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Abstract 

In this paper we present a novel composite methodology for obtaining spatial projections of the impacts 

and opportunities arising from the integration of plug-in electric vehicles with future smart electricity grids. 

We link models of future plug-in electric vehicle uptake, travel by household members, household 

electricity demand, and recharge of electric vehicles. The analysis is disaggregated in each case to a mesh 

block or local government area level; vehicle usage and household energy demand fluctuate on a hourly, 

daily and seasonal basis, subject also to the longer-term trends projected for uptake of the new technology. 

A similarly fine grain is applied with respect to socio-economic variables. The uptake model combines 

features of choice modelling, multi-criteria analysis and technology diffusion theory; in this case it was 

applied to four competing technologies (BEV, PHEV, HEV, ICE), and calibration revealed seven major 

determinants of uptake: performance, annual costs, purchase cost, household income, driving distance, 

demographic suitability, and risk or inconvenience. The travel model projects likely patterns of vehicle 

usage and travel duration based on existing patterns of private vehicle usage. The household demand model 

includes detailed representation of housing type and usage of electrical appliances. The charge-discharge 

model embodies plausible algorithms for managing household electricity usage in conjunction with electric 

vehicle batteries. In the paper we describe the various models and report projected impacts of electric 

vehicles on peak electrical grid loads for the Australian state of Victoria. The impacts are presented on a 

spatial basis, to the level of individual mesh blocks and network feeders, under a range of energy 

management scenarios. 
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1 Introduction 
Most of the world‟s major vehicle manufacturers 

are currently developing plug-in electric vehicles 

(EVs) for the mass market. Widespread adoption 

of these vehicles is anticipated in Australia over 

the next 30 years [1]. Two types of plug-in EVs 

are coming to market soon, or are on the horizon: 

battery-only electric vehicles which run entirely on 

a battery charged from the grid (BEVs), and plug-

in hybrid electric vehicles which can run on 

batteries charged from the grid alone (PHEVs), 

liquid fuel (petrol), or a combination of both. 
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For typical battery sizes and Australian driving 

patterns, these two EV types may require 

between 2 kWh and 20 kWh of electrical energy 

per vehicle from the grid if widely adopted for 

passenger transport [2]. This represents a 

significant potential increase in electrical load on 

the grid which needs to be planned for in the 

future. Conversely, the electrical energy storage 

capacity available in electric vehicles, when not 

needed for transportation, can potentially be 

harnessed and used to support the needs of the 

electricity grid at times of high demand or 

constrained generation.In order to plan for the 

extra load from EVs, and to understand the 

impact and opportunities of extra loads and 

storages on an electricity distribution system with 

temporally and spatially variable capacity, it is 

critical to be able to project the magnitude, rate, 

and location of EV uptake, usage and 

charging/discharging by consumers at a fine 

spatial scale. This paper presents a an integrated 

suite of models (with some case study examples) 

for estimating the uptake, usage and charging of 

electric vehicles, and then determining the peak 

load impacts on individual feeder lines in the 

electrical distribution system. It is assumed here 

that EVs are charged only at home (“on-

driveway”), thus excluding recharge at places of 

work, parking stations, or at special recharge 

stations. 

 

2 Model Overview 
The integrated modelling approach described 

here is designed to spatially model the future 

impacts of EV usage on the electrical grid. The 

integrated modelling strategy is outlined in 

diagrammatic form in Fig. 1, and incorporates: 

 A Diffusion Model for forecasting EV uptake 

across an urban area at three-monthly time 

intervals, given different financial and policy 

settings, in spatial mesh blocks of around 100 

houses 

 An EV Travel Model for spatially projecting 

the likely driving distances and travel 

durations, and the periods of availability for 

charging and discharging of EVs, across 

different parts of an urban area 

 An EV Charging & Discharging Model for 

projecting hourly energy requirements (x365 

days) for a given set of EV travel and charging 

parameters, in spatial mesh blocks of around 

100 houses 

 A Residential Energy Model for projecting the 

hourly residential energy usage (x365 days) 

across an urban area in spatial mesh blocks of 

around 100 houses. 

