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Abstract

Optimization-based control methods for plug-in hybrid electric vehicles require knowledge about an entire
driving cycle and an elevation profile to obtain optimal performance over a fixed driving route. This paper
details our investigation into the method of using traffic information to predict the future driving cycle, as
well as an examination of the optimal control strategy based on Pontryagin’s Minimum Principle, in order
to minimize fuel consumption on a given trip distance and to develop a real-time implementable control
strategy. To predict future driving patterns, the Dynamic Programming theory is proposed for the
calculation of vehicle speed with respect to driving distance, under the assumption that data about traffic
conditions are obtained from external traffic information, such as Intelligent Transportation Systems.
Prediction of future driving speed is achieved by minimizing the proposed cost function on each segment.
The results of the generated speed profile can properly estimate the driving pattern of the driver. Also, a co-
state generation algorithm is applied to determine the parameters with respect to the required power
deduced from the predicted driving cycle. The proposed co-state generation model can find the estimated
initial co-state that is similar to the optimal co-state. Simulation results indicate that this approach
guarantees the best efficiency under reasonable conditions and the minimization of fuel consumption on the

trip distance between the origin and destination.

Keywords: PHEV (plug-in hybrid electric vehicle), EREV (extended range electric vehicle), power management,
control system, city traffic

efficiently. However, PHEVs differ from
conventional HEVs in that they allow recharging
from the electrical grid. In these vehicles, higher

1 Introduction
Plug-in hybrid electric vehicles (PHEVs) have

become an effective solution to meet the need for
more fuel-efficient vehicles and to address
tightening emission regulations. The PHEVs are
functionally similar to conventional hybrid
electric vehicles (HEVs), since they can take
advantage of regenerative braking and a
reduction in engine size to operate more

energy batteries can be recharged from the
electrical outlet in addition to the engine and
regenerative braking. By using a high-energy
battery, PHEVs can travel in pure electric mode
for a specific distance according to the operating
mode of the powertrain [1, 2].

The performance or efficiency of PHEVs also
relies on its vehicle energy management strategy,
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which determines the power-split ratio between
the combustion engine and the electric diving
motor to meet the required power at the driving
wheels [3]. Optimization-based control methods,
such as the Equivalent  Consumption
Minimization Strategy (ECMS) or Pontryagin’s
Minimum Principle (PMP)-based control, require
knowledge of an entire driving cycle and an
elevation profile to result in optimal performance
[4, 5]. Some researchers have shown [1, 6, 7] that
the fuel consumption of PHEVs is minimized
when the battery and engine are used consistently
during an entire trip, such that the battery state of
charge (SOC) decreases continuously and
reaches the minimum value at the end of the trip.
Figure 1 shows the SOC trajectory results with
different control strategies. However, the blended
mode control that ensures the minimum fuel
consumption requires more accurate information
about the trip, such as driving duration, driving
profile, and so forth.
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Figure 2: SOC profile and engine ON time for EV
mode and blended mode control [6]

Our research was conducted under the

assumption that the wvehicle can use the
information extracted from Intelligent
Transportation Systems (ITS) over the driving road.
This paper describes our investigation into the
method of using traffic knowledge for prediction
of the future driving cycle, as well as the optimal
control strategy based on PMP, to minimize fuel
consumption.

This paper is organized as follows. Section 2
summarizes the concept of the control scheme
using the traffic information and the navigation
system (including a Global Positioning System
[GPS] receiver) in a vehicle. Section 3 describes
the proposed method for the driving schedule
estimation. With the help of the GPS and ITS, it is
possible to directly predict the future driving cycle
through Dynamic Programming (DP) theory.
Section 4 focuses on the PMP-based control and
the correlations between the predicted driving
cycle and the control parameter, co-state p, used in
PMP control theory. Section 5 details the
simulation results. The real driving profile from
the on-board GPS device and the predicted speed
profile are compared, along with the results of the
fuel economy improvement through the PMP-
based controller. Finally, Section 6 presents
conclusions about the utility of the proposed
control method.

2 The Control Concept of PHEVsS
Using Traffic Information

To apply external information such as the traffic
knowledge and the road profile to the optimal
control for PHEVs, it is necessary to convert
various information through the transmitter of the
ITS and GPS into information or data suitable for
the supervisory control algorithm. Figure 2 shows
the schematics of the information flow among the
required modules and a hybrid control unit. The
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hybrid control unit, in general, includes the
algorithm to determine the operating state of a
combustion engine and an electric driving motor.
To calculate the proper output power of the
components, the control algorithm uses the
external information and operating state of the
components, such as the battery’s SOC value and
signals that convey information concerning the
status of a powertrain.

