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Abstract

This work investigates a pattern recognition-based diagnosis approach as an application of the Hamming

neural network to the identification of suitable fuel cell model parameters, which aim to diagnose state-of-

health (SOH) for a polymer electrolyte membrane (PEM) fuel cell. The fuel cell output voltage (FCOV)

patterns of the 20 PEM fuel cells were measured, together with the model parameters, as representative

patterns. Through statistical analysis of the FCOV patterns for 20 single cells, the Hamming neural network

is applied for identification of the representative FCOV pattern that matches most closely of the pattern of

the arbitrary cell to be measured. Considering, the selected cell’s ARy is properly applied to diagnose SOH

of an arbitrary cell through the comparison with those of fully fresh and aged cells with the minimum and

maximum of the ARy in experimental cell group, respectively.
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1 Introduction

The polymer electrolyte membrane (PEM) fuel
cell are considered to be the most promising
energy technology with the advantages of low-
operating temperature, high current density, high
potential for low cost and volume, fast start-up
ability become the most promising and attractive
candidate for electric vehicle power [1]. But, fuel
cells still suffer from a low reliability and a short
lifetime, which make them difficult to satisfy
user’s requirements. Moreover, when dealing
with reliability and durability, the fuel cell
diagnosis has been identified among the critical
issues that need to be developed to increase
system performance. The development of
diagnostic can help evaluating the fuel cell state-
of-health (SOH) [2][3]. Precise SOH diagnosis is
critical in practical applications where it is
necessary to determine how long the fuel cell

will last, and to minimize the risk of permanent
internal damage.

In general, fuel cell voltage is highly dependent to
the pulse current. The magnitude of the decrease in
this voltage, called the voltage variance, is
associated with changes in fuel cell model
parameters that include open circuit voltage (OCV;
Enemst), three types of losses such as ohmic losses
(Ronm), activation losses (R,) concentration losses
(Reonc), and double layer capacitance (Cq) [4][5].
Since these parameters vary with electrochemical
characteristics, temperature and aging effect, the
voltage variance can be used to determine the
magnitude of the parameters for the fuel cell model.
Specifically, two losses, namely, the activation
losses and the concentration losses, are considered
as critical factors that determine the magnitude of
the voltage variance.

When a constant current is commonly applied to
the cells, the magnitudes of the respective voltage
variance are different. In addition, the fuel cell
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Figurel: Experimental setup for measuring the fuel cell output voltage (FCOV) pattern for 20 PEM fuel cells

output voltage (FCOV) pattern of each cell is
almost constant under identical condition such as
pulse current magnitude and time interval. Thus,
the FCOV pattern can be used to discriminate
among PEM fuel cells with different characteri-
stics for improved SOH diagnosis. This investig-
ation proposes the use of a Hamming neural
network [6]-[8] for FCOV pattern recognition.
The Hamming neural network is generally used
and designed explicitly for binary pattern recogn-
ition. In this work, the Hamming neural network
is used to evaluate several predetermined repres-
entative FCOV pattern and determine the one
that is closest to the input FCOV pattern by
comparing the inner product. Through the statist-
cal analysis, the proposed method can perform
recognition of an arbitrary FCOV pattern. Repre-
entative FCOV patterns are collected from 20
single cells, together with four characteristic
parameters for each cell. Considering the equiva-
lent circuit fuel cell model, a representative loss
ARG(RycrtReonc) defined as the sum of two losses
(activation and concentration losses) of the
selected representative FCOV pattern is properly
applied to diagnose SOH of an arbitrary cell
through the comparison with those of fully fresh
and aged cells with the minimum and maximum
of the ARy in experimental cell group. Finally,
these results enable us to provide interesting
perspectives for diagnostic fuel cell SOH without
the need for repeated parameter measurement.

