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Abstract

In this paper we present a novel composite methodology for obtaining spatial projections of the impacts
and opportunities arising from the integration of plug-in electric vehicles with future smart electricity grids.
We link models of future plug-in electric vehicle uptake, travel by household members, household
electricity demand, and recharge of electric vehicles. The analysis is disaggregated in each case to a mesh
block or local government area level; vehicle usage and household energy demand fluctuate on a hourly,
daily and seasonal basis, subject also to the longer-term trends projected for uptake of the new technology.
A similarly fine grain is applied with respect to socio-economic variables. The uptake model combines
features of choice modelling, multi-criteria analysis and technology diffusion theory; in this case it was
applied to four competing technologies (BEV, PHEV, HEV, ICE), and calibration revealed seven major
determinants of uptake: performance, annual costs, purchase cost, household income, driving distance,
demographic suitability, and risk or inconvenience. The travel model projects likely patterns of vehicle
usage and travel duration based on existing patterns of private vehicle usage. The household demand model
includes detailed representation of housing type and usage of electrical appliances. The charge-discharge
model embodies plausible algorithms for managing household electricity usage in conjunction with electric
vehicle batteries. In the paper we describe the various models and report projected impacts of electric
vehicles on peak electrical grid loads for the Australian state of Victoria. The impacts are presented on a
spatial basis, to the level of individual mesh blocks and network feeders, under a range of energy

management scenarios.
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are coming to market soon, or are on the horizon:
1 Introduction battery-only electric vehicles which run entirely on
a battery charged from the grid (BEVSs), and plug-
in hybrid electric vehicles which can run on
batteries charged from the grid alone (PHEVS),
liquid fuel (petrol), or a combination of both.

Most of the world’s major vehicle manufacturers
are currently developing plug-in electric vehicles
(EVs) for the mass market. Widespread adoption
of these vehicles is anticipated in Australia over
the next 30 years [1]. Two types of plug-in EVs
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For typical battery sizes and Australian driving
patterns, these two EV types may require
between 2 kwWh and 20 kwh of electrical energy
per vehicle from the grid if widely adopted for
passenger transport [2]. This represents a
significant potential increase in electrical load on
the grid which needs to be planned for in the
future. Conversely, the electrical energy storage
capacity available in electric vehicles, when not
needed for transportation, can potentially be
harnessed and used to support the needs of the
electricity grid at times of high demand or
constrained generation.In order to plan for the
extra load from EVs, and to understand the
impact and opportunities of extra loads and
storages on an electricity distribution system with
temporally and spatially variable capacity, it is
critical to be able to project the magnitude, rate,
and location of EV uptake, usage and
charging/discharging by consumers at a fine
spatial scale. This paper presents a an integrated
suite of models (with some case study examples)
for estimating the uptake, usage and charging of
electric vehicles, and then determining the peak
load impacts on individual feeder lines in the
electrical distribution system. It is assumed here
that EVs are charged only at home (“on-
driveway”), thus excluding recharge at places of
work, parking stations, or at special recharge
stations.

2 Model Overview

The integrated modelling approach described
here is designed to spatially model the future
impacts of EV usage on the electrical grid. The
integrated modelling strategy is outlined in
diagrammatic form in Fig. 1, and incorporates:

o A Diffusion Model for forecasting EV uptake
across an urban area at three-monthly time
intervals, given different financial and policy
settings, in spatial mesh blocks of around 100
houses

e An EV Travel Model for spatially projecting
the likely driving distances and travel
durations, and the periods of availability for
charging and discharging of EVs, across
different parts of an urban area

e An EV Charging & Discharging Model for
projecting hourly energy requirements (x365
days) for a given set of EV travel and charging
parameters, in spatial mesh blocks of around
100 houses

e A Residential Energy Model for projecting the
hourly residential energy usage (x365 days)
across an urban area in spatial mesh blocks of
around 100 houses.

EV demand over space & time

EV uptake EV travel EV charging
model —» model =» demand _1

Residential demand over space & time

\2
EV grid impacts

Residential Household Residential
building - energy - demand
stock model

Figure 1: Integrated modelling framework

The suite of models is integrated to enable scenario
projections that link spatial projections of EV
uptake and usage with the impacts of EV charging
and discharging on peak electrical load for
individual feeder lines or other sub-networks
across the electricity grid. Different scenarios can
be modelled to explore a range of potential
questions, such as:

e How will EV-related government policies (e.g.
purchase rebates) affect EV uptake, EV
clustering, and subsequent impacts on electrical
grid peak loads?

e How will EV charging/discharging technologies
(e.g.  Vehicle-to-House) affect  charging
behaviour and electrical grid peak loads?

e How will electricity pricing arrangements (e.g.
time-of-use electricity pricing or capacity
pricing) affect potential EV uptake, charging
behaviour, and grid impacts?

