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Abstract

The latest addition to Lotus Engineering’s low carbon vehicle demonstrators is the Lotus Evora 414E. This series
hybrid sports car is capable accelerating from 0-60mph in less than 4.5 seconds, yet produces less than 50g of CO2
per kilometre on the ECE-R101 emissions test. The vehicle showcases new developments in plug-in, range-
extended electric propulsion, new electronic technologies to enhance driver involvement and torque vectoring. The
vehicle is equipped with a 35kW normally aspirated Lotus range extender engine and a 300kW, 14kWh battery-
pack to power the twin-motor driveline. To manage the system energy flow between battery, range-extender system
and vehicle loads, an adaptive energy management technique has been developed. The energy management
framework is capable of multi-objective optimisation over a variable time horizon. Arbitration of power flow is
derived by evaluating the instantaneous cost functions for the battery and range extender respectively. The energy
manager calculates the average vehicle power demand over a series of trailing time windows and evaluates
instantaneous cost functions before determining the feed forward range extender operating point. Details of the
energy management module developed for the Lotus 414E are presented in this paper. Implementation methods are
discussed to demonstrate operation of the control system.
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1. Introduction validate the proposed power and energy
management strategy.

The Energy management strategy for Lotus’
hybrid electric driveline is based on a transient
fuel consumption model of the range extender
engine and an equivalent fuel consumption
model of the battery that incorporates a charge-
sustaining strategy that considers the average
efficiencies of the battery. Different from the
instantaneous and global optimisation strategies,
the optimisation problem is formulated over a
relatively short time horizon characterised by the
quasi-steady-state time constant of the Lotus Figure 1: The Lotus 414E series hybrid high
Range Extender (LRE) engine. This is a Semi- performance vehicle

Global Optimisation (SGO) strategy. To obtain a

real-time implementable solution to this problem,

a two-stage optimisation procedure is proposed. 2. Driveline Architecture

A preliminary solution is obtained from the

Static Instantaneous Optimisation (SIO) and it is The series hybrid driveline comprises of the 35kW
further adaptively filtered to optimise the RE normally aspirated Lotus Range Extender (LRE) [1]
operation  using  dynamic  compensation engine coupled to a permanent magnet generator.
optimisation. Simulation tests are presented to The range extender engine, generator and generator

inverter forms the Auxiliary Power Unit (APU). The
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battery pack comprises of 1,792 Lithium Iron
Phosphate (LiFePo) cells configure.d as a 112
Series-16 Parallel pack. Propulsion is provided by
two independently driven rear wheel motors. For
plug-in functionality, the vehicle is equipped with a
3kW onboard charger. Representation of the vehicle
driveline is shown in Fig. 2.
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Figure 2. Lotus 414E Driveline Architecture

There are two states where the battery energy may
be replenished. The condition where energy is
returned to the battery via the range extender engine
or via the on-board charger is termed a
“recharging”. The state where energy is returned to
the battery through regenerative braking is termed as
“recovering”. Both  conditions may  exist
simultaneously where the energy returning to the
battery is the algebraic sum of the powers from APU
charging and kinetic energy recovery.

The battery assumes the operation of a bidirectional
electrical power system while the APU assumes
operation of a unidirectional power delivery system.
Power flow control is achieved by regulating the
voltage and currents of the generator inverter as well
as engine speed and torque. The power flow
convention 1is illustrated in Fig. 3. Bidirectional
arrows indicate bidirectional power and current
flow.
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Figure 3. Lotus 414E Driveline Schematic and Power
Flow Convention

3. Energy Management System
(EMS)

This section describes the formulation of the
battery and APU cost functions and the
evaluation method used to determine the feed
forward operating point of the APU.

3.1 Semi-Global Optimisation

The online optimisation of driveline efficiency is
based on the battery-equivalent cost function
approach from [2]. The EMS is tasked not only
to control the delivery of power to the vehicle’s
propulsion load, but also the auxiliary electrical
loads in the most efficient manner possible. The
total electrical power demand is measured on the
DC bus and recorded at a minimum sampling
frequency, determined in simulation, to be 10Hz.