2 Experimental setup

The experimental setup was designed for obtain-
ing the representative FCOVs of the 20 PEM fuel
cells by the ‘Materials and Electro-Chemistry
Laboratory in Inha University’. A block diagram
of the setup is presented in Fig. 1. All experi-
ments were conducted usin% a subscale single
cell (active area of 25cm”). The membrane
electrode assembly that used was a GORE™
PRIMEA® SERIES 57 MEA (W. L. Gore &
Associates, Inc.) that has 0.4mg/cm’ Pt on both
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Figure2: Hamming neural network

the anode and the cathode. The GDLs were
SIGRACET® GDL 10BB (thickness of 420 pm,
SGL Carbon Japan Ltd.). High purity H, (99.99%)
gas for the anode feed, high purity Air (O, 21%/
N;) for the cathode feed, and high purity N,
(99.99%) gas for both the anode and cathode feed
were used. It is necessary to determine the
maximum hydrogen/oxygen excess ratios to avoid
hydrogen/oxygen starvation. The experiments
were performed with H; and O, under the constant
stoichiometry mode of An,=land Xo,=1.5. The gas
flow rates corresponding to a stoichiometry of 1
and 1.5 for H, and air are 150ml/min and
488ml/min with a constant pressure (101.325kPa),
respectively. These gases were humidified in a
bubbling humidifier before entering the fuel cell.
The temperature of the cell was 70°C and the
humidification temperature was 70°C (100% RH).

3 Hamming neural network

The Hamming neural network [6]-[8] is used for
pattern recognition, as shown in Fig. 2. It is one of
the simplest examples of a competitive network
and is designed explicitly to solve binary pattern
recognition issues. The Hamming network decides
which representative pattern is closest to the
current pattern by comparing the inner products.

3.1 Feedforward layer

The feedforward layer calculates a correlation or
inner product between each representative pattern
and the current pattern in order to find the
Hamming distance (HD) from calculation the
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difference between dimension m and HD. In
order to calculate the inner products, weight
matrix W' is a set of prototype vectors and is
transformed into the binary form, in addition to
bias vector, b, in (1) and (2), respectively.

wT whow! o sz_ p’
W' = ZV‘Z’IT :% 1V:V2 zV:VZ s\{Vz _ ng 0
Sv;lir lv;’R ZV.VR - sV.VR_ p.g
m m m_T
bl=[R,R,...,R]T:{?,?,...,?_ )

where each row of W' represents a prototype
vector which it is required to be recognize, and
each element of bl, m/2 is the threshold value
and is set equal to the number of elements in
each input vector R, S is the number of neurons.
As expressed in (3), it is high desirable to have
the i™ node (1<i<R) node in this layer compute
m—HD(,W,p) for a given input vector p, where
HD(;w,p)is the HD distance between vectors ;w
and p. Then, the net input of node is as in (4),
namely, the feedforward layer output. Finally,
these outputs are equal to the inner (Eq. (5)). The
neuron in this layer with the largest output
corresponds to the prototype pattern that is
closest in HD to the input pattern.

W'p =[m—HD(,w,p) |-HD(,w,p) 3)
net,:nlzwlp+%:m—HD(iw,p) i=1,2,,8 (4
pip+R

a'=W'p+b' =

T
pzp'+R =purelin(W'p +b") 5)

psp+R

3.2 Recurrent layer

The recurrent layer is known as the MAXNET. It
is a competitive layer that performs the winner-
take-all (WTA) operation, whose purpose is to
enhance the initial dominant response of the i
node and suppress the others [9]. The neurons are
initialized with the outputs of the feedforward
layer, which indicates the correlation between the
prototype vectors and the input vector. As a
result of recurrent processing, the i node
responds positively whereas the responses of all
remaining nodes decay to zero. Thus, in order to
determine a winner, as expressed in (6), the
recurrent layer output is updated according to the
following recurrence relation using a positive
transfer function (poslin).

a’ (¢ +1) = poslin(W?a%(1)) (6)

Rconc Ract

—
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Figure3: Fuel cell equivalent circuit model

This processing requires self-feedback connections
and negative lateral inhibition connections in
which the output of each neuron has an inhibitory
effect on all of the other neurons [9;. The nxn
weight matrix of the recurrent layer W* is taken in
(7). The weights in this layer are set so that the
diagonal elements are 1, and the off-diagonal
elements have a small negative value, where
0<e<1/(S-1) is called the lateral interaction coeff-
icient. Thus, weight values of 1 and — can be set
for the appropriate elements of W? in (8), where
I<i<Sand I<j<S.