 

 

Figure 1: Integrated modelling framework 

The suite of models is integrated to enable scenario 

projections that link spatial projections of EV 

uptake and usage with the impacts of EV charging 

and discharging on peak electrical load for 

individual feeder lines or other sub-networks 

across the electricity grid. Different scenarios can 

be modelled to explore a range of potential 

questions, such as: 

 How will EV-related government policies (e.g. 

purchase rebates) affect EV uptake, EV 

clustering, and subsequent impacts on electrical 

grid peak loads? 

 How will EV charging/discharging technologies 

(e.g. Vehicle-to-House) affect charging 

behaviour and electrical grid peak loads? 

 How will electricity pricing arrangements (e.g. 

time-of-use electricity pricing or capacity 

pricing) affect potential EV uptake, charging 

behaviour, and grid impacts? 

 

A brief outline of the various model components is 

given in the following sections, followed by some 

case study examples. 

 

3 EV Uptake Model 
The diffusion model for EV uptake combines 

features of choice modelling, multi-criteria 

analysis and diffusion models. The total stock of 

all vehicles is known over time and the market 

shares of the respective vehicle technologies are to 

be estimated. The focus is on choices amongst 

competing vehicle types under a range of features 

relevant to buyers‟ purchasing decisions. A 
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household's purchasing decision is made when 

one of its existing vehicles reaches the end of its 

lifespan. 

 

Model parameters include the following: 

 Housing disaggregated by location and 

housing type 

 The set of competing vehicle types, including 

BEV, PHEV and diesel 

 A planning horizon, modelled at discrete time-

steps (30 years at quarterly intervals in this 

research) 

 Expected life span of each vehicle type, in 

terms of number of time intervals 

 Forecast of new households expected to 

purchase vehicles in each time interval 

 Total stock of each vehicle type in each 

demographic and location category at the 

beginning of the planning horizon. 

 

The main outputs from the diffusion model are 

the stocks of each vehicle type for each 

demographic by location category at each time 

interval. A detailed description of the model is 

given in [5, 6]. 

3.1 EV Uptake Case Study – Victoria, 

Australia 

Victoria is an Australian state with a population 

of 5.2 million people (2006) and a residential 

vehicle stock of 2.21 million. The primary source 

of information was the Australian Bureau of 

Statistics (ABS), which defines 9,300 small-area 

units called census collection district (CCDs) in 

Victoria, each representing about 250 

households. For the present research several 

CCD-level data categories were posited as key 

drivers of vehicle choice, notably housing type, 

housing ownership status, household income 

category and number of vehicles. These were 

divided into a small set of categories and the 

number of households in each combination of 

categories obtained. The following categories 

were used: 

 Housing type: Detached house, Other 

 Ownership: Own (including mortgage), Rent 

 Household income: AUD $0-$30,000/yr, 

$30,000-$75,000/yr, >$75,000/yr 

 Vehicles: 0, 1, 2+. 

 

Four different vehicle types were considered: 

BEV, PHEV, Traditioanl Hybrid (HEV) and 

Internal Combustion Engine (ICE). Seven criteria 
were identified as essential drivers for vehicle 

choice: performance, annual costs, upfront cost, 

household income, driving distance, demographic 

suitability, and risk/convenience. Based on the 

Oliver Wyman Study “E-Mobility 2025” 

(www.oliverwyman.com), we assumed the annual 

change in EV costs to be -3%, -1.5% and 0% for 

Hybrid and ICE vehicles respectively. 

 

For the demographic criteria, an EV demographic 

suitability score was generated for each location 

(CCD) in Victoria using several ABS variables for 

each location. The variables used were: Age (age 

group categories); Number of residents in the 

household, Employment (full time, part time, 

unemployed); Education (high school, diploma, 

degree etc); Occupation (career categories), and 

Transport mode (car, train, bus etc.). For each of 

these variable categories an EV suitability score 

was allocated based on suitability categories 

inferred from the survey. A planning horizon of 20 

years (2011 to 2030) was used for the case study. 

The initial vehicle stock was set to the values in 

the 2006 ABS data, since updated values by CCD 

are not available until late 2012. For this current 

report, the initial market share of HEVs was 3% 

(2010), and the remaining market share was ICE. 

For households that do not have a vehicle, we 

assumed they remained without a vehicle 

throughout the planning horizon. Our case study is 

based on a static population and demographic 

breakdown through to 2031. 