A brief outline of the various model components is
given in the following sections, followed by some
case study examples.

3 EV Uptake Model

The diffusion model for EV uptake combines
features of choice modelling, multi-criteria
analysis and diffusion models. The total stock of
all vehicles is known over time and the market
shares of the respective vehicle technologies are to
be estimated. The focus is on choices amongst
competing vehicle types under a range of features
relevant to buyers’ purchasing decisions. A
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household's purchasing decision is made when
one of its existing vehicles reaches the end of its
lifespan.

Model parameters include the following:

e Housing disaggregated by location and
housing type

e The set of competing vehicle types, including
BEV, PHEV and diesel

¢ A planning horizon, modelled at discrete time-
steps (30 years at quarterly intervals in this
research)

e Expected life span of each vehicle type, in
terms of number of time intervals

e Forecast of new households expected to
purchase vehicles in each time interval

e Total stock of each wvehicle type in each
demographic and location category at the
beginning of the planning horizon.

The main outputs from the diffusion model are
the stocks of each wvehicle type for each
demographic by location category at each time
interval. A detailed description of the model is
given in [5, 6].

3.1 EV Uptake Case Study — Victoria,
Australia

Victoria is an Australian state with a population
of 5.2 million people (2006) and a residential
vehicle stock of 2.21 million. The primary source
of information was the Australian Bureau of
Statistics (ABS), which defines 9,300 small-area
units called census collection district (CCDs) in
Victoria, each representing about 250
households. For the present research several
CCD-level data categories were posited as key
drivers of vehicle choice, notably housing type,
housing ownership status, household income
category and number of vehicles. These were
divided into a small set of categories and the
number of households in each combination of
categories obtained. The following categories
were used:
¢ Housing type: Detached house, Other
e Ownership: Own (including mortgage), Rent
e Household income: AUD $0-$30,000/yr,
$30,000-$75,000/yr, >$75,000/yr
e Vehicles: 0, 1, 2+.

Four different vehicle types were considered:
BEV, PHEV, Traditioanl Hybrid (HEV) and
Internal Combustion Engine (ICE). Seven criteria
were identified as essential drivers for vehicle

choice: performance, annual costs, upfront cost,
household income, driving distance, demographic
suitability, and risk/convenience. Based on the
Oliver Wyman Study “E-Mobility 2025~
(www.oliverwyman.com), we assumed the annual
change in EV costs to be -3%, -1.5% and 0% for
Hybrid and ICE vehicles respectively.

For the demographic criteria, an EV demographic
suitability score was generated for each location
(CCD) in Victoria using several ABS variables for
each location. The variables used were: Age (age
group categories); Number of residents in the
household, Employment (full time, part time,
unemployed); Education (high school, diploma,
degree etc); Occupation (career categories), and
Transport mode (car, train, bus etc.). For each of
these variable categories an EV suitability score
was allocated based on suitability categories
inferred from the survey. A planning horizon of 20
years (2011 to 2030) was used for the case study.
The initial vehicle stock was set to the values in
the 2006 ABS data, since updated values by CCD
are not available until late 2012. For this current
report, the initial market share of HEVs was 3%
(2010), and the remaining market share was ICE.
For households that do not have a vehicle, we
assumed they remained without a vehicle
throughout the planning horizon. Our case study is
based on a static population and demographic
breakdown through to 2031.

