auxiliary climate
control loading has the potential to significantly
impact the CD range of PEVs as shown in [11].
Future battery wear analysis may address
temperature effects on cell internal resistance and
capacity to quantify the impact of active TMS on
PEV efficiency and utility.
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Figure 3. Average yearly battery temperature
contributions from ambient, solar loading, active
cooling, and internal heat generation for simulated
PHEV.

2.4 Design of Experiments

Upon successful integration of the battery life
model, the vehicle powertrain model, and the
vehicle thermal model, the BEV and PHEV were
run through a matrix of location, battery size, and
usage scenarios with the primary outputs being
battery resistance growth and capacity fade at 8
years. An initial sensitivity analysis revealed
ambient conditions, maximum allowable DoD, and
VMT to have the greatest influence on battery
wear. The design of experiments used to study the
effects of these variables is described in greater
detail below.

2.4.1 U.S. Ambient Conditions

An expected distribution of wear rates was desired
for both vehicles subject to U.S. ambient
conditions. Current hybrid electric vehicle (HEV)
population data were used as an estimate for the
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future distribution of PEVs. HEV population
statistics highlight both large markets and regions
where consumers have shown a tendency towards
early adoption of advanced vehicle technology.
The Polk Company’s 2010 light-duty wvehicle
registration dataset [12] was used to determine the
top 100 U.S. metropolitan areas in terms of
number of HEVs (see Figure 4). These locations
account for approximately 75% of the total U.S.
HEV population and represent a plausible estimate
for the location distribution of PEV early adopters.
Note from Table 3 moderate climates
representative of the U.S. average.

Figure 4. U.S. metropolitan areas with large HEV
populations overlaid onto average ambient temperature
map. (Credit: Evan Burton, NREL)

Table 3. Top five U.S. metropolitan areas in terms of
HEV population.

Metropolitan Area # of HEVs
Los Angeles, CA 149,042
New York City, NY 86,773
San Francisco, CA 82,756
Washington, DC 66,720
Chicago, IL 52,158
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Figure 5. Weighted distribution of average ambient
temperatures based on existing HEV populations.

Ambient temperature and solar irradiation data
were assembled from NREL’s Typical
Meteorological Year Database (TMY3) [13]. The
national weighted distribution of average yearly
ambient temperatures can be seen in Figure 5. The
TMY3 data were aggregated into monthly
averages because hourly and daily battery
temperature variations were shown to have a
negligible effect on wear rates in the battery life
model.

2.4.2  Depth of Discharge

The effect of maximum allowable DoD on battery
wear is explored for both the BEV and the PHEV.
Each vehicle was assigned a nominal value for
maximum allowable DoD and maximum state of
charge (SOC). These values are adjusted over a
feasible range for both the BEV and PHEV to
explore the effect on wear (80%-94% and 55%-—
87% maximum allowed DoD, respectively). The
SOC window of the pack is adjusted relative to
total energy to ensure that the available energy in
the pack remains constant for all maximum
allowable DoDs. By adjusting the maximum
allowable DoD and maximum SOC, the life model
will capture the wear effects of deep cycling and
operation at high voltages.

Adjusting pack energy has an impact on vehicle
mass (and cost) and is subsequently related to CD
range, efficiency, and acceleration. In light of these
interactions, the maximum allowable DoD was
restricted to values that produced vehicle range,
efficiency, and acceleration values within +1% of
the nominal design.

2.4.3  Vehicle Miles Traveled

This analysis uses fleet-aggregated driving
distance statistics in addition to longitudinal
(multi-day) travel profiles to represent the
variability of travel behavior, both from vehicle to
vehicle and from day to day. Fleet-aggregated
statistics represent a snapshot of the travel patterns
for a large fleet of vehicles on a given day. In this
study, fleet-aggregated statistics are taken from the
2001 National Household Travel Survey (NHTS)
[14] to reflect the behavior of the U.S. fleet. Using
the NHTS, a distribution of fleet distances was
created with a zero mile per day probability
calculated as approximately 16% (about one day
per week) such that the nominal VMT of the
distribution was equal to 12,375 miles per year
(19,916 km per year). This aggregated distribution
is used as the default for analysis of ambient
conditions and maximum allowable DoD.

