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Abstract 

Optimization-based control methods for plug-in hybrid electric vehicles require knowledge about an entire 

driving cycle and an elevation profile to obtain optimal performance over a fixed driving route. This paper 

details our investigation into the method of using traffic information to predict the future driving cycle, as 

well as an examination of the optimal control strategy based on Pontryagin’s Minimum Principle, in order 

to minimize fuel consumption on a given trip distance and to develop a real-time implementable control 

strategy. To predict future driving patterns, the Dynamic Programming theory is proposed for the 

calculation of vehicle speed with respect to driving distance, under the assumption that data about traffic 

conditions are obtained from external traffic information, such as Intelligent Transportation Systems. 

Prediction of future driving speed is achieved by minimizing the proposed cost function on each segment. 

The results of the generated speed profile can properly estimate the driving pattern of the driver. Also, a co-

state generation algorithm is applied to determine the parameters with respect to the required power 

deduced from the predicted driving cycle. The proposed co-state generation model can find the estimated 

initial co-state that is similar to the optimal co-state. Simulation results indicate that this approach 

guarantees the best efficiency under reasonable conditions and the minimization of fuel consumption on the 

trip distance between the origin and destination. 

Keywords: PHEV (plug-in hybrid electric vehicle), EREV (extended range electric vehicle), power management, 

control system, city traffic 

1 Introduction 

Plug-in hybrid electric vehicles (PHEVs) have 

become an effective solution to meet the need for 

more fuel-efficient vehicles and to address  

tightening emission regulations. The PHEVs are 

functionally similar to conventional hybrid 

electric vehicles (HEVs), since they can take 

advantage of regenerative braking and a 

reduction in engine size to operate more 

efficiently. However, PHEVs differ from 

conventional HEVs in that they allow recharging 

from the electrical grid. In these vehicles, higher 

energy batteries can be recharged from the 

electrical outlet in addition to the engine and 

regenerative braking. By using a high-energy 

battery, PHEVs can travel in pure electric mode 

for a specific distance according to the operating 

mode of the powertrain [1, 2]. 

The performance or efficiency of PHEVs also 

relies on its vehicle energy management strategy, 
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which determines the power-split ratio between 

the combustion engine and the electric diving 

motor to meet the required power at the driving 

wheels [3]. Optimization-based control methods, 

such as the Equivalent Consumption 

Minimization Strategy (ECMS) or Pontryagin’s 

Minimum Principle (PMP)-based control, require 

knowledge of an entire driving cycle and an 

elevation profile to result in optimal performance 

[4, 5]. Some researchers have shown [1, 6, 7] that 

the fuel consumption of PHEVs is minimized 

when the battery and engine are used consistently 

during an entire trip, such that the battery state of 

charge (SOC) decreases continuously and 

reaches the minimum value at the end of the trip. 

Figure 1 shows the SOC trajectory results with 

different control strategies. However, the blended 

mode control that ensures the minimum fuel 

consumption requires more accurate information 

about the trip, such as driving duration, driving 

profile, and so forth. 

 

 

Figure 2: SOC profile and engine ON time for EV 

mode and blended mode control [6] 

Our research was conducted under the 

assumption that the vehicle can use the 

information extracted from Intelligent 

Transportation Systems (ITS) over the driving road. 

This paper describes our investigation into the 

method of using traffic knowledge for prediction 

of the future driving cycle, as well as  the optimal 

control strategy based on PMP, to minimize fuel 

consumption. 

This paper is organized as follows. Section 2 

summarizes the concept of the control scheme 

using the traffic information and the navigation 

system (including a Global Positioning System 

[GPS] receiver) in a vehicle. Section 3 describes 

the proposed method for the driving schedule 

estimation. With the help of the GPS and ITS, it is 

possible to directly predict the future driving cycle 

through Dynamic Programming (DP) theory. 

Section 4 focuses on the PMP-based control and 

the correlations between the predicted driving 

cycle and the control parameter, co-state p, used in 

PMP control theory. Section 5 details the 

simulation results. The real driving profile from 

the on-board GPS device and the predicted speed 

profile are compared, along with the results of the 

fuel economy improvement through the PMP-

based controller. Finally, Section 6 presents 

conclusions about the utility of the proposed 

control method. 