W w W I - —&
1 2. s _ 1 e =
W? = 2\{\/ 2V:V - 2v:v = ;8 . :‘S (7
iWI ‘Wz iWS —& —& - 1
a(+1)= poslin[af(z)SZaﬁ(t)J ®)
J#

Each neuron’s output decreases in proportion to
the sum of the other neuron’s outputs. The output
of the neuron with the largest initial output de-
creases more slowly than the outputs of the other
neurons. But eventually, only one neuron will have
a positive output. The index of the recurrent layer
neuron with a stable positive output is the index of
the prototype vector that is the best match with the
input.

4 Proposed approach

The equivalent circuit for the charge double layer
effect on the cell voltage is shown in Fig. 3. In this
figure, Cy is the equivalent capacitance depending
on the charge double layer. Since the electrodes of
a PEM fuel cell are porous, the capacitance Cgy is
very large and can be in the order of several Farads
[10]. Ronm, Ract, and Reopne are equivalent resistances
to the ohmic, activation, and concentration over-
voltages, respectively. V¢q is the overvoltage due
to the common effects of the double capacitive
layer, the activation, and the concentration re-
sistances. The double layer capacitive layer over-
voltage follows the first-order dynamic (Eq. (9))

dVea
dt

VCdl = (IFC - Cdl j(Racl + Rconc) (9)
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Figure4: Pulse current profile covering from 0~3.8A for

obtaining the FCOV pattern
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Figure6: A method to recognize the FCOV pattern through statistical analysis (ISVP fixation)

The transient performance of the fuel cell equi-
valent circuit model over short or long time
period is differently observed [4]. In this work,
however, it can be assumed that the fuel cell
current has a step or a similar shape for a short or
long time. In such cases, the V¢q is calculated as
in equation (9), and the voltage approximates to
equation (10) after some time passes unless the
current level changes significantly. Then, the
sum of two resistances R, and Ry, is defined as
the magnitude of the ARy in (11).

VCdl ~ IFC '(Ract + Rconc) (10)
ARc] = Ract JrRconc (1 1)

The AR4 among the PEM fuel cells is frequently
varied with electrochemical characteristics, tem-
perature, and aging effect. As a result, the ARy
can be considered as an important factor to
determine the PEM fuel cell SOH.

4.1 Fuel cell output voltage (FCOV)

The pulse current profile covering from 0OA to
3.8A is applied to the fuel cell about 1100s, as
shown in Fig. 4. Then, for a pulse current profile,
the FCOV data collected is shown in Fig. 5. The
FCOV pattern is recognized through experiments
for 20 PEM fuel cells. For recognition of the

FCOV pattern with the Hamming neural network,
statistical analysis is absolutely necessary. Then,
the initial starting points of each FCOV pattern
should be fixed. However, as shown in Fig. 5, the
initial starting voltage points (ISVP) of the 20
PEM fuel cells were not fixed due to their different
electrochemical characteristics. Hence, the average
and standard deviation of the 20 collected output
voltages cannot be compared. Therefore, it is
required to set a standard ISVP, as shown in Fig. 6.
For example, consider three cells A—C with diff-
erent ISVPs (Vaui—Vcn). If the standard fuel cell is
set as B (VB11=VB21), then the voltages of A and C
are higher and lower, respectively (Vau=Vaoi,
Vcu=Vcai). Therefore, the three ISVPs are fixed
at one point, as shown in Fig. 7. Based on this rule,
the average and standard deviation of voltage A
can be expressed in (12) and (13), respectively.
The average (AVE) and standard deviation (STD)
of three cells can be compared in (14) and (15).