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 5



To investigate the effect of VMT on battery wear,
a large number of longitudinal distributions were
simulated to capture the variable behavior of
consumers. Longitudinal vehicle distributions
track the driving behavior of individual vehicles
over time and tend to exhibit a more focused set of
distances with a small number of probability peaks
representing routes frequently traveled. Figure 6
shows three examples of longitudinal profiles.

15% v 0000 eeee- Example TCS Profile 1

A e Example TCS Profile 2
Example TCS Profile 3

e 7001 NHTS Cross Section

10% -+

Probability
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0% -
0 20 40 60 80
Daily Distance (mi)

Figure 6. NHTS cross sectional distribution and three
example longitudinal distributions taken from the
Traffic Choices Study.

Longitudinal distributions used in this analysis are
derived from the Puget Sound Regional Council’s
2007 Traffic Choices Study (TCS) [15]. The TCS
was an investigation of the response of travel
behavior to variable toll charges in the Seattle
metropolitan area. The study placed global
positioning systems in 445 vehicles from 275
volunteer households that recorded driving
patterns over an 18-month average per household
period. The experiment started with a baseline
period in which no artificial tolls were applied to
affect behavior. We processed the data for use in
this study by (i) only considering data collected
during the approximately 3-month baseline period,
(ii) eliminating vehicles for which no driving took
place during the baseline period, (iii) eliminating
vehicles for which significant errors in data
recording were identified, and (iv) reducing
detailed trip data to daily driving distance based
upon the length of each trip and the date on which
it was started. The resultant data were then
converted into 398 longitudinal profiles of daily
VMT with each profile representing one vehicle
over multiple days. A distribution of annual VMT
derived from this set of 398 longitudinal profiles is
shown in Figure 7.

VMT calculations for the BEV do not include
driving days where the expected daily distance is
greater than the nominal vehicle range. This

assumption represents a conservative, near-term
outlook.  Alternate  scenarios  considering
distributed charging, DC fast charging, or battery
swapping could reflect greater utility for the BEV.

15% - .
TCS Profiles
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VMT (1000*mi)

Share of TCS Profiles

Figure 7. Distribution of annual VMT for 398 TCS
longitudinal profiles.

3 Results

The BEV and PHEV were simulated to determine
battery wear rates under the conditions outlined in
Table 4.

Table 4. Tested wear conditions for the BEV and
PHEV.

BEV PHEV

Distribution of U.S. Distribution of U.S.
ambient conditions ambient conditions
(Portland, ME to (Portland, ME to
Honolulu, HI) Honolulu, HI)
Range of max Range of max
allowable DoD allowable DoD
(80%—-94%) (55%-87%)

Range of VMT Range of CD VMT
(398 TCS profiles) (398 TCS profiles)

3.1 Battery Electric Vehicle

3.1.1 U.S. Ambient Conditions

Figure 8 and Figure 9 show resistance growth and
capacity loss distributions after 8 years of wear for
the BEV subject to U.S. ambient temperatures and
U.S. average driving distributions. Resistance
growth ranges from 12% to 26% while capacity
loss ranges from 20% to 32% subject to ambient
conditions.

Wear rate variability is strongly linked to battery
temperature variability. Figure 10 shows the
distribution of yearly average battery temperatures
experienced by the BEV. Pack temperature in the
BEV was found to be greater than or equal to the
ambient temperature in the absence of an active
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TMS. The BEV battery pack is heated above
ambient due to solar loading and internal heat
generation during driving and charging.
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Figure 8. Weighted distribution of 8-year resistance
growth for BEV exposed to 100 U.S. ambient conditions
and NHTS national driving distribution.
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Figure 9. Weighted distribution of 8-year capacity loss
for BEV exposed to 100 U.S. ambient conditions and
NHTS national average driving distribution.
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Figure 10. Weighted distribution of average yearly
battery temperature for BEV exposed to 100 U.S.
ambient conditions and NHTS national average driving
distribution.