2 The Control Concept of PHEVs 

Using Traffic Information 

To apply external information such as the traffic 

knowledge and the road profile to the optimal 

control for PHEVs, it is necessary to convert  

various information through the transmitter of the 

ITS and GPS into information or data suitable for 

the supervisory control algorithm. Figure 2 shows 

the schematics of the information flow among the 

required modules and a hybrid control unit. The 

Figure 1: Schematic of the control procedure for the PHEV using external information 
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hybrid control unit, in general, includes the 

algorithm to determine the operating state of a 

combustion engine and an electric driving motor. 

To calculate the proper output power of the 

components, the control algorithm uses the 

external information and operating state of the 

components, such as the battery’s SOC value and 

signals that convey information concerning the 

status of a powertrain. 

The currently available ITS and GPS devices 

provide only limited information on traffic 

circumstances. Therefore, as the initial part of 

this study, we have developed the ITS model in 

order to generate the required traffic information 

over each road segment, such as the location and 

timing of traffic signals, the speed limit, the 

average speed and trip distance, and so forth. The 

ITS model uses information based on measured 

data on certain real roads to provide the 

knowledge required for the speed prediction 

algorithm module. Then the module that employs 

the DP algorithm calculates the predictable speed 

of a vehicle on the specific segment of the road, 

while considering the traffic and road 

information. For the elevation profile, we use the 

real data observed from the GPS device in this 

study, under the assumption that the elevation 

profile of the overall trip distance can be 

extracted by the navigation system and 3D-Map 

[8]. From the estimated speed profile, the module 

for the co-state generation algorithm can 

determine the optimal co-state to minimize the 

fuel consumption, while the final SOC of the 

battery reaches the lower limit at the end of the 

trip. Finally, the optimal control theory applied to 

the hybrid control unit instantaneously computes 

the ratio of the power split between the engine 

and the electric driving motor by using the 

predicted co-state value. 

3 Driving Speed Prediction 

Algorithm 

The process to generate the speed profile from 

the traffic information is shown in Figure 3. To 

obtain the speed profile for future driving, DP 

theory using a distance-based technique has been 

adopted, which reflects some constraints that are 

determined by traffic information on each trip 

segment. 

Generally, because DP is a representative 

technique to obtain optimal policy, in many studies 

DP theory has been used to analyze the optimal 

performance of a hybrid vehicle system on a given 

driving cycle [9–11]. This method can be used to 

minimize the performance index: 

 


T

dttutxtLTxJ
0

))(),(,())((  (1) 

 

where, Φ(x(T)) is a penalty function to represent 

constraints on the final SOC, x(T); L(∙) is the cost 

function for fuel consumption; x(t) is the state 

variable that should be controlled; and u(t) is the 

control variable in the system. The optimal 

solution also should be subject to the constraints 

for physical limitations of components and the 

constraints for SOC operation, as implied by: 

 

)),(),(( ttutxfx 
 

(2) 

 

In general, DP requires gridding of the state and 

time variables, and thus the optimal trajectory is 

calculated for only discretized values of time and 

battery SOC [3]. The DP algorithm explained 

above, on the other hand, also can be applied to 

determine the future speed profile that satisfies 

some physical constraints. If the performance 

measure (or cost function) in the DP algorithm 

could be chosen properly, it is possible to generate 

the speed profile similar to the driving pattern of a 

real driver. The performance measure for 

generating the distance-based speed profile is 

defined as: 

 


fs

s
dssusxLJ

0

))(),((  (3) 

 

where, s is position, and x(s) and u(s) denote the 

state and control variable regarding position s, 

respectively. For the defined distance from the 

initial position, s0, to the final position, sf, as a 

Figure 3: Algorithm process to obtain the predicted speed profile on a segment 
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segment of the whole travel distance, the speed 

profile that minimizes the performance index (3) 

subject to the equations of powertrain and speed 

limit on the road can be obtained numerically by 

solving a DP problem. Here, the cost function L(∙) 

at each calculation step intuitionally consists of 

the driving energy, Edrv, the time consumed in 

driving, T, and the terms regarding the level of 

acceleration, a,
 
and deceleration, d, as described 

by: 

 

)()()()()( 44 kdwkawkTwkEkL datdrv   
(4) 

 

where, k is the stage on the grid of considered 

distance, and wt, wa, and wd are the weighting 

factors for time consumed, acceleration, and 

deceleration, respectively. The weighting factors 

are determined from map data found by 

considering the speed limit, average speed, 

cruising speed, and length of each segment for 

traveling distance. Figures 4 and 5 show the 

predefined value of each weighting factor. 