A cost function is introduced which defines the
fuel equivalent cost of energy delivered by both
the battery and the APU, in units of grams per
Joule. The cost function format is defined as

J (P B, .800) = C,p (P P + Gy (R, .S0C) - (1)

pu > apu \" apu’ ” apu

where J | is the fuel-equivalent cost at time #

Papu is the vehicle’s electrical power consumption,

Papu is the rate of change in vehicle electrical
power,

SoCis the battery State of Charge at time 7
C apu is the fuel cost of APU energy,

C,,. is the fuel cost of battery energy,
P

1.( 18 the battery power.

A global optimisation would optimise over an
entire drive cycle, and would need knowledge of
the drive cycle a priori. In the real world, it is
impractical to precisely predict the power
demand profile of a vehicle throughout its
journey. Instead the method presented here aims
for a semi-global optimisation, analysing the
most recent power demands of the vehicle and
calculating a minimum cost for the near future
power demand over a very small future time
horizon. If the sampling rate is 10 Hz, the future
time horizon that the method applies
optimisation to is only 0.1 seconds.

We calculate the average vehicle power demand
over a series of trailing time windows, of size 1-
20 seconds, in one second steps [2]. When the
vehicle power demand is oscillatory about a
single load point, the optimiser calculates that it
is more efficient to deliver the mean APU power
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Figure 4. APU efficiency with Qf =43x10° J/kg. Green line shows optimal APU operation locus

demand over the cycle than to instantaneously match
the power demand of the vehicle as it oscillates. The
fuel equivalent cost, Jt is calculated by the EMS at
each 0.1 second time step. It is evaluated for each of
the moving average power demands, substituting
Papu with the moving average power demands. The
resulting Papu which corresponds to the minimum
instantaneous cost is demanded from the APU by the
EMS. In the following discussion the individual
constituents of the EMS are defined and explained,
with reasoning for their inclusion to the system.

3.2 APU Power Cost Function

It is ideal for the APU to deliver electrical energy at
maximum fuel efficiency; hence a locus of minimal
fuel consumption per unit energy, for individual
power demands, was derived by combining the
efficiency map of the generator and the BSFC map of
the engine. Fig. 4 shows the resulting APU efficiency
map, assuming the calorific value of fuel is 43x106
J/kg.

The fuel-equivalent cost of the APU power is
calculated from the efficiency map in Fig. 4 and the
calorific value of the fuel. A transient correction
factor is included to account for extra fuel

consumption during transient power demands [3].
The APU fuel cost can be expressed as,

I)a uninv
Cpo = [p]x(Hk

anapu

2.) )

apu

where (), is the fuel’s calorific value in J/kg,
1 18 the APU efficiency on the optimal locus for

power (as per Fig. 4),
k is a transient correction coefficient (7% per
10kW/s),

7., 1s the inverter efficiency, assumed to be 95% in

simulation.

We use a 7% increase in fuel consumption for a
power gradient of 10 kW/s for k . This is the value
used in [3] and correlates well with the Lotus Range
Extender engine. In the future it would be useful to
study the most efficient speed-torque route between
two optimal power coordinates, in respect to the
amount of extra fuel used in transient states. An
experimental procedure similar to the one described
in [3] would need to be employed, with variations in
both speed and torque.
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3.3 Battery Power Cost Function

In [2] an attempt is made to calculate the round-trip
efficiency of energy passing in and out of the battery
by projecting an assumed mean discharge efficiency
and applying it in the calculation of fuel-equivalent
charge cost. Instead of applying a fixed efficiency
supposition at all times, we accumulate average
charge and discharge efficiencies over time, starting
from the moment the charge-sustaining operation
mode is initiated.

Battery efficiency is calculated using steady-state FR
loss and open-circuit voltage:

_IV.-I'R
VA%

ocC

3

nbal

If transient voltage characteristics are included,
equation (3) becomes

77 _IVOC_IZR_I‘/trans (4)
bat IVOC
where V- is the voltage correction due to transient

effects. Attempts were made in this study to
determine dynamic battery characteristics. The
approximate battery dynamic characteristics derived
where used in the simulation model of the battery,
but deemed not reliable enough to use in the
knowledge based look-forward controller.