The currently available ITS and GPS devices
provide only limited information on traffic
circumstances. Therefore, as the initial part of
this study, we have developed the ITS model in
order to generate the required traffic information
over each road segment, such as the location and
timing of traffic signals, the speed limit, the
average speed and trip distance, and so forth. The
ITS model uses information based on measured
data on certain real roads to provide the
knowledge required for the speed prediction
algorithm module. Then the module that employs
the DP algorithm calculates the predictable speed
of a vehicle on the specific segment of the road,
while considering the traffic and road
information. For the elevation profile, we use the
real data observed from the GPS device in this
study, under the assumption that the elevation
profile of the overall trip distance can be
extracted by the navigation system and 3D-Map
[8]. From the estimated speed profile, the module
for the co-state generation algorithm can
determine the optimal co-state to minimize the
fuel consumption, while the final SOC of the
battery reaches the lower limit at the end of the
trip. Finally, the optimal control theory applied to
the hybrid control unit instantaneously computes
the ratio of the power split between the engine
and the electric driving motor by using the
predicted co-state value.

3 Driving Prediction
Algorithm

The process to generate the speed profile from

the traffic information is shown in Figure 3. To

obtain the speed profile for future driving, DP
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theory using a distance-based technique has been
adopted, which reflects some constraints that are
determined by traffic information on each trip
segment.

Generally, because DP is a representative
technique to obtain optimal policy, in many studies
DP theory has been used to analyze the optimal
performance of a hybrid vehicle system on a given
driving cycle [9-11]. This method can be used to
minimize the performance index:

I = g0+ [ L(t.x(t).u(®)at (1)

where, @(x(T)) is a penalty function to represent
constraints on the final SOC, x(T); L(-) is the cost
function for fuel consumption; x(t) is the state
variable that should be controlled; and u(t) is the
control variable in the system. The optimal
solution also should be subject to the constraints
for physical limitations of components and the
constraints for SOC operation, as implied by:

x = f(x(),u(t),t) @)

In general, DP requires gridding of the state and
time variables, and thus the optimal trajectory is
calculated for only discretized values of time and
battery SOC [3]. The DP algorithm explained
above, on the other hand, also can be applied to
determine the future speed profile that satisfies
some physical constraints. If the performance
measure (or cost function) in the DP algorithm
could be chosen properly, it is possible to generate
the speed profile similar to the driving pattern of a
real driver. The performance measure for
generating the distance-based speed profile is
defined as:

J= j L(x(s), u(s))ds 3)

where, s is position, and x(s) and u(s) denote the
state and control variable regarding position s,
respectively. For the defined distance from the
initial position, s, to the final position, s, as a
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Figure 3: Algorithm process to obtain the predicted speed profile on a segment
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segment of the whole travel distance, the speed
profile that minimizes the performance index (3)
subject to the equations of powertrain and speed
limit on the road can be obtained numerically by
solving a DP problem. Here, the cost function L()
at each calculation step intuitionally consists of
the driving energy, Egn, the time consumed in
driving, T, and the terms regarding the level of
acceleration, a, and deceleration, d, as described

by:
L(K) = E,,, (k) +w, -T(K)+w, -a* (k) +w, -d*(k) (4)

where, k is the stage on the grid of considered
distance, and w;, w,, and wy are the weighting
factors for time consumed, acceleration, and
deceleration, respectively. The weighting factors
are determined from map data found by
considering the speed limit, average speed,
cruising speed, and length of each segment for
traveling distance. Figures 4 and 5 show the
predefined value of each weighting factor.
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Prediction of the speed profile on a certain road
can be accomplished by selecting only the three
factors regarding driving states — driving time,
acceleration, and deceleration on the given
distance of the segment. Figure 6 presents the
result of the short-range prediction as an example.

The predicted speed profile is similar to the real
speed profile, which is extracted from the GPS
receiver in a vehicle. We also can observe that the
level of acceleration and deceleration of the
predicted speed in the figure properly reflects the
driving tendency of a real driver.
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Figure 6: Comparison between predicted speed and real
speed for the short-range prediction

The performance of the proposed method for the
relatively longer distance, including traffic signals,
was studied via measurement of the required data
on the real road. Figure 7 depicts the real driving
speed and the information for traffic signals on a
specific street near Argonne National Laboratory.
This information is saved in the ITS model. The
total driving distance is 7.5 km, and 13 traffic
signals are located on the road. Through this
information, it is possible to estimate the duration
and number of the vehicle’s stops. The real and
estimated velocity profiles are shown as a function
of trip time in Figure 8. The acceleration of the
real vehicle, until around 40 seconds, initially is
lower than that of the predicted speed due to the
uphill elevation of the real road. Except for the
initial driving state shown in Figure 8, the speed
prediction algorithm can estimate the anticipated
vehicle speed very well during the entire trip.
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Figure 8: Prediction of the speed profile over a 7.5-km
distance and elevation profile

Therefore, if it is realizable to obtain the precise
information from the ITS, GIS, or GPS, then
predicting the vehicle speed on the fixed trip
distance can be possible in advance, and the
result is similar to the actual driving pattern. The
fact that the future speed profile can be obtained
accurately is very important, since the parameter
(i.e., co-state p) used in the optimal control
theory should be derived by using the result of
the predicted speed.