 

 

Figure 4: Weighting factor value for the consumed 

time in driving 

 

Figure 5: Weighting factor value for the level of 

acceleration and deceleration 

Prediction of the speed profile on a certain road 

can be accomplished by selecting only the three 

factors regarding driving states — driving time, 

acceleration, and deceleration on the given 

distance of the segment. Figure 6 presents the 

result of the short-range prediction as an example. 

The predicted speed profile is similar to the real 

speed profile, which is extracted from the GPS 

receiver in a vehicle. We also can observe that the 

level of acceleration and deceleration of the 

predicted speed in the figure properly reflects the 

driving tendency of a real driver. 

 

Figure 6: Comparison between predicted speed and real 

speed for the short-range prediction 

The performance of the proposed method for the 

relatively longer distance, including traffic signals, 

was studied via measurement of the required data 

on the real road. Figure 7 depicts the real driving 

speed and the information for traffic signals on a 

specific street near Argonne National Laboratory. 

This information is saved in the ITS model. The 

total driving distance is 7.5 km, and 13 traffic 

signals are located on the road. Through this 

information, it is possible to estimate the duration 

and number of the vehicle’s stops. The real and 

estimated velocity profiles are shown as a function 

of trip time in Figure 8. The acceleration of the 

real vehicle, until around 40 seconds, initially is 

lower than that of the predicted speed due to the 

uphill elevation of the real road. Except for the 

initial driving state shown in Figure 8, the speed 

prediction algorithm can estimate the anticipated 

vehicle speed very well during the entire trip. 

 

Figure 7: Traffic signal information and comparison of  

real and estimated speeds 
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Figure 8: Prediction of the speed profile over a 7.5-km 

distance and elevation profile 

Therefore, if it is realizable to obtain the precise 

information from the ITS, GIS, or GPS, then 

predicting the vehicle speed on the fixed trip 

distance can be possible in advance, and the 

result is similar to the actual driving pattern. The 

fact that the future speed profile can be obtained 

accurately is very important, since the parameter 

(i.e., co-state p) used in the optimal control 

theory should be derived by using the result of 

the predicted speed. 

4 Optimal Power Management 

Based on PMP Theory 

An optimal control strategy based on PMP is a 

promising solution. It provides a simple solution 

for controlling HEVs or PHEVs and guarantees 

the best performance under reasonable conditions 

[5]. With information about the future driving 

schedule and elevation profile, it is possible to 

determine the optimal value for the co-state, p, 

depending on the future power demand. Then, 

the PHEV can run in blended mode, so the 

battery is nearly depleted at the end of the trip. 

4.1 Analytical Method for the 

Minimum Fuel Consumption 

The optimal control based on PMP can be 

implemented in real-time applications because it 

is based on instantaneous optimization. 

Assuming that the cost function to be optimized 

involves only fuel consumption, the control 

concept minimizes the Hamiltonian [3, 5, 7], 

which is defined as: 

 

),()()( batbatfc PSOCCOStpPmH    (5) 

 

where, ṁfc is the rate of fuel consumption; p(t) is 

an adjustment variable, which is called “co-state” 

in PMP; and SȮC is a time derivative of battery 

SOC. As stated above, assuming that minimum 

fuel consumption is the goal of the optimal control, 

the problem of PHEVs can be defined as (6) and 

(7), in which the engine speed, We, and the engine 

torque, Te, can be used to determine the fuel 

consumption: 

 


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where, L(We, Te, t) is the rate of fuel consumption 

of the engine. The SOC is determined by a battery 

model described as:  
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Further Te and We are restricted by operating 

constraints, such as the maximum possible engine 

speed or the maximum possible engine torque, 

given by considering the impact of constraints on 

the components (i.e., maximum motor speed, 

maximum torque, or maximum battery power). 