In the look-ahead battery model used in the EMS, the
instantaneous battery efficiency corresponding to a
given battery discharge power is

F,

bat

Nus =| z+ 4 l———— 3)

1 1 1 4Rdis

(6)

V

oc

Ry and V_ are evaluated from lookup tables with
respect to the SoC of the battery.

3.3.1 Charge Cost

An attempt to calculate the round-trip energy fuel
equivalent cost is made by projecting the mean

discharge efficiency onto the future vehicle power
demands. Hence the instantaneous fuel-equivalent
battery charge cost is determined using

P_C
Cac (Pa ’SOC)=_bat—ap—u (7)
bat,chg \” bat ﬂdisﬂcthaPu

where Cap is the mean APU cost, measured in

u
grams per second and, like all mean parameters
denoted by the bar notation, is calculated inside the
EMS using a trapezium rule for approximate
integration. Initiating at zero on every trip allows the
EMS to quickly accumulate an average value that is
specific to trip-specific driving behaviour.

3.3.2 Discharge Cost

The fuel-equivalent cost of a discharging power
drawn from the primary battery is calculated by

SP.C,.
Cruais (ant > SOC) = 7"“7‘“‘5 , ®)
ﬂChgndis 1)apu

The average charge cost, C , is used to quantify the

chg
mean amount of fuel associated with each unit of
energy in the battery at the current point in time. 77,

is the instantaneous battery discharge efficiency.

It is important to note that discharge cost is more
accurate than the charge cost calculation, because
there is no requirement to “look ahead” in order to
calculate a round-trip energy path efficiency and
equivalent fuel cost.

The term O , introduced from [4], is used to describe
the ratio of total energy in the battery at any time that
is the result of combusting fuel in the APU. When
the APU charges the battery, O increases. During a
regenerative braking event, 0 decreases, and as a
result the fuel-equivalent cost of battery discharge
power is reduced. It is determined using

[ P

0= .
J. ([)bal,apu + R)al,non-apu )dt

(€))

Cautious calculation is required during periods of
battery discharging, as the fraction O remains
constant while the denominator term reduces. When
the battery is replenished with a plug-in charge,
O reduces as the non-APU energy in the
denominator increases and the numerator term
remains constant.
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3.4 Cost Function Evaluation

As per equation (1), the combined cost function for
APU and battery operation in charge-sustaining
mode defined by

J(P,,.P,,.800) =C, (P, ..B )+C,,(P,,.S0oC) (10)
Instead of instantaneously matching the APU power
demand with the APU, the EMS tracks moving
averages of vehicle power demand varying from 0
seconds to 20 seconds. The total demand Pgen is
simply the sum of P, and Py, When the battery
reaches a lower SoC boundary of 40% (All Electric
Range), charge-sustaining operation is initiated. At
the start of charge-sustaining mode, Pgyep is set Py,
This is done as there is no historical APU power
demand at the start of the charge sustaining mode.

At 0.1 second internals, the EMS evaluates Pgep,
accumulates a 0-20 second moving averages and then
calculate the fuel-equivalent cost of providing APU
power equal to each of those moving average values.
The zero second moving average is effectively the
instantaneous power demand, which allows the APU
to adopt a load-following strategy if the associated
cost function determines it to be optimal. The
moving average power demands are applied to the
cost function as “trial values” of APU power
demand, P,,, in (1). The battery power, Py, is then
evaluated as the difference between demand and
APU power,

P

bat

=P,,—P (11)

dem — apu

Of all the moving average powers analysed, the one
which corresponds to the minimum fuel-equivalent
cost is requested by the EMS to the APU. The APU
power demand is then expressed as

PAPUdemand = min Jt (12)

t=movavg

i.e. the trial power demand corresponding to the
moving average period for which fuel-equivalent cost
is minimal.

A 3-second moving average is applied to the APU
power demand evaluated in (12) to remove any fast
oscillatory behaviour of the APU. Operation of the
EMS is summarized as a flowchart in Fig. 5.

3.5 Additional control laws

Extra features have been added to the original cost
functions which function to protect the vehicle

hardware (particularly batteries) from exceeding their
physical limits.

( START )
]

4 Use pure EV
charge-
depleting mode

Has battery SoC
passed below

40% since last

plug-in charge?