4 Optimal Power Management
Based on PMP Theory

An optimal control strategy based on PMP is a
promising solution. It provides a simple solution
for controlling HEVs or PHEVs and guarantees
the best performance under reasonable conditions
[5]. With information about the future driving
schedule and elevation profile, it is possible to
determine the optimal value for the co-state, p,
depending on the future power demand. Then,
the PHEV can run in blended mode, so the
battery is nearly depleted at the end of the trip.

4.1 Analytical Method for the
Minimum Fuel Consumption

The optimal control based on PMP can be

implemented in real-time applications because it

is based on instantaneous optimization.

Assuming that the cost function to be optimized

involves only fuel consumption, the control
concept minimizes the Hamiltonian [3, 5, 7],
which is defined as:

H =y (R.) + p(t) - SOC(SOC, B,) ()

where, m is the rate of fuel consumption; p(t) is
an adjustment variable, which is called “co-state”
in PMP; and SOC is a time derivative of battery
SOC. As stated above, assuming that minimum
fuel consumption is the goal of the optimal control,
the problem of PHEVs can be defined as (6) and
(7), in which the engine speed, W,, and the engine
torque, T, can be used to determine the fuel
consumption:

min J = [ LW, . T, tydt (6)

subject to:
SOC(t,) = SOC,,m
SOC(t, ) = SOC yires @)
socC,,, <S0C<S0C,,,
W, <W, <W__
T <T.<T,_,

where, L(W,, T, t) is the rate of fuel consumption
of the engine. The SOC is determined by a battery
model described as:

1 Vbat B bzat B 4Rbaleal

: 8
Qbat 2Rbat ( )

= f(SOC\W,,T,)
Further T, and W, are restricted by operating
constraints, such as the maximum possible engine
speed or the maximum possible engine torque,
given by considering the impact of constraints on
the components (i.e., maximum motor speed,
maximum torque, or maximum battery power).
This optimal control problem can be solved with
optimal control techniques. When the final time
and the final state are fixed, the principle requires
that the optimal solution satisfies the following
conditions [7, 12, 13]:
soc=H

op
o ©)
P="%s0c
H(SOC",u”, p",t) <H(SOC",u, p",t)

SOC =—

Equation (9) is the necessary condition of the
optimal problem by PMP theory. It is necessary to
find the optimal control, u, which satisfies (9).
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4.2 Estimating the Initial Co-state
from the Predicted Speed Profile

The optimal value of the co-state p(t) should
ensure that the final SOC (SOCyna) is equal to
the desired SOC (SOCgesireq) at the end of the
entire trip. The optimal co-state value that is
subject to the above condition on a given driving
schedule can be found by running the simulation
repeatedly on the various initial values of p(to) or
the shooting method [1, 14]. However, for the
optimal control algorithm to have the potential
for a real-time implementation, it needs to
estimate the value of the co-state close to the
optimal value. If the future driving cycle is
known a priori through the method proposed in
Section 3, it is possible to predict the initial co-
state value p(ty) of the differential equation p in
(9), which can execute the optimal control to
minimize the fuel consumption on the estimated
trip schedule. In this study, p(t) can be
formulated as (10) and (11) because the initial
co-state has a significant influence on the
effective SOC drop rate, SOCqfr, and the usable
battery energy, Epee [MJ], at the initial driving
state:

po = f(socdrv‘eff 1 Ebat) (10)
= a(Ebat) : Socdrv,eff + b(Ebat)
n+l .
a( Ebat) = ani ! Etl)zrtzkI (n = 4) (ll)

n+l

b(EbaI) = Zcbi : Etl:;tlii (n=4)
i1

where, a and b are the coefficients determined by
the useable battery energy, and C, and Cy; are
the constant values, as shown in Table 1.

