
EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  1

EVS26 
Los Angeles, California, May 6-9, 2012 

Pattern Recognition-Based State-of-Health Prediction for a 
PEM Fuel Cell 

Jonghoon Kim1, Changyoon Chun1, Inhae Lee2, Yongsug Tak2, B. H. Cho1 
1School of Electrical Engineering and Computer Science, Seoul National University 

2Department of Chemical Engineering, Inha University 

Abstract 
This work investigates a pattern recognition-based diagnosis approach as an application of the Hamming 

neural network to the identification of suitable fuel cell model parameters, which aim to diagnose state-of-

health (SOH) for a polymer electrolyte membrane (PEM) fuel cell. The fuel cell output voltage (FCOV) 

patterns of the 20 PEM fuel cells were measured, together with the model parameters, as representative 

patterns. Through statistical analysis of the FCOV patterns for 20 single cells, the Hamming neural network 

is applied for identification of the representative FCOV pattern that matches most closely of the pattern of 

the arbitrary cell to be measured. Considering, the selected cell’s ΔRd is properly applied to diagnose SOH 

of an arbitrary cell through the comparison with those of fully fresh and aged cells with the minimum and 

maximum of the ΔRd in experimental cell group, respectively. 
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1 Introduction 
The polymer electrolyte membrane (PEM) fuel 
cell are considered to be the most promising 
energy technology with the advantages of low-
operating temperature, high current density, high 
potential for low cost and volume, fast start-up 
ability become the most promising and attractive 
candidate for electric vehicle power [1]. But, fuel 
cells still suffer from a low reliability and a short 
lifetime, which make them difficult to satisfy 
user’s requirements. Moreover, when dealing 
with reliability and durability, the fuel cell 
diagnosis has been identified among the critical 
issues that need to be developed to increase 
system performance. The development of 
diagnostic can help evaluating the fuel cell state-
of-health (SOH) [2][3]. Precise SOH diagnosis is 
critical in practical applications where it is 
necessary to determine how long the fuel cell 

will last, and to minimize the risk of permanent 
internal damage. 
In general, fuel cell voltage is highly dependent to 
the pulse current. The magnitude of the decrease in 
this voltage, called the voltage variance, is 
associated with changes in fuel cell model 
parameters that include open circuit voltage (OCV; 
ENernst), three types of losses such as ohmic losses 
(Rohm), activation losses (Ract) concentration losses 
(Rconc), and double layer capacitance (Cdl) [4][5]. 
Since these parameters vary with electrochemical 
characteristics, temperature and aging effect, the 
voltage variance can be used to determine the 
magnitude of the parameters for the fuel cell model. 
Specifically, two losses, namely, the activation 
losses and the concentration losses, are considered 
as critical factors that determine the magnitude of 
the voltage variance.  
When a constant current is commonly applied to 
the cells, the magnitudes of the respective voltage 
variance are different. In addition, the fuel cell 
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output voltage (FCOV) pattern of each cell is 
almost constant under identical condition such as 
pulse current magnitude and time interval. Thus, 
the FCOV pattern can be used to discriminate 
among PEM fuel cells with different characteri-
stics for improved SOH diagnosis. This investig-
ation proposes the use of a Hamming neural 
network [6]-[8] for FCOV pattern recognition. 
The Hamming neural network is generally used 
and designed explicitly for binary pattern recogn-
ition. In this work, the Hamming neural network 
is used to evaluate several predetermined repres-
entative FCOV pattern and determine the one 
that is closest to the input FCOV pattern by 
comparing the inner product. Through the statist-
cal analysis, the proposed method can perform 
recognition of an arbitrary FCOV pattern. Repre-
entative FCOV patterns are collected from 20 
single cells, together with four characteristic 
parameters for each cell. Considering the equiva-
lent circuit fuel cell model, a representative loss 
ΔRd(Ract+Rconc) defined as the sum of two losses 
(activation and concentration losses) of the 
selected representative FCOV pattern is properly  
applied to diagnose SOH of an arbitrary cell 
through the comparison with those of fully fresh 
and aged cells with the minimum and maximum 
of the ΔRd in experimental cell group. Finally, 
these results enable us to provide interesting 
perspectives for diagnostic fuel cell SOH without 
the need for repeated parameter measurement. 