Initiate charge-sustaining
mode operation

v

Calculate Vehicle total power
demand by adding P, to Pyy
from measurement

v

Compile 0-20 second moving
averages of power demand,
and add a zero demand to the
list

Y

Increase moving average power
demand s by 10% for every 1%
SoC is below SoCL

A 4

Evaluate cost function
with Py, substituted by
moving average power
demands. Demand the
APU power associated
with minimal fuel-

Is power
demand >
max APU

Demand maximum
APU power END

Figure 5. Flowchart of the EMS, repeated in the vehicle
controller at every time step.

3.5.1 Protection from SoC depleting in charge-
sustain mode

The traction motors on the 414E vehicle are capable
of consuming more power than the APU can provide.
In order to stabilise the battery SoC during and after
high traction power demand periods, we introduce
two new control rules:
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1. When traction power demand is more than
or equal to the maximum APU power,
ignore the cost of moving average power
demands and run the APU at maximum
power.

2. We implement an advisory lower state-of-
charge limit, SOCL . When SoC < SoCL ,
the instantaneous power demand fed into the
optimisation algorithm is multiplied by a
factor by ¥. In experimental testing, it was
found that increasing the perceived power
demand by 10% for every 1% that SoC is
below SoCL was sufficient.

These two new rules limit the depletion of battery
charge during high tractive power demand periods
and aid recovery back towards SOCL after a high
power demand event.

3.5.2 Kinetic energy compensation

The lower state of charge recommendation SOCL , is
reduced in real time in accordance with the forward
velocity of the vehicle. This is because the battery
will regain approximately the same amount of energy
when it decelerates to rest, minus the energy spent on
aerodynamic drag and rolling resistances [5], as well
as powertrain efficiencies.

3.5.2 Battery Voltage Protection

If at any of the moving average power demands
considered by the EMS are smaller than the vehicle
power demand measured on the DC bus to such an
extent that the battery voltage would drop below a
defined limit (2.1 volts per cell), the cost of those
APU power options are set to infinity. This
effectively prevents the APU from running at a
power output too low for the battery voltage to be
maintained at or above the minimum absolute limit.

4. Calculating Vehicle Power
Demand

The vehicle power is measured by summation of the
battery and APU powers. Battery voltage and current
values are measured within the battery pack and is
available over CAN. The APU power is calculated
by multiplying the APU current by the DC bus
voltage as shown in Fig. 6.

C%) Peen

Figure 6. Measurement of vehicle power demand Pdem.
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5. Simulation Results

The all electric range is calculated by repeating a
specified drivecycle in simulation until the battery
depletes from 100% to 40% SoC . Charge sustaining
range simulations begin with battery SoC at 40%
and run until the entire tank capacity (30 litres) of
fuel has been used, after which the simulated
distance covered is recorded. A trace of SoC and
APU power is shown over four consecutive NEDC
cycles in Fig. 7.
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Figure 7. Battery SoC and APU power over repeated
NEDC cycles. SoC drops in the 1* 3 cycles as mean APU
cost is accumulated

The weighted CO, in grams per km, M , is
calculated as

M= 25M ’ 13)
D, +25

where D is the electric-only range of the vehicle and
M, is the mass of CO, emitted from the tailpipe
during one drive cycle in charge-sustain mode
operation. This convention is defined for the NEDC
cycle but a similar calculation has been performed
using data recorder on the Combined Artemis cycle,
which is considered to closely represent real-world
driving behaviour [6]. The vehicle’s electric range
was calculated to be 52.6 km on the NEDC
drivecycle and 46.2 km on the combined Artemis
cycle. Performance simulation results are shown in
Table 1, with the un-weighted CO, figure being
measured over a full-tank depletion simulation,
equivalent to about 500 km of driving in charge-
sustaining mode.
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Table 1. Weighted and un-weighted CO, from simulation
Weighted Un-weighted

NEDC CO, (g/km) | €O, (g/km)
Adaptive EMS 38.5 132
Load Following 51.1 159

Stop-start 38.4 128
Weighted Un-weighted
ARTEMIS CO: (g/km) CO, (g/km)
Adaptive EMS 52.9 160
Load Following 57.6 165
Stop-start 54.6 155

Table 1 also shows comparison Figures of the
Adaptive EMS proposed in this paper with load-
following strategy and a simple stop-start
(thermostatic) strategy.