3.2 EV Uptake Projection - Base Case 

 

Fig. 2 shows the overall market share of the four 

vehicle types, calibrated to the scenario in [1]. The 

large upfront adoption of HEVs is due to the lower 

risk and costs in 2011. Decreases in these barriers 

over the planning horizon lead to a gradual 

increase in the relative significance of barriers in 

the case of BEVs and PHEVs. Fig. 2 shows the 

modelled market shares of BEVs and PHEVs for 

2030 across the greater Melbourne region, 

highlighting differences in adoption between rural 

and urban areas. The main drivers of these 

differences were driving distance (limited in the 

case of BEVs), occupation and education. For 

more local differences, the main drivers were 

household income and employment status, which 

were often substantially different in neighbouring 

suburbs. In Fig. 3 the predicted spatial distribution 

of vehicle uptake across Victoria for 2030 is 

shown for all vehicle types. BEV uptake in rural 

and urban areas differs greatly, with PHEVs 

having the greatest impact in peri-urban areas. 



EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  4 

 

Figure 2: Overall market share trend from 2011-2030 

The average modelled uptake of PHEVs was 

12.7% (see Table 1), ranging from 7% in rural 

CCDs to 22% in urban areas. Although the 

relative numbers of ICE vehicles is projected to 

decline substantially over 2011-2030 (Fig. 2), 

their market share is still dominant when viewed 

geographically (see Fig. 4), due to the much 

greater land area of rural as against urban CCDs. 

 

 
Figure 3: Shares of BEVs and PHEVs at 2030 at the 

suburb-scale for metropolitan Melbourne 

3.3 Policy analyses 

The diffusion model was used to investigate 

possible policies designed to promote uptake of 

EVs. In recent years several Australian 

governments at state and federal levels have used 

incentives, in the form of financial rebates to up-

front costs, to accelerate the uptake of solar Phot-

voltaic (PV) and solar hot water systems [1,7]. No 

such program, however, has yet been applied to 

EVs. 

 

The following hypothetical scenarios were studied: 

 Rebates of $7,500: 2010 to 2030 

 Rebates of $7,500: 2020 to 2030 

 Rebates of 25% (max $8500): 2010 to 2030 

 Rebates of 35% (max $10000): 2010 to 2030 

 Feebate of 4%, 2015 to 2030 

 Feebate of 2%, increase by 2%/yr 

 Time of Use annual incentive, $150/yr 

 Vehicle to Grid incentive $1,300 in 2012, 

reducing to $350 in 2025 

 Common cost metric (CCM). 

 

Rebates and time of use incentives apply to BEV 

and PHEV vehicles, whilst feebates (e.g. increased 

registration fees) apply to ICE vehicles. Time-of-

use and vehicle-to-grid incentives are annual 

rebates provided to owners of BEVs and PHEVs. 

A CCM is a non-financial incentive that provides 

consumers with information on the whole of life 

(upfront and future) cost of the vehicle, so as to 

reduce reliance on upfront cost as a decision point 

for purchase. CCM is implemented in the diffusion 

model by increasing the familiarity measure for 

BEVs and PHEVs by 10 years. 

 

For each scenario, we calculated the total cost to 

the government. Table 1 shows a general trend of 

BEV and PHEV uptake increasing with the size of 

the financial incentive; however, the timing of the 

incentive is crucial to its efficiency. By introducing 

the $7,500 rebate in 2020 instead of 2010, the total 

cost was reduced by over 30% with only a small 

decrease in the market share of BEV. Our analysis 

suggests that the common cost metric is an 

excellent alternative to expensive rebates as a 

means of accelerating adoption of EVs. This basic 

analysis can be extended to include combinations 

of incentives introduced at different times.
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Table 1. Market share (%) at 2030 for each scenario 

 

Scenario BEV PHEV HEV ICE Cost ($ billion) 

Base 12.7 21.3 22.0 44.0  

Rebates of $7,500  22.9 24.1 20.0 33.1 14.8 

Rebates of $7,500: 2020 to 2030 23.1 23.4 20.0 33.6 9.4 

Rebates of 25% (max $8,500) 20.8 24.1 20.1 35.1 14.6 

Rebates of 35% (max $10,000) 23.3 27.2 19.8 29.7 20.7 

Feebate of 4%: 2015 to 2030 12.7 21.3 22.1 43.9    1.2
#
 

Feebate of 2%, increase by 2%/yr:  12.9 21.5 22.3 43.4    2.9
#
 

Time of Use annual incentive: 

$150/yr 14.0 21.2 21.5 43.3 4.9 

V-G smart charging: 2015-2025 15.7 21.1 21.0 42.3 12.7 

Common Cost Metric 21.6 22.5 22.6 33.3  
#
 Cost to consumers 

 

 

 

 
Figure 4a: BEV & PHEV shares, Victoria, 2030. 