ZVAZi (12)

Fuel cell(A) oy =—=L (n=1,2,---,F)
n

n

2
E (Vazi —Fuel cell(A) v ) (13)
Fuel cell(A)grp = || =

n
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The fixed FCOV patterns are given in Fig. 8.
These results enable us to obtain the fixed ISVP
(0.831V) among 20 PEM fuel cells. All averages
and standard deviations for the collected FCOV
patterns can be compared.

4.2 Characteristic parameters of the
FCOV pattern

Tablel: Four characteristic parameters for learning by
the Hamming neural network

SVP C1 | Standard deviations of the FCOV
AVP(f) | C2 | Average of the FCOV (f)

SVP(f) | C3 | Standard deviation of the FCOV (f)
MVP(f) | C4 | Minimum of the FCOV (f)

Standard : Cell No. 10; (f): fixation (ISVP)

As indicated in Table 1, characteristic parameters
C1-C4 are learned by the Hamming network
using the average, standard deviation, and
minimum of the FCOV patterns. Each value of
the four characteristic parameters corresponding
to the 20 representative FCOV patterns is transf-
ormed into 1 and -1 element array with four
levels, as shown in Fig. 9. If these patterns are
not transformed into this binary form of same
norm, the pattern recognition performance can be
distorted by the one parameter of C1-C4, which
has the large real value. In Fig. 9, avg is the
average and std is the standard deviation of each
characteristic parameter. The levels of each
parameter are decided by three standard, viz.,
avg-(axstd), avg, and avg+(axstd). The levels
are decided according to the values of the
parameter as shown in Fig. 10. For example, if
the value is larger than avg-(axstd) and smaller
than avg, the level is L3. a is a tuning value and
chosen 0.5 to make the characteristic differences.
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Figure8: Fixed FCOV patterns for 20 single cells
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4.3 Pattern recognition with the Ham-
ming neural network

As shown in Fig. 11, the feedforward layer calcul-
ates the inner product between each representative
pattern and the current pattern. The value of each
of the four characteristic parameters corresponding
to 20 representative patterns is transformed into
the binary form and stored in the weight matrix W*
as expressed in (16) and (17).

IWiT I\NI 2W1 20Wl plT
iT 1 2 2., 2 T
W! = 2V\:I :5 1W 2W . 20\:N = p.? (16)
zoWiT 1W12 le2 20W12 pgo
b'=[12,12,---,12] 17

The 20 neurons storing the results of the inner
product in the feedforward layer compete with
each other to determine a winner. Then, self-
feedback connection and negative lateral inhibition
connection are required to implement the WTA.
As expressed in (18), the weights in the recurrent
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12X1 a
Figurell: Hamming neural network in this work

layer W? are set so that the diagonal elements are
1, and the off-diagonal elements have a small
negative value, where 0<e<1/(20-1) is called the
lateral interaction coefficient (¢=0.01). After the
competition in (19), only one neuron will have a
nonzero output, and this neuron indicates the
representative pattern that is closest to a current
pattern.

whow W 1 -0.01 - —0.01
) w'oow? o w? -0.01 1 - -0.01
Woh=120 20 2 = : : . : (18)
w'oow? e w® | [-0.01 —0.01 - 1
a,.z(z+1)poslin[af(t)0.0lZaﬁ(t)] (19)
J#i

4.4 Verification

Table2: Representative loss ARy results for 20 single
cells after 25 seconds

Cell [AR(Q]| Cell [AR4Q]| Cell [AR(Q]| Cell |AR4Q]

No.1 |0.0052| No.6 |0.0062 | No.11 [0.0044| No.16 [0.0133
No.2 |0.0070| No.7 |0.0097 | No.12 [0.0078| No.17 {0.0056
No.3 |0.0073| No.8 |0.0108 | No.13 {0.0080| No.18 {0.0087
No.4 |0.0083| No.9 |0.0072| No.14 {0.0117| No.19 {0.0066
No.5 |0.0058| No.10 |0.0076 | No.15 [0.0049| No.20 {0.0074

