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Abstract 

Short sea shipping, the movement of freight along coasts and inland waterways, is more efficient and 

environmentally friendly for transporting large quantities of product. While marine transport may displace 

numerous diesel trucks, conventional propulsion systems still rely on petroleum fuels and the old engines 

found in most freight vessels produce harmful exhausts. An investigation was undertaken to determine the 

technical, economic, and environmental potential for an electric propulsion system in short sea shipping 

operations within New York State where numerous waterways provide a marine highway option that can 

be used for freight transport. Duty cycle information obtained from tugs during real-world operations in the 

New York City Harbor was used in the analysis. Three drivetrain configurations, a series hybrid-electric 

tug with energy storage, a series hybrid-electric tug with plug-in capability, and a series hybrid-electric tug 

with exchangeable energy storage capability were analyzed using the acquired load profiles. Modeling 

results indicate that the fuel savings is highly dependent on the application. The plug-in configuration is 

likely to be the most cost effective concept based on the large increase in additional fuel savings for the 

minimal cost to add this capability. This study shows the value of modeling with real-world duty cycles to 

estimate system benefits. An ongoing study evaluating the potential benefits of electric propulsion for New 

York State Canal Corporation maintenance vessels may identify a favorable application for this technology 

due to the low power requirements and regular recharging opportunities within their operations. 
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1 Introduction 
According to the U.S. Energy Information 
Administration, New York State (NYS) is the 
fifth largest energy user of all the states. The 
State’s transportation sector in 2009 was 
responsible for 77 percent of petroleum 
consumption (all of which must be imported 
because there are no petroleum refineries in the 
State) and 40 percent of greenhouse gas (GHG) 
production, the single largest sector in either 
category [1]. While automobiles are the primary 
contributor, energy use and GHG emissions from 

freight transportation have grown at roughly twice 
the rate of passenger transportation emissions over 
the last 15 years.  
In January of 2011, Governor Andrew M. Cuomo 
reaffirmed Executive Order No. 24 (2009), which 
set a goal to reduce NYS greenhouse gas emissions 
in 2050 by 80 percent below the levels emitted in 
1990. The Executive Order also created the New 
York Climate Action Council with a directive to 
prepare a Climate Action Plan that will assess how 
all economic sectors can reduce GHG emissions 
and adapt to climate change. 
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The New York State Energy Research and 
Development Authority (NYSERDA) is a public 
benefit corporation to help New York meet its 
energy goals: reducing energy consumption, 
promoting the use of renewable energy sources, 
and protecting the environment. NYSERDA 
strives to facilitate change through the 
widespread development and use of innovative 
technologies to improve the State’s energy, 
economic, and environmental wellbeing. 
NYSERDA’s transportation programs are 
designed to provide funding opportunities for 
innovative research projects, and product 
development initiatives that reduce emissions, 
improve air-quality, and reduce our dependency 
on imported oil. The programs are designed to 
promote NYS business development, protect the 
environment, increase energy reliability, and 
enhance a competitive transportation-energy 
market. 
New West Technologies has been awarded 
multiple NYSERDA contracts to investigate the 
feasibility of advanced transportation concepts, 
demonstrate new technologies that have not been 
validated in real-world conditions, and assist in 
the commercial acceptance of underutilized 
systems that have not been previously deployed 
in NYS to any significant extent. To advance 
waterborne freight transport, New West 
Technologies completed an All-Electric and 
Hybrid-Electric Short Sea Shipping Assessment 
for NYS in 2010 and an Evaluation of Electric 
Propulsion for Tug Operations in New York City 
(NYC) Harbor in 2012. NYSERDA also recently 
awarded a follow-on project to New West 
Technologies to study the feasibility of 
electrifying NYS Canal Corporation maintenance 
vessels.     

1.1 Short Sea Shipping 
Economies rely on the transportation of freight to 
maintain the flow of goods from manufacturers 
to consumers. The trucking industry accounts for 
about 70 percent of all transportation domestic 
freight tonnage [2]. An alternative to trucking, 
which could ease the burden on the highway 
system, is commercial vessel or tug and barge 
operations that transport freight on inland 
waterways. These operations, termed short sea 
shipping, have traditionally moved freight that 
could not effectively be transported on the 
highway because of height, width, or weight 
restrictions. Because of slower operating speeds, 
waterborne cargo is typically not time sensitive. 
In addition to their ability to transport difficult 

loads, marine vessels also have an inherent 
efficiency advantage. A barge can transport 514 
ton-miles per gallon of fuel while trucks can only 
transport 59 ton-miles per gallon of fuel [3].  
Short sea shipping provides significant economic 
savings for transporting dry or liquid products in 
bulk quantities because a typical ship or barge will 
have at least 60 times more capacity than a single 
truck and can load or unload that amount of cargo 
much more effectively. The expansion of marine 
transport often requires little infrastructure 
investment and could have a direct effect on 
alleviating highway congestion with routes along 
existing highways [4]. Additional freight will have 
to be moved with economic growth and increases 
in population growth, for which trucking will only 
further burden a highway system that has reached 
maximum capacity around many cities. For coastal 
cities or those served by a major inland waterway, 
short sea shipping is a logical alternative 
transportation mode for freight that is either 
distributed to rural regions from an international 
port or brought into the densely populated urban 
area for consumption. 
Interest in short sea shipping increased 
considerably in 2010 when U.S. Transportation 
Secretary Ray LaHood identified a national 
network of marine corridors, connectors, projects, 
and initiatives for further development as part of 
“America’s Marine Highway Program.”  The 
Eastern Seaboard and the Eastern United States in 
general, figured prominently in the program due to 
high population densities and an abundance of 
coastal and inland waterways. 