Table 1: Numerical values of the coefficients in
equation (11)

Ca Ca Cas Ca Cas
45.944 -907.16 8,778.6 -131,289 225,126
Co1 Ch2 Cos Choa Chs
-0.0191 0.2721 -1.9148 -138.94 0.7025

The effective SOC drop rate, SOCyefr, in
equation (10), which should be calculated from
the speed profile, can be written as:

ASOCdrv,et‘f (12)
AT,

drv,eff

So.Cdrv,eff =

where, ASOC e denotes the decreased value of
SOC when considering only the battery’s

discharging state during the entire trip, and ATgyy est
is the effective driving time, except for the time
during the stop and deceleration condition of a
vehicle. For instance, this relation is shown in
Figure 9. The effective SOC profile represents the
cumulative value of positive or negative deviation
of the SOC with respect to time, which is divided
into the propulsive driving and the regenerative
driving conditions.
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Figure 9: Effective SOC profile divided into the
propulsion and the regeneration state

Because we cannot directly observe ASOCqyy et if
we do not execute the simulation on a computer,
alternatively one can use a cumulative deviation of
SOC by regeneration, ASOCeger, to predict
ASOCry ¢t as follows:

ASOC,,, = SOC, —SOC, —ASOC (13)

reg eff

where, ASOCqet is the increased value of SOC
when considering only the battery’s charging
through the regenerative breaking. This value can
be directly determined if the upcoming driving
pattern is predicted as shown in Figure 10(a).
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Next, the future power demand with respect to
driving time is determined as described by:

RO=FR®-vO (14)

where, Py(t) is the required tractive power, Fy(t) is
the tractive force, and v(t) is the vehicle speed.
The tractive force F; is determined by the
longitudinal vehicle dynamics model [15].
Figure 10(b) shows the positive required power
for propulsion and the negative required power
for deceleration. Then we can surmise the
increasing amount of battery SOC, ASOC;¢gff,
from regenerative breaking power, (P¢(t)<0), over
the entire trip time by using equations (8), (15)
and (16), under the assumption that the voltage
and resistance of the battery are of average value:

ASOC

reg eff

Pbat(t) =Teg P[ (t)

= [ SOC(R,. ()t (15)
(VP,(t) <0) (16)

where, Ppa(t) is the electrical power charged to
the battery, and #rg is the ratio of electrical
braking with respect to the total braking power at
a wheel.

Figure 11 shows the results of the optimal SOC
effective drop to the various driving distances,
which is calculated through the backward-
looking simulation on repeated Urban
Dynamometer Driving Schedule (UDDS) cycles.
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Figure 11: Results of the effective SOC drop using the
backward-looking simulation based on the optimal
control theory

Table 2 details the validation results of the
predicted co-state and the optimal value
calculated from driving cycles repeated five
times, as well as the various battery capacities. In
a PHEV using a 3.4-kWh battery pack, the
vehicle can be operated in electric vehicle (EV)
mode (charge-depleting [CD] mode) only on a
single driving of a UDDS cycle. Thus, the
prediction of the initial co-state on just one cycle
could be meaningless, since not using the engine

is more efficient during the entire trip. When the
traveling distance is known to be less than or equal
to the vehicle’s electric range, the powertrain can
run in its all-electric mode [1]. This is also the
same as the PHEV using 5.2-kWh battery capacity,
if the driving cycle is repeated twice. Except for
the trip distance on which the PHEV can be
operated in EV mode only, the co-state estimated
from (10) is very close to the optimal co-state
value.

Table 2: Results of the co-state validation on the UDDS
cycle

Total
Battery Co-state
Energy

UDDS UDDS UDDS UDDS uDDS
x1 x2 x3 x4 x5

Optimal -295.09 -316.26 -323.32 -326.84 -328.96

14 Predicted -296.52 -317.41 -323.57 -326.63 -328.55

kwWh
Error 0.48% 0.36% 0.08% -0.06% -0.12%
Optimal -695.86 -737.71 -758.63 -771.19
3.4 . EV
KWh Predicted mode -696.45 -738.34 -760.34 -770.82
Error 0.08% 0.09% 0.23% -0.05%
Optimal -1188.5 -1221.8 -1241.8
5.2 . EV EV
KWh Predicted mode mode -1191.4 -1224.1 -1244.1

Error 0.24% 0.19% 0.19%

5 Simulation Results

The performance of the PMP-based control, with
the speed profile prediction described in Section 3,
is studied by comparing the control method using a
typical power management scheme for PHEVs.
This scheme is to run the PHEV in its all-electric
mode until the battery is nearly depleted and
switched to a charge-sustaining (CS) mode, and
then to run the PHEV similar to an HEV [1].