Representative loss ARq4 results for 20 single cells
were previously measured after 25 seconds with
the pulse current, and compared with those of
arbitrary cells, as listed in Table 2. When the
pulse current profile shown in Fig. 4 is applied to
two arbitrary cells, the outputs of the two layers
of the Hamming neural network for two arbitrary
cells are shown in Fig. 12. In each case, we see
that in the current layer, only the selected
representative  FCOV pattern has a non-zero
output. As shown in Fig. 12(a), a representative
loss ARy of an arbitrary cell 1 (0.0106Q) is
similar with to that of the selected representative
FCOV pattern (No.8; 0.0108Q). In addition, the
FCOV pattern of the No.17 (0.0056Q) is selected
as the representative FCOV pattern that is closest
to the current FCOV pattern of an arbitrary cell 2
(0.0055Q2), as shown in Fig. 12(b).

4.5 SOH diagnosis

The representative loss AR4q of the selected
FCOV pattern in Section 4.4 is properly applied
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Figurel2: Outputs of two layers by the Hamming neural

network. (a) Arbitrary cell 1, selected fuel cell output
voltage (FCOV) pattern : No. 8, (b) Arbitrary cell 2,
selected FCOV pattern : No. 17

to diagnose SOH of an arbitrary cell through the
comparison with those of fully fresh and aged cells
with the minimum and maximum of the ARy in
experimental cell group, respectively. In (20), the
SOH of an arbitrary cell can be diagnosed using

the selected cell pattern’s ARy, AR?flemd )

AR(sielected _ ARgged
SOH =|———F—"—
ARSresh _ARgged

arbitrary

(20)

where, ART™" (No.11; 0.0044Q) and AR

(No.16; 0.0133Q) are each ARy values of fully
fresh and aged cells among 20 single cells. The
fully fresh cell has the largest SOH (SOH=1), on
the other hand, the fully aged cell has the smallest
SOH (SOH=0). 20 experimental single cells have
each ARy within this range of 0.0044-0.0133Q.
With obtained ARy values (0.0108Q and 0.0056Q)
of two arbitrary cells, the diagnosed SOHs of two
arbitrary cells are expressed in (21) and (22),
respectively. (SOH range: 0-1)

0 | AR~ AR%E| 10,0108 0.0133]

SOH = = 0.2809

arbitraryl \ ARFSh _ AR Eed \ [0.0044 - 0.0133] @n
ARselected _ARaged _

SOH _\ d & | _0.0056 0.0133\z0.8651(22)

arbitrary? _‘ ARfFeh _ AR 2zed ‘ " 0.0044 - 0.0133]
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We can see, the range of SOH is from 0 to 1, and
1 means the cell is totally health, or it is new, and
0 means the cell cannot meet the power demand
of the practical applications. These results enable
to us to provide interesting perspectives for
diagnostic fuel cell SOH without the need for
repeated parameter measurement of an arbitrary
cell. For reference, it is assumed that R, is
constant (0.0955Q) due to little difference in
electrochemical characteristics compared with
that of the ARy among the cells.

5 Conclusion

Precise SOH diagnosis is critical in practical
applications where it is necessary to determine
how long the fuel cell will last, and to minimize
the risk of permanent internal damage. Therefore,
a method to diagnose SOH for a PEM fuel cell,
using a pattern recognition based approach as an
application of the Hamming neural network to
the identification of suitable fuel cell model
parameters, has been presented in this work.
Through statistical analysis of the FCOV patterns
for 20 single cells, the Hamming neural network
is applied for identification of the representative
FCOV pattern that matches most closely of the
pattern of the arbitrary cell to be measured. The
selected cell’s ARy is properly applied to
diagnose SOH of an arbitrary cell through the
comparison with those of fully fresh and aged
cells with the minimum and maximum of ARy in
experimental cell group, respectively. This
avoids the need for repeated parameter measure-
ment of an arbitrary cell. Therefore, these results
could lead to interesting perspectives for
diagnostic fuel cell SOH.
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