 
Figure 4b: HEV and ICE shares, Victoria, 2030. 
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4 BEV Travel Model 
The model of BEV travel behaviour is based on 

data from a Victorian State government activity 

survey (VISTA), and data on traffic volumes 

provided by the agency responsible for main 

roads (VicRoads). A geographical view of travel 

intensity is essential when studying BEV impacts 

because BEV usage is highly variable in time 

and space, depending on the home location of the 

BEV, local demographics, and proximity to 

activity centres and to other transport options. 

The travel model treats existing travel patterns 

(from VISTA) as a template for BEV usage, and 

introduces temporal fluctuations based on traffic 

intensities (from VicRoads data). Implementation 

of this approach has required some degree of 

statistical refinement due to the small size of 

VISTA samples at „Statistical Local Area‟ (SLA) 

geographic units which are larger than CCDs . 

 

The travel model provides estimates of BEV 

behaviour (e.g. average length and frequency of 

off-driveway journeys, by time of day); when 

combined with the uptake estimates, these yield 

several indicators of BEV activity (e.g. distance 

travelled, numbers of journeys, and numbers of 

vehicles at home at any given time), 

disaggregated by location, by time of day, and by 

date. Some summary measures of travel 

behaviour for two geographical regions are 

presented in Fig. 5. 

5 Residential Energy Model 

The Residential Energy Model is used for 

projecting the hourly residential energy usage 

(x365 days) across an urban area in spatial mesh 

blocks of around 100 houses. This is necessary to 

understand the impacts that BEV charging and 

discharging will have across the electricity 

network at specific times of the day. 

 

The Residential Energy Model is a physics-based 

bottom-up model that works by aggregating 

individual household energy consumption 

(simulated by the recently developed AusZEH 

energy model [9, 10]) to blocks of housing using 

recent Census data and other available data 

sources. The total energy consumption of 

housing includes space heating and cooling, 

water heating, lighting and other appliances, 

which were estimated by considering building 

construction and materials, occupant number and 
behaviour, and local climates. To estimate hourly 

energy consumption, six potential occupant 

profiles were proposed for individual houses. 

Four family types (a couple with children, a 

couple, a single parent with children and other) 

and three categories of occupancy (e.g. occupied 

whole day, half day and evening only) were 

considered for a block of housing. The proposed 

method has been validated using actual energy 

consumption at levels of individual households 

[11], and a block of housing stock (at CCD and 

State levels) [12].  

 

This tool could provide insight into impacts of 

new technologies, building regulations and 

policies on housing stock energy consumption at 

local (CCD) or state level, and useful 

information on peak demand and total energy 

consumption for policy makers and grid 

management. 

 

 
Figure 5: Travel model output - Arrival time and 

distance travelled probability surfaces for two 

different geographical regions. 
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6 EV Charge & Discharge 

Model 
 

The EV Charging & Discharging Model is used 

to project hourly energy requirements (x365 

days) for a given set of EV travel and charging 

parameters, in spatial mesh blocks of around 100 

houses. Four possible and one testing charging 

mode were identified and modelled in this study. 

They related to the timing and rate of charging 

and also to an option of grid support where a car 

battery is used to provide energy to the 

house/electricity grid in peak electricity demand 

periods. These charging & discharging modes 

are: 

 Demand charging 

 Demand charging and vehicle to house (V2H) 

discharging 

 Off-peak charging 

 Off-peak charging and V2H discharging 

 Equally spread charging (testing mode). 