3.2 EV Uptake Projection - Base Case

Fig. 2 shows the overall market share of the four
vehicle types, calibrated to the scenario in [1]. The
large upfront adoption of HEVs is due to the lower
risk and costs in 2011. Decreases in these barriers
over the planning horizon lead to a gradual
increase in the relative significance of barriers in
the case of BEVs and PHEVSs. Fig. 2 shows the
modelled market shares of BEVs and PHEVs for
2030 across the greater Melbourne region,
highlighting differences in adoption between rural
and urban areas. The main drivers of these
differences were driving distance (limited in the
case of BEVSs), occupation and education. For
more local differences, the main drivers were
household income and employment status, which
were often substantially different in neighbouring
suburbs. In Fig. 3 the predicted spatial distribution
of vehicle uptake across Victoria for 2030 is
shown for all vehicle types. BEV uptake in rural
and urban areas differs greatly, with PHEVs
having the greatest impact in peri-urban areas.
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Figure 2: Overall market share trend from 2011-2030

The average modelled uptake of PHEVs was
12.7% (see Table 1), ranging from 7% in rural
CCDs to 22% in urban areas. Although the
relative numbers of ICE vehicles is projected to
decline substantially over 2011-2030 (Fig. 2),
their market share is still dominant when viewed
geographically (see Fig. 4), due to the much
greater land area of rural as against urban CCDs.

L g
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Figure 3: Shares of BEVs and PHEVs at 2030 at the
suburb-scale for metropolitan Melbourne

3.3 Policy analyses

The diffusion model was used to investigate
possible policies designed to promote uptake of
EVs. In recent years several Australian
governments at state and federal levels have used
incentives, in the form of financial rebates to up-
front costs, to accelerate the uptake of solar Phot-
voltaic (PV) and solar hot water systems [1,7]. No
such program, however, has yet been applied to
EVs.

The following hypothetical scenarios were studied:

¢ Rebates of $7,500: 2010 to 2030

¢ Rebates of $7,500: 2020 to 2030

o Rebates of 25% (max $8500): 2010 to 2030

¢ Rebates of 35% (max $10000): 2010 to 2030

o Feebate of 4%, 2015 to 2030

o Feebate of 2%, increase by 2%/yr

o Time of Use annual incentive, $150/yr

e Vehicle to Grid incentive $1,300 in 2012,
reducing to $350 in 2025

e Common cost metric (CCM).

Rebates and time of use incentives apply to BEV
and PHEV vehicles, whilst feebates (e.g. increased
registration fees) apply to ICE vehicles. Time-of-
use and vehicle-to-grid incentives are annual
rebates provided to owners of BEVs and PHEVS.
A CCM is a non-financial incentive that provides
consumers with information on the whole of life
(upfront and future) cost of the vehicle, so as to
reduce reliance on upfront cost as a decision point
for purchase. CCM is implemented in the diffusion
model by increasing the familiarity measure for
BEVs and PHEVs by 10 years.

For each scenario, we calculated the total cost to
the government. Table 1 shows a general trend of
BEV and PHEV uptake increasing with the size of
the financial incentive; however, the timing of the
incentive is crucial to its efficiency. By introducing
the $7,500 rebate in 2020 instead of 2010, the total
cost was reduced by over 30% with only a small
decrease in the market share of BEV. Our analysis
suggests that the common cost metric is an
excellent alternative to expensive rebates as a
means of accelerating adoption of EVs. This basic
analysis can be extended to include combinations
of incentives introduced at different times.

EVS26 International Battery, Hybrid and Fuel Cell Electric VVehicle Symposium 4



Table 1. Market share (%) at 2030 for each scenario

Scenario BEV PHEV HEV ICE  Cost ($ billion)
Base 12.7 21.3 220 440

Rebates of $7,500 22.9 24.1 200 33.1 14.8
Rebates of $7,500: 2020 to 2030 23.1 23.4 20.0 33.6 94
Rebates of 25% (max $8,500) 20.8 24.1 20.1 35.1 14.6
Rebates of 35% (max $10,000) 23.3 27.2 19.8 29.7 20.7
Feebate of 4%: 2015 to 2030 12.7 21.3 22.1 439 1.2
Feebate of 2%, increase by 2%/yr:  12.9 21.5 22.3 434 2.9%
Time of Use annual incentive:

$150/yr 14.0 21.2 215 433 4.9
V-G smart charging: 2015-2025 15.7 21.1 21.0 423 12.7
Common Cost Metric 21.6 22.5 22.6 333

* Cost to consumers
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Figure 4a: BEV & PHEV shares, Victoria, 2030. Figure 4b: HEV and ICE shares, Victoria, 2030.
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4 BEV Travel Model

The model of BEV travel behaviour is based on
data from a Victorian State government activity
survey (VISTA), and data on traffic volumes
provided by the agency responsible for main
roads (VicRoads). A geographical view of travel
intensity is essential when studying BEV impacts
because BEV usage is highly variable in time
and space, depending on the home location of the
BEV, local demographics, and proximity to
activity centres and to other transport options.
The travel model treats existing travel patterns
(from VISTA) as a template for BEV usage, and
introduces temporal fluctuations based on traffic
intensities (from VicRoads data). Implementation
of this approach has required some degree of
statistical refinement due to the small size of
VISTA samples at ‘Statistical Local Area’ (SLA)
geographic units which are larger than CCDs .