3.1.2  Depth of Discharge

Battery wear rate is sensitive to both maximum
DoD and maximum SOC allowed by the battery
management system. This sensitivity was explored

using the life model by simulating wear rates for a
number of battery sizes in the BEV architecture.
All battery sizes allowed the vehicle to discharge
21.6 kWh of energy from the battery and achieved
consistent range, acceleration, and efficiency
values to within 1% of the nominal vehicle
design. Figure 11 shows resistance growth and
capacity loss at 8 years for multiple battery sizes
subject to ambient conditions in Los Angeles, CA.

40% -
BEV - Los Angeles, CA

30%
20% -

10% - * 8 yr capacity fade
B 8 yr resistance growth

0% T T T ]
75% 80% 85% 90% 95%

Depth of Discharge

Figure 11. Eight-year resistance growth and capacity
fade as a function of maximum allowable DoD for BEV
exposed to ambient conditions in Los Angeles, CA and

NHTS national driving distribution.

As expected, wear can be seen to increase as the
maximum allowable DoD window is expanded to
maintain  range for smaller battery packs.
Increasing the maximum allowable DoD of the
pack from 80% to 94% causes 8-year resistance
growth and capacity fade values to increase by 6%
and 8% respectively. Using near-term battery
prices ($700/kWh production cost [16]) the 94%
DoD scenario represents a beginning-of-life pack
cost savings of $700 while the 80% DoD design
increases cost by $2,100 (both relative to the 90%
DoD pack).

3.1.3  Vehicle Miles Traveled

Battery wear in the BEV was subjected to 398
longitudinal distance distributions as interpreted
from the TCS. Figure 12 shows the results of this
simulation in terms of resistance growth and
capacity fade after 8 years subject to ambient
conditions in Los Angeles, CA.

Increased VMT can be seen to have opposing
effects on resistance growth and capacity loss in
the BEV for the simulated longitudinal profiles.
Eight-year resistance growth increases by 18%
over the selected range of VMT while capacity
fade actually decreases by 5% at high VMT.
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In the life model, capacity fade is dictated by the
greater of two fade mechanisms, calendar and
cycling. In this case, calendar fade is the dominant
mechanism driven by average daily voltage. By
increasing VMT, the battery is allowed to spend
greater amounts of time resting at lower voltages
(before daily recharge), which extends calendar
life and thus reduces capacity fade.

30% -

20%

= Resistance Growth
10% - + Capacity Fade
BEV - TCS Profiles

0% T T ]
0 5000 10000 15000
VMT (mi)

Figure 12. Eight-year resistance growth and capacity
fade as a function of VMT for BEV exposed to ambient
conditions in Los Angeles, CA and 398 longitudinal
driving distributions.

This analysis is restricted to the single-charge-per-
day scenario, and as such, driving days with
distances longer than the nominal range of the
vehicle are assumed to be accommodated by an
alternative means of transportation. To represent
the percentage of annual miles the BEV can
achieve relative its original distribution, a BEV-
specific, multiple day individual utility factor
(IUFggy) is implemented according to Equation 5.
As an example, a longitudinal distribution with an
IUFgey equal to 50% would be able to achieve half
of its annual miles in the BEV with one charge per
day with the remaining miles accommodated by
some other means.

Achieved Annual Miles
1UFgpy =

Annual Miles of Original Distribution (5)

A unique IUFggy is calculated for each of the 398
longitudinal profiles. The distribution of 1UFggy
for the TCS is shown in Figure 13. The minimum
and maximum of this distribution are 3% and
100%, respectively, with the mean occurring at an
IUFgey of 75%.
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Figure 13. Distribution of IUF for BEV exposed to
ambient conditions in Los Angeles, CA and 398
longitudinal driving distributions over 8 years.

3.2 Plug-In Hybrid Electric Vehicle

3.2.1 U.S. Ambient Conditions

Resistance growth and capacity fade distributions
after 8 years of use for the PHEV subject to U.S.
ambient temperatures and average driving
distributions can be seen in Figure 14 and Figure
15. Resistance growth ranges from 18%-26%, and
capacity loss ranges from 14%-20% over 8 years
subject to variation in ambient temperature.