2 Experimental setup 
The experimental setup was designed for obtain-
ing the representative FCOVs of the 20 PEM fuel 
cells by the ‘Materials and Electro-Chemistry 
Laboratory in Inha University’. A block diagram 
of the setup is presented in Fig. 1. All experi-
ments were conducted using a subscale single 
cell (active area of 25cm2). The membrane 
electrode assembly that used was a GORE™ 
PRIMEA® SERIES 57 MEA (W. L. Gore & 
Associates, Inc.) that has 0.4mg/cm2 Pt on both 

the anode and the cathode. The GDLs were 
SIGRACET® GDL 10BB (thickness of 420 μm, 
SGL Carbon Japan Ltd.). High purity H2 (99.99%) 
gas for the anode feed, high purity Air (O2 21%/ 
N2) for the cathode feed, and high purity N2 
(99.99%) gas for both the anode and cathode feed 
were used. It is necessary to determine the 
maximum hydrogen/oxygen excess ratios to avoid 
hydrogen/oxygen starvation. The experiments 
were performed with H2 and O2 under the constant 
stoichiometry mode of λH2=1and λO2=1.5. The gas 
flow rates corresponding to a stoichiometry of 1 
and 1.5 for H2 and air are 150ml/min and 
488ml/min with a constant pressure (101.325kPa), 
respectively. These gases were humidified in a 
bubbling humidifier before entering the fuel cell. 
The temperature of the cell was 70ºC and the 
humidification temperature was 70ºC (100% RH). 

3 Hamming neural network 
The Hamming neural network [6]-[8] is used for 
pattern recognition, as shown in Fig. 2. It is one of 
the simplest examples of a competitive network 
and is designed explicitly to solve binary pattern 
recognition issues. The Hamming network decides 
which representative pattern is closest to the 
current pattern by comparing the inner products.  

3.1 Feedforward layer 
The feedforward layer calculates a correlation or 
inner product between each representative pattern 
and the current pattern in order to find the 
Hamming distance (HD) from calculation the 

Figure2: Hamming neural network 

 

Figure1: Experimental setup for measuring the fuel cell output voltage (FCOV) pattern for 20 PEM fuel cells 
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difference between dimension m and HD. In 
order to calculate the inner products, weight 
matrix W1 is a set of prototype vectors and is 
transformed into the binary form, in addition to 
bias vector, b1, in (1) and (2), respectively. 
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where each row of W1 represents a prototype 
vector which it is required to be recognize, and 
each element of b1, m/2 is the threshold value 
and is set equal to the number of elements in 
each input vector R, S is the number of neurons. 
As expressed in (3), it is high desirable to have 
the ith node (1 i R≤ ≤ ) node in this layer compute 

HD( , )im − w p for a given input vector p, where   
HD( , )w pi is the HD distance between vectors iw 
and p. Then, the net input of node is as in (4), 
namely, the feedforward layer output. Finally, 
these outputs are equal to the inner (Eq. (5)). The 
neuron in this layer with the largest output 
corresponds to the prototype pattern that is 
closest in HD to the input pattern.  
 

1 HD( , ) HD( , )i im= − −⎡ ⎤⎣ ⎦W p w p w p  (3)
1 1net HD( ) 1,2, ,

2i i
m= m i S+ = − =n = W p w,p  (4)

1

1 1 1 1 12

+

+ ( )

+

⎡ ⎤
⎢ ⎥
⎢ ⎥

+ = = +⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

p p

p pa W p b purelin W p b

p p

T

T

T
S

R

R=

R

 
(5)

3.2 Recurrent layer 
The recurrent layer is known as the MAXNET. It 
is a competitive layer that performs the winner-
take-all (WTA) operation, whose purpose is to 
enhance the initial dominant response of the ith 
node and suppress the others [9]. The neurons are 
initialized with the outputs of the feedforward 
layer, which indicates the correlation between the 
prototype vectors and the input vector. As a 
result of recurrent processing, the ith node 
responds positively whereas the responses of all 
remaining nodes decay to zero. Thus, in order to 
determine a winner, as expressed in (6), the 
recurrent layer output is updated according to the 
following recurrence relation using a positive 
transfer function (poslin). 
 