1.2 Waterways in New York State 
NYS has a network of waterways which are 
currently used, to a limited extent, for commercial 
shipping operations. These waterways include the 
NYC Harbor, Hudson River, New York State 
Canal System, St. Lawrence Seaway, Lake 
Champlain, and Great Lakes. The Port of New 
York and New Jersey is the third largest U.S. port 
by cargo volume, handling almost 150 million tons 
in 2009 [5]. The NYS Canal System is 524 miles 
long with 57 locks and 20 lift bridges. It is a 
critical component of a successful waterborne 
freight system in NYS, because it links the Port of 
New York and the Hudson River to the Great 
Lakes. Partially due to reduced commercial 
demand, the canal is only open seasonally and 
other methods of transport must be used during the 
coldest months. The Great Lakes provide cost-
effective trade routes to the Midwest and Canada. 
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connectivity. These were combined into a 
comprehensive system operating model. The 
modeling technique is utilized to determine the 
energy usage profiles of each of the system 
components, as well as the overall system 
interaction. These profiles were then utilized to 
create total power, fuel consumption, emissions, 
and cost savings estimates associated with each 
technology. Similar sub-models were used for 
the HET, HET-PI, and HET-EES configurations; 
however, some aspects were eliminated to 
simulate the variations between these concepts. 
Data retrieved from the tugs was the primary 
driver for the modeling analysis which provided 
real-life applicable results. 
The first sub-model is for the auxiliary genset. 
As shown in Figure 3-10, this module simply 
references the state of charge (SOC) and 
maintains a minimum of 50% charge by turning 
the auxiliary genset on and off to ensure that 
power for all on-board equipment is available 
when needed. This module is programmed to 
keep the auxiliary genset off when the vessel is 
plugged into and receiving power from grid (for 
HET-PI and HET-EES configurations). 

 

 

Figure 3-10: Auxiliary Genset Sub-model Diagram 

Modules used for each of the primary gensets 
were similar which allowed for the scalability of 
the model to accept designs with different 
number of gensets. The modules are numbered 
sequentially (genset 1, genset 2, etc.…) and 
analyzed in numerical order, after the auxiliary 
genset, in the comprehensive model. The 
module’s logic path, as shown in Figure 3-11, 
begins by referencing the net power demanded 
by the tug and comparing it to the maximum 
power capabilities of the on-board energy 
storage. The net power refers to the total power, 
demanded by the tug, minus power provided by 
the auxiliary genset or lower numbered primary 
gensets. If the power required is higher than what 
can be provided by the energy storage, the genset 

is automatically turned on. If it is not, the system 
looks at the SOC to determine if it is below a 
predetermined threshold. This threshold is based 
on battery specific characteristics and varied for 
each of the gensets, allowing them to be brought 
online incrementally if required. This SOC 
threshold is also utilized to specify charge-
sustaining and charge-depleting modes. Charge-
sustaining is accomplished by starting the 
generators earlier and not allowing the SOC to 
drop as low. It is used on the HET tug to protect 
battery life and provide sufficient power when 
needed. Charge-depleting is used on the HET-PI 
and HET-EES to optimize the use of grid power. It 
allows the SOC to drop much further before the 
gensets are brought online. If the SOC is below 
this threshold, the system checks to ensure that the 
power the genset provides will not overcharge the 
battery (which can cause damage) due to other 
gensets that may be operating. Once on, the 
gensets operate for a minimum of 5 minutes before 
shutting down. 

 

 

Figure 3-11: Primary Genset Sub-model Diagram 

The grid connectivity sub-model accounts for the 
displacement of petroleum by grid power and its 
impact on the overall value of these concepts. This 
module is not included for the HET concept model 
but provides grid connectivity simulation for both 
the HET-PI and HET-EES. To determine if the 
vessel is able to plug in to grid power or swap 
battery packs, it is necessary to verify that the 
vessel is stationary and docked at a location where 
this capability is possible. This is ideally 
determined using geo-fencing techniques.  
However, when GPS data was not available, it was 
assumed that if the vessel was not active for more 

G[a] Auxillary generator state (on/off)

P[PI] Power received when plugged into the grid

SOC Battery State of Charge

P[net] Net power demand

BP[‐] Maximum battery power (discharging)

BP[+] Maximum battery power (charging)

G[n] Primary Generator State (n=1,2, ect…)

SOC Battery State of Charge

SOC[min] Predetermined Low state of charge threshold

RT Run time
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than 2 hours, then it was at a dock and could be 
plugged in. When the vessel is docked and the 
SOC is under 100%, the vessel will charge the 
on-board energy storage until mobile. Battery-
swapping capability with the HET-EES was only 
modeled if GPS data could verify that the vessel 
was at its home port. When that occurred, the 
vessel swapped battery packs and the SOC was 
reset at 100%. Shore charging is enabled on the 
HET-EES to allow auxiliary loads to be provided 
by grid power even after a battery swap as shown 
in the diagram in Figure 3-12. 