This optimal control problem can be solved with 

optimal control techniques. When the final time 

and the final state are fixed, the principle requires 

that the optimal solution satisfies the following 

conditions [7, 12, 13]: 


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 (9) 

Equation (9) is the necessary condition of the 

optimal problem by PMP theory. It is necessary to 

find the optimal control, u, which satisfies (9). 
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4.2 Estimating the Initial Co-state 

from the Predicted Speed Profile 

The optimal value of the co-state p(t) should 

ensure that the final SOC (SOCfinal) is equal to 

the desired SOC (SOCdesired) at the end of the 

entire trip. The optimal co-state value that is 

subject to the above condition on a given driving 

schedule can be found by running the simulation 

repeatedly on the various initial values of p(t0) or 

the shooting method [1, 14]. However, for the 

optimal control algorithm to have the potential 

for a real-time implementation, it needs to 

estimate the value of the co-state close to the 

optimal value. If the future driving cycle is 

known a priori through the method proposed in 

Section 3, it is possible to predict the initial co-

state value p(t0) of the differential equation ṗ in 

(9), which can execute the optimal control to 

minimize the fuel consumption on the estimated 

trip schedule. In this study, p(t0) can be 

formulated as (10) and (11) because the initial 

co-state has a significant influence on the 

effective SOC drop rate, SȮCdrv,eff, and the usable 

battery energy, Ebat [MJ], at the initial driving 

state: 
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where, a and b are the coefficients determined by 

the useable battery energy, and Cai and Cbi are 

the constant values, as shown in Table 1. 

Table 1: Numerical values of the coefficients in 

equation (11) 

Ca1 Ca2 Ca3 Ca4 Ca5 

45.944 -907.16 8,778.6 -131,289 225,126 

Cb1 Cb2 Cb3 Cb4 Cb5 

-0.0191 0.2721 -1.9148 -138.94 0.7025 

 

The effective SOC drop rate, SȮCdrv,eff, in 

equation (10), which should be calculated from 

the speed profile, can be written as:  

 

effdrv

effdrv

effdrv
T

SOC
COS

,

,

,



  (12) 

 

where, ΔSOCdrv,eff denotes the decreased value of 

SOC when considering only the battery’s 

discharging state during the entire trip, and ΔTdrv,eff 

is the effective driving time, except for the time 

during the stop and deceleration condition of a 

vehicle. For instance, this relation is shown in 

Figure 9. The effective SOC profile represents the 

cumulative value of positive or negative deviation 

of the SOC with respect to time, which is divided 

into the propulsive driving and the regenerative 

driving conditions. 

 

 

Figure 9: Effective SOC profile divided into the 

propulsion and the regeneration state 

Because we cannot directly observe ΔSOCdrv,eff if 

we do not execute the simulation on a computer, 

alternatively one can use a cumulative deviation of 

SOC by regeneration, ΔSOCreg,eff, to predict 

ΔSOCdrv,eff as follows: 

 

effregfieffdrv SOCSOCSOCSOC ,,   (13) 

 

where, ΔSOCreg,eff is the increased value of SOC 

when considering only the battery’s charging 

through the regenerative breaking. This value can 

be directly determined if the upcoming driving 

pattern is predicted as shown in Figure 10(a). 

 

 

(a) Real speed profile and estimated speed profile 

 

(b) Required positive and negative power for the driving 

speed 

Figure 10: Speed profile and required power 
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Next, the future power demand with respect to 

driving time is determined as described by: 

 

)()()( tvtFtP tt   (14) 

 

where, Pt(t) is the required tractive power, Ft(t) is 

the tractive force, and v(t) is the vehicle speed. 

The tractive force Ft is determined by the 

longitudinal vehicle dynamics model [15]. 