2 2 2( 1) ( ( ))+a poslin W at = t  (6)

This processing requires self-feedback connections 
and negative lateral inhibition connections in 
which the output of each neuron has an inhibitory 
effect on all of the other neurons [9]. The n×n 
weight matrix of the recurrent layer W2 is taken in 
(7). The weights in this layer are set so that the 
diagonal elements are 1, and the off-diagonal 
elements have a small negative value, where 
0<ε<1/(S–1) is called the lateral interaction coeff-
icient. Thus, weight values of 1 and –ε can be set 
for the appropriate elements of W2 in (8), where 
1≤ ≤i S and 1≤ ≤j S . 
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Each neuron’s output decreases in proportion to 
the sum of the other neuron’s outputs. The output 
of the neuron with the largest initial output de-
creases more slowly than the outputs of the other 
neurons. But eventually, only one neuron will have 
a positive output. The index of the recurrent layer 
neuron with a stable positive output is the index of 
the prototype vector that is the best match with the 
input.  

4 Proposed approach 
The equivalent circuit for the charge double layer 
effect on the cell voltage is shown in Fig. 3. In this 
figure, Cdl is the equivalent capacitance depending 
on the charge double layer. Since the electrodes of 
a PEM fuel cell are porous, the capacitance Cdl is 
very large and can be in the order of several Farads 
[10]. Rohm, Ract, and Rconc are equivalent resistances 
to the ohmic, activation, and concentration over-
voltages, respectively. VCdl is the overvoltage due 
to the common effects of the double capacitive 
layer, the activation, and the concentration re-
sistances. The double layer capacitive layer over-
voltage follows the first-order dynamic (Eq. (9)) 
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Figure3: Fuel cell equivalent circuit model 
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The transient performance of the fuel cell equi-
valent circuit model over short or long time 
period is differently observed [4]. In this work, 
however, it can be assumed that the fuel cell 
current has a step or a similar shape for a short or 
long time. In such cases, the VCdl is calculated as 
in equation (9), and the voltage approximates to 
equation (10) after some time passes unless the 
current level changes significantly. Then, the 
sum of two resistances Ract and Rconc is defined as 
the magnitude of the ΔRd in (11). 
 

Cdl FC act concV I (R + R )≈ ⋅  (10)

act concdR = R + RΔ  (11)
 

The ΔRd among the PEM fuel cells is frequently 
varied with electrochemical characteristics, tem-
perature, and aging effect. As a result, the ΔRd 
can be considered as an important factor to 
determine the PEM fuel cell SOH. 

4.1 Fuel cell output voltage (FCOV) 
The pulse current profile covering from 0A to 
3.8A is applied to the fuel cell about 1100s, as 
shown in Fig. 4. Then, for a pulse current profile, 
the FCOV data collected is shown in Fig. 5. The 
FCOV pattern is recognized through experiments 
for 20 PEM fuel cells. For recognition of the 

FCOV pattern with the Hamming neural network, 
statistical analysis is absolutely necessary. Then, 
the initial starting points of each FCOV pattern 
should be fixed. However, as shown in Fig. 5, the 
initial starting voltage points (ISVP) of the 20 
PEM fuel cells were not fixed due to their different 
electrochemical characteristics. Hence, the average 
and standard deviation of the 20 collected output 
voltages cannot be compared. Therefore, it is 
required to set a standard ISVP, as shown in Fig. 6. 
For example, consider three cells A–C with diff-
erent ISVPs (VA1I–VC1I). If the standard fuel cell is 
set as B (VB1I=VB2I), then the voltages of A and C 
are higher and lower, respectively (VA1I VA2I, 
VC1I VC2I). Therefore, the three ISVPs are fixed 
at one point, as shown in Fig. 7. Based on this rule, 
the average and standard deviation of voltage A 
can be expressed in (12) and (13), respectively. 
The average (AVE) and standard deviation (STD) 
of three cells can be compared in (14) and (15). 
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Figure4: Pulse current profile covering from 0~3.8A for 
obtaining the FCOV pattern 