 

 

Figure 3-12: Grid Connectivity Sub-model Diagram 

Two types of energy storage technology were 
analyzed for this study to evaluate the difference 
between lower-priced, low power dense absorbed 
glass mat (AGM) technology, and higher-priced, 
high power dense lithium Polymer (LiPo) 
technology. Each of these battery technologies 
exhibit widely different charge/discharge 
characteristics and require varied control logic 
for optimal operation of the hybrid electric 
propulsion system.  
The energy storage sub-model diagram is shown 
in Figure 3-13. The overall power requested from 
the battery pack is first converted to amp-hours 
per pack and then split up into separate 
algorithms for charging or discharging. The 
charging state is identified by the flow of current 
into the battery, which automatically accounts for 
the grid power when plugged in. Charging can 
only occur if the SOC is below 100%. The 
discharging state is identified by the flow of 
current out of the battery, which ensures that the 
SOC does not drop below 20% to prevent 
damage to the energy storage system. If the SOC 
is above 20%, the requested current is provided 
and the energy storage discharges. With AGM 
batteries, the rate of discharge determines the 
energy capacity of the energy storage system 
(higher power = lower capacity), so the 
equivalent SOC lost per increment is calculated 

based on specific battery data. However, with LiPo 
battery technology, the rate of discharge does not 
detrimentally affect the energy storage capacity of 
the system. The current SOC of the battery is 
continually updated by subtracting or adding the 
incremental change in SOC from the previous time 
period. 

  

 

Figure 3-13: Energy Storage Sub-model Diagram 

3.5 Results 
The completed analysis revealed significant 
potential fuel savings for both tugs with different 
propulsion system configurations. These savings 
varied significantly with the vessel duty cycle and 
energy storage technology. 

3.5.1 Moran Savings 

Due to the size and overall duty cycle profile 
associated with the Moran vessel, the benefits of 
hybrid-electric propulsion are somewhat limited. 
As shown in its operational profile (Figure 3-6), 
this vessel utilizes higher power levels and spends 
significant time (approximately 14% of the total 
time) at maximum power. While the energy 
storage is limited in its overall energy capacity, 
this application is most demanding on the power 
capabilities of the specified batteries. This meant 
that LiPo battery technology was a better fit 
because of its high power density. Because GPS 
data was unavailable for this vessel, an accurate 

SOC Battery State of Charge

GP Grid power (specified at 250 kVA)

EES
Exchangable energy storage swapped with 

fully charged unit

I[req] Requested current (amps)

I[rec] Received current (amps)

I[prov] Provided current (amps)

P[net] Net power demand

V[bat] Battery Voltage (DC)

TI Time increments per hour

Ah[bat@I] Maximum batter amp‐hours at discharge rate

SOC Battery State of Charge

ΔSOC delta SOC (change in SOC)

SOC[prev] SOC from the previous incremental time period
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evaluation of the HET-EES concept was not 
possible.  
The overall percentages of fuel savings expected 
by the Moran tug for both AGM and LiPo battery 
technology are shown in Figure 3-14. While 
percentage-wise these savings appear minimal, 
the sheer volume of fuel consumed by the 
baseline tug results in significant fuel savings 
over the course of a year.  

 

 

Figure 3-14: Moran Tug Fuel Savings Potential 

Emission savings for the Moran vessel are 
incrementally greater than its fuel savings 
because the engines used to power the gensets 
are operated at their most efficient load. The 
predicted emissions savings of a Moran HET-PI 
vessel equipped with two battery packs is shown 
in Figure 3-15.  

 
Figure 3-15: Potential Moran Tug Emissions 

Reduction 

3.5.2 Reinauer Savings 

The duty cycle data collected from the Kristy 
Anne Reinauer shows significant potential for the 
successful adoption of hybrid-electric propulsion 
technology. The majority of this vessel’s 

operation is not at peak power and it spends 
considerable time at idle and low power cruising. 
When high power operations are conducted, they 
are generally quite short. This varied operation 
allows the vessel to utilize mostly electric power 
(stored in on-board batteries) and use the gensets 
only when operating at high power. Excess power 
from the gensets quickly recharges the energy 
storage. 
The model predicts that hybrid propulsion system 
configurations, including HET, HET-PI, and HET-
EES, can provide significant fuel savings potential 
for this vessel. The overall estimated fuel saving 
potential is shown in Figure 3-16.  

 

 
Figure 3-16: Reinauer Tug Fuel Savings Potential 

The potential emission savings realized from the 
adoption of an electrified propulsion system follow 
similar trends as the fuel savings. However, 
because the gensets are operated at their cleanest 
power level, emission savings can be even more 
significant, as shown for two battery packs in 
Figure 3-17. 

 

Figure 3-17: Reinauer Tug Emissions Reduction 
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