5.1 Vehicle Model

The vehicle model used in this study is a power-
split hybrid system that has a single planetary gear
set as a power-split device, like that shown in
Figure 12. All data for the component models and
vehicle model (shown in Table 3) are based on a
2004 Toyota Prius in Autonomie, a software tool
developed by Argonne National Laboratory [7, 16].
The total battery energy was decreased to 3.4 kWh
to verify the optimality for the estimated driving
condition.

Motor 2 '— Ring gear
=

F Final drive

Vehicle

Carrier

=
Sun gear Motor 1

Figure 12: Power-split hybrid system used in this study

Engine
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Table 3: Vehicle parameters used in the simulation

Vehicle mass 1,490 kg

Engine 1,500 cc

Motor 1 25 kW (peak power: 50 kW)
Motor 2 15 kW (peak power: 30 kW)
Battery 3.4 kWh

Planetary 2.6 (78/30)

gear ratio

Final gear ratio 4113

Rolling resistance | 0.007+0.00012xvehicle speed

Frontal area 2.25 m?

Drag coefficient 0.29

Wheel radius 0.305 m

Air density 1.23 kg'm™

5.2 Evaluation and Results

To evaluate the performance of the proposed
control method, we use the real speed data saved
in the GPS device after driving a vehicle over a
distance of almost 15 km. The speed prediction is
carried out through the traffic information on the
road. Then the final speed profile for the
simulation is repeated two times for long
distance, as shown in Figure 10(a). In this study,
the simulation uses the initial SOC, SOC;, as 80%
and allows the system to consume the electrical
energy until the final SOC, SOC;, falls to 30%.
The fuel consumption analysis requires the
following procedure. First of all, the future speed
profile is predicted through the traffic
information on the segments of the real road.
Next, we calculate the initial co-state from the
predicted speed profile. Finally, the PMP-based
controller using the co-state is applied to the
vehicle model driving on the real speed profile.
The value of the estimated co-state and other
regarding values for the predicted speed profile
are shown in Table 4. The estimated Pq is very
close to the optimal value P, obtained from the
backward-looking simulation. Figure 13 shows
the fuel consumption results on the real speed
profile with respect to the control methods, the
CD+CS mode control and the PMP-based control.

Table 4: Results of the co-state prediction

ASOC,p g -0.70673
ATyt 1,416 seconds
SOC e -0.0004991
Estimated co-state p -689.5761
Optimal co-state py” -687.4118
Error 0.315%

In the PMP mode control, the fuel usage
continuously increases with driving time as
blended mode control, while the decreasing rate of
the battery SOC value on almost the entire trip is
lower than that of the CD+CS mode control, as
shown in Figure 14. The final SOC of the PMP-
based control does not exactly reach the minimum
value at the end of the trip. This occurs because the
simulation is executed over the real speed profile
after we derive the initial co-state from the
estimated speed profile. Nonetheless, as a
consequence, the PMP-based control results in
smaller fuel consumption at the end of the given
trip, and the fuel economy is increased by around
17% compared with the CD+CS mode control
method. Table 5 summarizes these findings. The
output power of the engine for each control
method is shown in Figure 15.

Table 5: Comparison of the fuel consumption

Fuel FE
Contrt;!Hh/IIEe\t/fslod for Economy Final SOC Increasing
(Km/L) rate
CD+CS control 58.9518 0.2901 Ref.
Prediction-based PMP
+ 0,
control 69.1480 0.2896 17.3%
Comparison of fuel consumption
400
----- CD+CS mode control e
A
300 (-~ PMP based control | A ~
i
2 <
g 200 ,7_-.’"_
© '8
fd _,r’f_f_ i
100 7
f 4
)
0 -
0 500 1000 1500 2000 2500

time [sec]

Figure 13: Fuel consumption results for the control
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Figure 15: Engine output power for the control method
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6 Conclusion

This study has investigated the optimal control
strategy, PMP-based control, for PHEVs by
using prediction of the future driving schedule.
To predict the future driving patterns, if the
traffic information is available, the DP method
based on driving distance can be used over the
given trip. This is achieved by minimizing the
proposed cost function on each segment. The
result of the generated speed profile can properly
estimate the driving pattern of the driver.
Deriving the co-state used in the optimal control
from the predicted speed profile is a very
important procedure to minimize the fuel
consumption over the entirety of the travel. The
co-state generation algorithm is applied in order
to determine the parameters with respect to the
required power deduced from the predicted
driving cycle. The proposed co-state generation
model can estimate an initial co-state similar to
the optimal co-state. Using the parameters, the
PMP-based control algorithm instantaneously
calculates the optimal power-split ratio of power
sources. Simulation results indicate that this
approach guarantees the minimization of fuel
consumption on the trip distance between the
origin and destination under reasonable
assumptions.
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