With the load-following method, the APU provides
the instantaneous power demand, Py, with APU
power being limited between 3 kW and 35 kW.
When the battery SoC drops below 35%, the APU
provides 35 kW until SoC is equal to 40%.

In the implementation of the stop-start strategy, the
APU only runs at 35 kW, which is the power at
which the engine BSFC is optimal. The battery
cycles between 35% and 40% SoC, with the APU
delivering a continuous 35kW when SoC drops
below 35% SoC and OkW when SoC is equal to 40%
SoC. It is important to note that this simple start-stop
method does not assume any battery charging power
constraints and can only be implemented if the
battery pack is receptive to high charging rates.

The simulation results in Table 1 shows that the stop-
start strategy produces less un-weighted CO,
emissions. The simulation data in Fig. 8 also shows
that the CO, emitted using start-stop drops below the
CO; of the proposed adaptive EMS as the charge
sustaining range increases on the Artemis cycle.
This is because in the start-stop method, the APU
runs, on average, at a higher efficiency load-point
than the proposed adaptive EMS. This is only true
because the battery on the 414E is receptive to
continuous high power charging (35kW). The fact
that the emitted CO, figures of the proposed EMS
(which considers battery constraints) is very close to
start-stop method shows that adaptive nature of the
proposed controller.

5.1 Adaptive nature of the EMS

Although developed for a high-performance vehicle,
the adaptive nature of the EMS lends itself beneficial
to any series hybrid platform. The following
demonstrates the effectiveness of the EMS based on

— adaptive EMS

|
|
220 ----- . — stop-start
|
|
|

1 1
0 40 80 120 160
charge-sustaining distance, km

Figure 8. Comparison of M, between adaptive EMS and
stop-start method on repeated Artemis cycles

a statistical usage patterns of vehicles. Recording the
probability of the adaptive EMS producing fewer
emissions than the stop-start strategy with distance,
from Fig. 8, we employ Bayes’ theorem to infer a
probability that the proposed EMS performs
favourably for charge-sustaining operation on an
arbitrary trip. To demonstrate this, daily driving
distance data from [7], recorded over 179,484
separate daily journeys, was used. Subtracting the
Artemis-cycle electric range of 46.2 km leaves the
normalised probability distribution of distances
travelled in charge-sustaining operation shown in
Fig. 9.
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Figure 9. Probability distribution of charge-sustaining trip
distances

Using Bayes’ theorem, the probability of a the
adaptive EMS consuming less fuel than a stop-start
strategy and hence producing fewer CO, emissions,
given that the probability of charge-sustaining
distance covered is similar to that in Fig. 9, is 98.8%.
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6. Future Work

The cost function is not restricted to seeking an
optimal value of a single variable. A multi-objective
approach, as attempted in [8] uses a weighted sum of
separate cost functions for specific targets, e.g. fuel
consumption, battery life and emissions. The
weighting factors do not need to be fixed, and can be
altered during the lifetime of the vehicle in order to
concur with future emissions standards. The
weighting factors could even be modified in
accordance with local emissions restrictions during a
journey.

By employing moving averages of mean APU and
battery charge/discharge cost as opposed to the
constant assumed values [2,4], the proposed EMS
will be able to adapt to driver behaviour over a short
trailing time window. For example, if the vehicle
exits a motorway and continues to drive along
country roads, the average APU power will drop
significantly and a moving average value of APU
cost will quickly adapt to local driving conditions.

7. Conclusions

The adaptive Energy Management System for the
Lotus 414E Series Hybrid vehicle platform has been
presented. A mathematical framework has been
described that is able to optimise fuel consumption in
charge-sustaining mode on a series hybrid vehicle,
with consideration of physical system limitations and
protective measures to prevent degradation of system
components. The framework is extendable by adding
additional objectives to the cost function. Simulation
results demonstrate the effectiveness of the EMS on
the Lotus 414E and series-hybrid vehicles in general.
The EMS has been implemented within the Lotus
Vehicle Controller hardware and is undergoing
verification tests.
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