Figure5: Unfixed fuel cell output voltage (FCOV) 
patterns for 20 single cells 
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Figure6: A method to recognize the FCOV pattern through statistical analysis (ISVP fixation) 
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AVE AVE AVEFuel cell(A) > Fuel cell(B) > Fuel cell(C) (14)

STD STD STDFuel cell(A) Fuel cell(B) Fuel cell(C)< < (15)
 

The fixed FCOV patterns are given in Fig. 8. 
These results enable us to obtain the fixed ISVP 
(0.831V) among 20 PEM fuel cells. All averages 
and standard deviations for the collected FCOV 
patterns can be compared. 

4.2 Characteristic parameters of the 
FCOV pattern 

Table1: Four characteristic parameters for learning by 
the Hamming neural network 

SVP C1 Standard deviations of the FCOV 

AVP(f) C2 Average of the FCOV (f) 

SVP(f) C3 Standard deviation of the FCOV (f) 

MVP(f) C4 Minimum of the FCOV (f) 

Standard : Cell No. 10; (f): fixation (ISVP) 
 

As indicated in Table 1, characteristic parameters 
C1-C4 are learned by the Hamming network 
using the average, standard deviation, and 
minimum of the FCOV patterns. Each value of 
the four characteristic parameters corresponding 
to the 20 representative FCOV patterns is transf-
ormed into 1 and -1 element array with four 
levels, as shown in Fig. 9. If these patterns are 
not transformed into this binary form of same 
norm, the pattern recognition performance can be 
distorted by the one parameter of C1-C4, which 
has the large real value. In Fig. 9, avg is the 
average and std is the standard deviation of each 
characteristic parameter. The levels of each 
parameter are decided by three standard, viz., 
avg-(α×std), avg, and avg+(α×std). The levels 
are decided according to the values of the 
parameter as shown in Fig. 10. For example, if 
the value is larger than avg-(α×std) and smaller 
than avg, the level is L3. α is a tuning value and 
chosen 0.5 to make the characteristic differences. 

4.3 Pattern recognition with the Ham-
ming neural network 

As shown in Fig. 11, the feedforward layer calcul-
ates the inner product between each representative 
pattern and the current pattern. The value of each 
of the four characteristic parameters corresponding 
to 20 representative patterns is transformed into 
the binary form and stored in the weight matrix W1 
as expressed in (16) and (17). 
 

1 1 1
1 2 201

2 2 2
1 2 1 2 20

12 12 12
20 201 2 20

1
2

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= = =
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

w w ww p
w w w w pW

w pw w w

iT T
1

iT T
2

iT T

(16)

1 [12,12, ,12]=b  (17)
 

The 20 neurons storing the results of the inner 
product in the feedforward layer compete with 
each other to determine a winner. Then, self-
feedback connection and negative lateral inhibition 
connection are required to implement the WTA. 
As expressed in (18), the weights in the recurrent 

( ( ))+ ×avg stdα ( ( ))− α×avg stdavg
 

Figure9: Four levels as to three standards 
 

Figure10: Characteristics of four representative patterns
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Figure7: Each FCOV pattern comparison after ISVP Figure8: Fixed FCOV patterns for 20 single cells 
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layer W2 are set so that the diagonal elements are 
1, and the off-diagonal elements have a small 
negative value, where 0<ε<1/(20–1)  is called the 
lateral interaction coefficient (ε=0.01). After the 
competition in (19), only one neuron will have a 
nonzero output, and this neuron indicates the 
representative pattern that is closest to a current 
pattern.  
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4.4 Verification 
Table2: Representative loss ΔRd results for 20 single 

cells after 25 seconds 

Cell ΔRd[Ω] Cell ΔRd[Ω] Cell ΔRd[Ω] Cell ΔRd[Ω]