Figure 10(b) shows the positive required power 

for propulsion and the negative required power 

for deceleration. Then we can surmise the 

increasing amount of battery SOC, ΔSOCreg,eff, 

from regenerative breaking power, (Pt(t)<0), over 

the entire trip time by using equations (8), (15) 

and (16), under the assumption that the voltage 

and resistance of the battery are of average value:  

 

dttPCOSSOC
T

bateffreg 
0

, ))((  (15) 

)0)((      )()(  tPtPtP ttregbat   (16) 

 

where, Pbat(t) is the electrical power charged to 

the battery, and ηreg is the ratio of electrical 

braking with respect to the total braking power at 

a wheel. 

Figure 11 shows the results of the optimal SOC 

effective drop to the various driving distances, 

which is calculated through the backward-

looking simulation on repeated Urban 

Dynamometer Driving Schedule (UDDS) cycles. 

 

 

Figure 11: Results of the effective SOC drop using the 

backward-looking simulation based on the optimal 

control theory 

Table 2 details the validation results of the 

predicted co-state and the optimal value 

calculated from driving cycles repeated five 

times, as well as the various battery capacities. In 

a PHEV using a 3.4-kWh battery pack, the 

vehicle can be operated in electric vehicle (EV) 

mode (charge-depleting [CD] mode) only on a 

single driving of a UDDS cycle. Thus, the 

prediction of the initial co-state on just one cycle 

could be meaningless, since not using the engine 

is more efficient during the entire trip. When the 

traveling distance is known to be less than or equal 

to the vehicle’s electric range, the powertrain can  

run in its all-electric mode [1]. This is also the 

same as the PHEV using 5.2-kWh battery capacity, 

if the driving cycle is repeated  twice. Except for 

the trip distance on which the PHEV can be 

operated in EV mode only, the co-state estimated 

from (10) is very close to the optimal co-state 

value. 

Table 2: Results of the co-state validation on the UDDS 

cycle 

Total 

Battery 

Energy 

Co-state 
UDDS 

×1 

UDDS 

×2 

UDDS 

×3 

UDDS 

×4 

UDDS 

×5 

1.4 

kWh 

Optimal -295.09 -316.26 -323.32 -326.84 -328.96 

Predicted -296.52 -317.41 -323.57 -326.63 -328.55 

Error 0.48% 0.36% 0.08% -0.06% -0.12% 

3.4 

kWh 

Optimal 

EV 

mode 

-695.86 -737.71 -758.63 -771.19 

Predicted -696.45 -738.34 -760.34 -770.82 

Error 0.08% 0.09% 0.23% -0.05% 

5.2 

kWh 

Optimal 

EV 

mode 

EV 

mode 

-1188.5 -1221.8 -1241.8 

Predicted -1191.4 -1224.1 -1244.1 

Error 0.24% 0.19% 0.19% 

5 Simulation Results 

The performance of the PMP-based control, with 

the speed profile prediction described in Section 3, 

is studied by comparing the control method using a 

typical power management scheme for PHEVs. 

This scheme is to run the PHEV in its all-electric 

mode until the battery is nearly depleted and 

switched to a charge-sustaining (CS) mode, and 

then to run the PHEV similar to an HEV [1]. 

5.1 Vehicle Model 

The vehicle model used in this study is a power-

split hybrid system that has a single planetary gear 

set as a power-split device, like that shown in 

Figure 12. All data for the component models and 

vehicle model (shown in Table 3) are based on a 

2004 Toyota Prius in Autonomie, a software tool 

developed by Argonne National Laboratory [7, 16]. 

The total battery energy was decreased to 3.4 kWh 

to verify the optimality for the estimated driving 

condition. 

 

Motor 2

Motor 1Sun gear

CarrierEngine

Ring gear Vehicle

Final drive

 

Figure 12: Power-split hybrid system used in this study 

0 1000 2000 3000 4000 5000 6000
-1.4

-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

000

Effective time [sec]

E
ff

e
c
ti
v
e
 S

O
C

 

 

SOC effective for regen.

SOC effective for prop.



EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  8 

Table 3: Vehicle parameters used in the simulation 

Vehicle mass 1,490 kg 

Engine 1,500 cc 

Motor 1 25 kW (peak power: 50 kW) 

Motor 2 15 kW (peak power: 30 kW) 

Battery 3.4 kWh 

Planetary 

gear ratio  

2.6 (78/30) 

Final gear ratio 4.113 

Rolling resistance 0.007+0.00012×vehicle speed 

Frontal area 2.25 m2 

Drag coefficient 0.29 

Wheel radius 0.305 m 

Air density 1.23 kg∙m-3 

5.2 Evaluation and Results 

To evaluate the performance of the proposed 

control method, we use the real speed data saved 

in the GPS device after driving a vehicle over a 

distance of almost 15 km. The speed prediction is 

carried out through the traffic information on the 

road. Then the final speed profile for the 

simulation is repeated two times for long 

distance, as shown in Figure 10(a). In this study, 

the simulation uses the initial SOC, SOCi, as 80% 

and allows the system to consume the electrical 

energy until the final SOC, SOCf, falls to 30%. 

The fuel consumption analysis requires the 

following procedure. First of all, the future speed 

profile is predicted through the traffic 

information on the segments of the real road. 

Next, we calculate the initial co-state from the 

predicted speed profile. Finally, the PMP-based 

controller using the co-state is applied to the 

vehicle model driving on the real speed profile. 

The value of the estimated co-state and other 

regarding values for the predicted speed profile 

are shown in Table 4. The estimated P0 is very 

close to the optimal value P0
* 

obtained from the 

backward-looking simulation. Figure 13 shows 

the fuel consumption results on the real speed 

profile with respect to the control methods, the 

CD+CS mode control and the PMP-based control. 

Table 4: Results of the co-state prediction 

effdrvSOC ,  -0.70673 

effdrvT ,  1,416 seconds 

effdrvCOS ,
  -0.0004991 

Estimated co-state p0 -689.5761 

Optimal co-state p0
* -687.4118 

Error 0.315% 

 

In the PMP mode control, the fuel usage 

continuously increases with driving time as 

blended mode control, while the decreasing rate of 

the battery SOC value on almost the entire trip is 

lower than that of the CD+CS mode control, as 

shown in Figure 14. The final SOC of the PMP-

based control does not exactly reach the minimum 

value at the end of the trip. This occurs because the 

simulation is executed over the real speed profile 

after we derive the initial co-state from the 

estimated speed profile. Nonetheless, as a 

consequence, the PMP-based control results in 

smaller fuel consumption at the end of the given 

trip, and the fuel economy is increased by around 

17% compared with the CD+CS mode control 

method. Table 5 summarizes these findings. The 

output power of the engine for each control 

method is shown in Figure 15.  

Table 5: Comparison of the fuel consumption 

Control Method for 

PHEVs 

Fuel 

Economy 

(Km/L) 

Final SOC 

FE 

Increasing 

rate 

CD+CS control 58.9518 0.2901 Ref. 

Prediction-based PMP 

control 
69.1480 0.2896 +17.3% 

 

 

Figure 13: Fuel consumption results for the control 

method 

 

Figure 14: SOC trajectory for the control method 

 

Figure 15: Engine output power for the control method 
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6 Conclusion 

This study has investigated the optimal control 

strategy, PMP-based control, for PHEVs by 

using prediction of the future driving schedule. 

To predict the future driving patterns, if the 

traffic information is available, the DP method 

based on driving distance can be used over the 

given trip. This is achieved by minimizing the 

proposed cost function on each segment. The 

result of the generated speed profile can properly 

estimate the driving pattern of the driver. 

Deriving the co-state used in the optimal control 

from the predicted speed profile is a very 

important procedure to minimize the fuel 

consumption over the entirety of the travel. The 

co-state generation algorithm is applied in order 

to determine the parameters with respect to the 

required power deduced from the predicted 

driving cycle. The proposed co-state generation 

model can estimate an initial co-state similar to 

the optimal co-state. Using the parameters, the 

PMP-based control algorithm instantaneously 

calculates the optimal power-split ratio of power 

sources. Simulation results indicate that this 

approach guarantees the minimization of fuel 

consumption on the trip distance between the 

origin and destination under reasonable 

assumptions.  
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