Figure 16 shows the distribution of battery
temperatures experienced by the PHEV when
exposed to U.S. ambient conditions. By reducing
average battery temperatures and minimizing the
effect of ambient conditions on the battery, the
active TMS in the PHEV allows for reduced wear
rates with relatively low amounts of variability
with respect to regional climate differences
experienced in the United States.
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Figure 14. Weighted distribution of 8-year resistance
growth for PHEV exposed to 100 U.S. ambient
conditions and NHTS national driving distribution.

EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 8



60% -
50% -
20% PHEV
30% -
20% -

10%

Share of U.S. Distribution

0% -

10%
12%
14%
16%
18%
20%
22% |
24% |
26% |
28% |
30% |
32% |

8 -yr Capacity Fade

Figure 15. Weighted distribution of 8-year capacity fade
for PHEV exposed to 100 U.S. ambient conditions and
NHTS national driving distribution.
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Figure 16. Weighted distribution of average yearly
battery temperature for PHEV exposed to 100 U.S.
ambient conditions and NHTS national driving
distribution.

3.2.2  Depth of Discharge

Battery wear sensitivity to maximum allowable
DoD was explored for the PHEV. All battery sizes
allowed the vehicle to discharge 10.4 kWh of
energy from the battery and achieved consistent
CD range, acceleration, and efficiency values to
within £1% of the baseline case. Figure 17 shows
resistance growth and capacity loss at 8 years for a
range of battery sizes.

Increasing the maximum allowable DoD window
of the PHEV from 55% to 87% increased
resistance growth by 18% while capacity loss
increased by 8% over the same range. As the
maximum allowable DoD window is expanded,
increased resistance growth limits the power
capability of the pack. Loss of pack power would
be reflected at the vehicle level in an increased
degree of blended electric/petroleum operation or
reduced all-electric vehicle power. The 87% DoD
scenario represents a beginning-of-life pack cost
savings of $2,800 while the 55% DoD design

increases cost by $2,100 (both relative to the 65%
DoD pack).
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Figure 17. 8-year resistance growth and capacity fade as
a function of maximum allowable DoD for PHEV
exposed to ambient conditions in Los Angeles, CA and
NHTS national driving distribution.

3.2.3  Vehicle Miles Traveled

The PHEV was subjected to an array of annual
VMT scenarios according to the 398 longitudinal
profiles derived from the TCS. Figure 18 shows
the results of this analysis in terms of resistance
growth and capacity fade after 8 years subject to
ambient conditions in Los Angeles, CA.
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Figure 18. 8-year resistance growth and capacity loss as
a function of VMT for PHEV exposed to ambient
conditions in Los Angeles, CA and 398 longitudinal
driving distributions.

As with the BEV, increased VMT can be seen to
have opposing effects on resistance growth and
capacity loss. Eight-year resistance growth
increases by 17% over the selected range of VMT
while capacity fade decreases by 5% at high VMT.

Note that the scatter of resistance growth and
capacity fade is not as strongly correlated to VMT
as was the BEV. This is due to the discrepancy in
wear mechanisms between CD and CS operation
in the PHEV. Wear induced by the deep cycles of
CD operation significantly outweigh battery
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degradation associated with the shallow cycling of 4 Conclusions

CS operation. Battery wear in the PHEV can be
seen to be more closely related with CD VMT, as
shown in Figure 19.

30% -
PHEV - TCS Profiles
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20% - .
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Figure 19. 8-year resistance growth and capacity fade as
a function of CD VMT for PHEV exposed to ambient
conditions in Los Angeles, CA and 398 longitudinal
distributions.

A unique IUF is again calculated for each of the

398 longitudinal profiles. However, since the o
PHEV is assumed to have access to refueling
stations, allowing it to operate in CS mode for a
nearly unlimited distance, IUFpuey is calculated as

the ratio of annual miles achieved in CD mode to

the total annual miles (see Equation 6). For
example, a distribution with an IUFpey equal to

50% would be able to achieve half of its annual
miles in CD mode (with one charge per day) with ,
the remaining miles accomplished with the PHEV

in CS mode.

Annual CD Miles
Annual CD + Annual CS Miles (6)

1UFpppy =

The distribution of IUFpuey for the TCS is shown
in Figure 20. The minimum and maximum of this
distribution are 9% and 100%, respectively, with
the mean occurring at an IUFppey of 78%.