No.1 0.0052 No.6 0.0062 No.11 0.0044 No.16 0.0133

No.2 0.0070 No.7 0.0097 No.12 0.0078 No.17 0.0056

No.3 0.0073 No.8 0.0108 No.13 0.0080 No.18 0.0087

No.4 0.0083 No.9 0.0072 No.14 0.0117 No.19 0.0066

No.5 0.0058 No.10 0.0076 No.15 0.0049 No.20 0.0074
 

Representative loss ΔRd results for 20 single cells 
were previously measured after 25 seconds with 
the pulse current, and compared with those of 
arbitrary cells, as listed in Table 2. When the 
pulse current profile shown in Fig. 4 is applied to 
two arbitrary cells, the outputs of the two layers 
of the Hamming neural network for two arbitrary 
cells are shown in Fig. 12. In each case, we see 
that in the current layer, only the selected 
representative FCOV pattern has a non-zero 
output. As shown in Fig. 12(a), a representative 
loss ΔRd of an arbitrary cell 1 (0.0106Ω) is 
similar with to that of the selected representative 
FCOV pattern (No.8; 0.0108Ω). In addition, the 
FCOV pattern of the No.17 (0.0056Ω) is selected 
as the representative FCOV pattern that is closest 
to the current FCOV pattern of an arbitrary cell 2 
(0.0055Ω), as shown in Fig. 12(b). 

4.5 SOH diagnosis 
The representative loss ΔRd of the selected 
FCOV pattern in Section 4.4 is properly applied 

to diagnose SOH of an arbitrary cell through the 
comparison with those of fully fresh and aged cells 
with the minimum and maximum of the ΔRd in 
experimental cell group, respectively. In (20), the 
SOH of an arbitrary cell can be diagnosed using 
the selected cell pattern’s ΔRd, 

selected
dRΔ . 
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where, fresh
dRΔ (No.11; 0.0044Ω) and aged

dRΔ  
(No.16; 0.0133Ω) are each ΔRd values of fully 
fresh and aged cells among 20 single cells. The 
fully fresh cell has the largest SOH (SOH=1), on 
the other hand, the fully aged cell has the smallest 
SOH (SOH=0). 20 experimental single cells have 
each ΔRd within this range of 0.0044–0.0133Ω. 
With obtained ΔRd values (0.0108Ω and 0.0056Ω) 
of two arbitrary cells, the diagnosed SOHs of two 
arbitrary cells are expressed in (21) and (22), 
respectively. (SOH range: 0–1) 
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Figure11: Outputs of two layers by the Hamming neural 
network. (a) Arbitrary cell 1, selected fuel cell output 
voltage (FCOV) pattern : No. 8, (b) Arbitrary cell 2, 

selected FCOV pattern : No. 17 

 

Figure11: Hamming neural network in this work 
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Figure12: Outputs of two layers by the Hamming neural 
network. (a) Arbitrary cell 1, selected fuel cell output 
voltage (FCOV) pattern : No. 8, (b) Arbitrary cell 2, 

selected FCOV pattern : No. 17 
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We can see, the range of SOH is from 0 to 1, and 
1 means the cell is totally health, or it is new, and 
0 means the cell cannot meet the power demand 
of the practical applications. These results enable 
to us to provide interesting perspectives for 
diagnostic fuel cell SOH without the need for 
repeated parameter measurement of an arbitrary 
cell. For reference, it is assumed that Rohm is 
constant (0.0955Ω) due to little difference in 
electrochemical characteristics compared with 
that of the ΔRd among the cells. 

5 Conclusion 
Precise SOH diagnosis is critical in practical 
applications where it is necessary to determine 
how long the fuel cell will last, and to minimize 
the risk of permanent internal damage. Therefore, 
a method to diagnose SOH for a PEM fuel cell, 
using a pattern recognition based approach as an 
application of the Hamming neural network to 
the identification of suitable fuel cell model 
parameters, has been presented in this work. 
Through statistical analysis of the FCOV patterns 
for 20 single cells, the Hamming neural network 
is applied for identification of the representative 
FCOV pattern that matches most closely of the 
pattern of the arbitrary cell to be measured. The 
selected cell’s ΔRd is properly applied to 
diagnose SOH of an arbitrary cell through the 
comparison with those of fully fresh and aged 
cells with the minimum and maximum of ΔRd in 
experimental cell group, respectively. This 
avoids the need for repeated parameter measure-
ment of an arbitrary cell. Therefore, these results 
could lead to interesting perspectives for 
diagnostic fuel cell SOH. 
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