 

In demand charging mode a BEV is plugged to 

the electricity grid (at home) and begins charging 

its battery immediately after the car arrives at the 

driveway at home. The battery is charged at 

constant rate until fully charged. In off-peak 

charging mode a BEV begins charging its battery 

during a specified off-peak period if available at 

the driveway. In V2H discharging mode a BEV 

battery is used to support the electricity grid 

during a specified peak period, keeping above 

minimum discharge level. Fig. 6 shows EV 

charging profiles by time of day for two 

scenarios at CCD level – demand charging and 

off-peak charging with V2H discharging. The 

upper diagram shows the projected load profiles 

for different parts (CCDs) of Melbourne, under a 

demand charging scenario where EVs plug-in 

and fill battery (3 kW) immediately on arrival at 

home. The higher-value load curves are for areas 

in the city where there is a high uptake of EVs 

plus a high travel demand. The profile shape 

indicates the relative numbers and travel 

distances of vehicles arriving home from 

different activities (10am = school drop-off; 3-4 

pm = school pick-up and daytime activities; 5-9 

pm = commuters; 10 pm-2 am = evening 

activities). The lower diagram shows charging (3 

kW) and discharging (2 kW) load profile under a 

scenario where the EV delays charging until off-

peak periods and discharges energy back into the 
grid at peak periods, subject to limits on battery 

capacity and the need to satisfy household travel 

requirements, as determined by the travel model. 

Figure 6: EV charging profiles by time of day and 

location for two scenarios at CCD level: Demand 

charging (upper) and Off-peak charging+V2H (lower). 

7 Grid Impacts Analysis 

The Models described above are combined to 

spatially model the future impacts of EV usage 

on the electrical grid, based on spatially 

projected EV uptake rates, spatially distributed 

travel patterns, and charging (and discharging) 

scenarios, and the spatially projected residential 

energy demand. An example of this application 

is given in Fig. 7, which shows the impacts of 

EV charging on the grid on a particular hour, on 

a hot summer day in the year 2030 in 

metropolitan Melbourne, Victoria. The left hand 

diagram in Fig. 7 spatially projects the 

percentage increase in household peak electrical 

load when EVs are charged on demand (as soon 

as they arrive home). The lower diagram in Fig. 

7 shows, spatially, the changes in peak load 

under a scenario where the EV delays charging 

until off-peak periods and discharges energy 

back into the grid at peak periods, subject to 

 Off-peak Charging 

 Vehicle-to-house  

Discharging
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limits on battery capacity and the need to satisfy 

household travel requirements, as determined by 

the travel model. The scenario modelled is an 

extreme example, which shows that in some 

areas of the city, at this particular time of day, 

the increase in peak load could be in the order of 

10-20%. This type of analysis allows pinpointing 

of the „hot-spots‟ on the electrical grid under 

different charging and discharging scenarios, and 

will assist governments and industry in assessing 

the costs and benefits of different EV charging 

incentives, policies, regulations and technologies. 

 

 
Figure 7: Spatially projected impact of different EV-

grid integration scenarios on electrical grid peak load 

in metropolitan Melbourne, Australia. 

8 Summary and Conclusions 
In this paper we report on successful 

implementation of a composite modelling 

framework comprising an innovative diffusion 

model and models of travel and household 

energy usage. This framework is designed to 

estimate the market share, travel patterns and 

grid impacts of BEVs across a landscape of 

heterogeneous consumers. The combination of 

fine geographical and demographic granularity 

allows adoption and usage rates to be assessed at 

a sub-precinct level. This provides a useful 

capability for energy providers to better 

understand capacity constraints across their 

electricity grid, allowing for variation in uptake 

and usage of BEVs at different locations. A case 

study of Victoria for the period 2011 to 2030 

estimated uptake of BEVs and PHEVs, alongside 

HEVs and ICE vehicles. The fine spatial 

resolution of the study revealed notable 

differences at local and regional levels, 

attributable to driving distance, employment 

status and household income. By testing the 

uptake model on scenarios of government 

financial rebates and BEV range improvements, 

we demonstrated a powerful capability to inform 

or optimise various government policy schemes 

targeted towards increasing adoption of BEVs at 

minimal cost.  

An essential accompaniment to the uptake 

modelling was the modelling of travel behaviour 

to a level of disaggregation in space and time to 

match the modelling of residential electrical 

loads. This required some ingenuity, both in the 

application of travel activity data and in the use 

of traffic data to estimate temporal patterns in 

travel activity. Possible extensions include study 

of scenarios involving recharge at locations such 

as parking stations and other off-driveway 

locations, and elaboration of the travel model in 

light of projected future changes in land use and 

travel behaviour. Another important avenue for 

further research lies in the development of 

algorithms for efficient household energy 

management, along the lines of the model 

presented in Section 6. 
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