20% 7 PHEV - TCS Profiles
3
5 15% -
a
wv
(8]
= 10% -
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©
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Individual Utility Factor

Figure 20. Distribution of IUF for PHEV exposed to
ambient conditions in Los Angeles, CA and 398
longitudinal driving distributions over 8 years.

The sensitivity of battery wear to ambient
conditions, battery size, and usage patterns has
been explored. Major results of this analysis
include:

The spectrum of climate and usage conditions
PEVs are expected to face in the U.S. market
suggest that the assumption of a single average
ambient  condition for  battery  wear
calculations may not be representative of
observed behavior in the fleet.

Ambient conditions have a large effect on
battery wear for all variables considered in this
study. The effects of ambient conditions on
battery life can be mitigated by appropriate
vehicle design. Thermal insulation and TMSs
can be designed to improve fade rates for each
vehicle platform.

TMSs that employ active battery heating/
cooling can reduce the amount of temperature
variability in the pack. The passively cooled
BEV experienced yearly average pack
temperatures from 8°C to 26°C while the
actively heated/cooled PHEV ranged from
14°C to 24°C.

Maximum allowable DoD was found to
significantly impact battery wear. Resistance
growth and capacity fade were significantly
reduced by designing a pack to operate with a
relatively low maximum allowable DoD.
However, pack design for low DoD can
increase up-front vehicle costs by requiring
additional total energy to achieve a desired CD
range. For the modeled BEV, the extra battery
capacity required for an 80% vs. 94% DoD
window represents a roughly $2,800 increment
in pack cost. For the modeled PHEV, the extra
battery capacity required for a 55% vs. 87%
DoD window represents a roughly $4,900
increment in pack cost. Increased battery
energy may also require components such as
the electric motor to be resized to maintain
vehicle acceleration.

The effect of VMT was explored for both the
simulated BEV and PHEV. Battery wear was
found to be a strong function of VMT for the
BEV and of CD VMT for the PHEV. Under
the single-charge-per-day assumption,
increasing VMT was observed to decrease
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capacity fade as longer driving trips reduced
the amount of high voltage exposure to which
the pack was subjected. This effect is believed
to be pronounced by the unique characteristics
of the NCA chemistry and would be expected
to change significantly under alternative
charge strategies (just-in-time, end-of-day,
opportunity, 1x/day, 2x/day, etc.).

e The PHEV can achieve a comparable
distribution of IUF to the BEV over 8 years
despite the substantially shorter CD range of
the PHEV. For the 398 longitudinal
distributions simulated, the BEV achieved an
average IUF of 75% compared to an average
of 78% for the PHEV. This result is a product
of the assumption that driving trips longer than
the range of the BEV will be accommodated
by some other means of transportation. The
effects of this assumption are magnified as the
BEV experiences reduced range due to
capacity loss.

Future work may focus on improving the
comparison of vehicle utility by incorporating
effects of temperature on pack internal resistance
and capacity. These effects are expected to reduce
the utility of both BEVs and PHEVs as vehicle
range is compromised at low pack temperatures
and internal resistance increases at high
temperatures. Additional analysis may also seek to
develop a range of potential near term vehicle-to-
grid scenarios to determine the subsequent impact
on battery wear and achievable VMT.
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List of Acronyms

BEV battery electric vehicle

CD charge depleting

CS charge sustaining

DoD depth of discharge

FASTSim  Future Automotive Systems Technology
Simulator

HEV hybrid electric vehicle

IUF individual utility factor

LA92 California Air Resources Board Unified
Driving Schedule

Li lithium

NCA nickel-cobalt-aluminum

NHTS National Household Travel Survey

NREL National Renewable Energy Laboratory
PEV plug-in electric vehicle

PHEV plug-in hybrid electric vehicle

TCS Traffic Choices Study

TMS thermal management system

TMY3 Typical Meteorological Year Database

uUDDS Urban Dynamometer Driving Schedule

us06 Supplemental Federal Test Procedure
Driving Schedule

VMT vehicle miles traveled
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