The travel model provides estimates of BEV
behaviour (e.g. average length and frequency of
off-driveway journeys, by time of day); when
combined with the uptake estimates, these yield
several indicators of BEV activity (e.g. distance
travelled, numbers of journeys, and numbers of
vehicles at home at any given time),
disaggregated by location, by time of day, and by
date. Some summary measures of travel
behaviour for two geographical regions are
presented in Fig. 5.

5 Residential Energy Model

The Residential Energy Model is used for
projecting the hourly residential energy usage
(x365 days) across an urban area in spatial mesh
blocks of around 100 houses. This is necessary to
understand the impacts that BEV charging and
discharging will have across the electricity
network at specific times of the day.

The Residential Energy Model is a physics-based
bottom-up model that works by aggregating
individual household energy consumption
(simulated by the recently developed AusZEH
energy model [9, 10]) to blocks of housing using
recent Census data and other available data
sources. The total energy consumption of
housing includes space heating and cooling,
water heating, lighting and other appliances,
which were estimated by considering building
construction and materials, occupant number and
behaviour, and local climates. To estimate hourly

energy consumption, six potential occupant
profiles were proposed for individual houses.
Four family types (a couple with children, a
couple, a single parent with children and other)
and three categories of occupancy (e.g. occupied
whole day, half day and evening only) were
considered for a block of housing. The proposed
method has been validated using actual energy
consumption at levels of individual households
[11], and a block of housing stock (at CCD and
State levels) [12].

This tool could provide insight into impacts of
new technologies, building regulations and
policies on housing stock energy consumption at
local (CCD) or state level, and useful
information on peak demand and total energy
consumption for policy makers and grid
management.
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Figure 5: Travel model dutput - Arrival time and
distance travelled probability surfaces for two
different geographical regions.
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6 EV Charge
Model

& Discharge

The EV Charging & Discharging Model is used

to project hourly energy requirements (x365

days) for a given set of EV travel and charging

parameters, in spatial mesh blocks of around 100

houses. Four possible and one testing charging

mode were identified and modelled in this study.

They related to the timing and rate of charging

and also to an option of grid support where a car

battery is used to provide energy to the

house/electricity grid in peak electricity demand

periods. These charging & discharging modes

are:

e Demand charging

e Demand charging and vehicle to house (V2H)
discharging

o Off-peak charging

o Off-peak charging and VV2H discharging

e Equally spread charging (testing mode).

In demand charging mode a BEV is plugged to
the electricity grid (at home) and begins charging
its battery immediately after the car arrives at the
driveway at home. The battery is charged at
constant rate until fully charged. In off-peak
charging mode a BEV begins charging its battery
during a specified off-peak period if available at
the driveway. In V2H discharging mode a BEV
battery is used to support the electricity grid
during a specified peak period, keeping above
minimum discharge level. Fig. 6 shows EV
charging profiles by time of day for two
scenarios at CCD level — demand charging and
off-peak charging with V2H discharging. The
upper diagram shows the projected load profiles
for different parts (CCDs) of Melbourne, under a
demand charging scenario where EVs plug-in
and fill battery (3 kW) immediately on arrival at
home. The higher-value load curves are for areas
in the city where there is a high uptake of EVs
plus a high travel demand. The profile shape
indicates the relative numbers and travel
distances of wvehicles arriving home from
different activities (10am = school drop-off; 3-4
pm = school pick-up and daytime activities; 5-9
pm = commuters; 10 pm-2 am = evening
activities). The lower diagram shows charging (3
kW) and discharging (2 kW) load profile under a
scenario where the EV delays charging until off-
peak periods and discharges energy back into the
grid at peak periods, subject to limits on battery

capacity and the need to satisfy household travel
requirements, as determined by the travel model.

ety o v [0
EV Charging - CCD - Scenario_49 ( Demand ) Year : 20

Figure 6: EV charging profiles by time of day and
location for two scenarios at CCD level: Demand
charging (upper) and Off-peak charging+V2H (lower).

7  Grid Impacts Analysis

The Models described above are combined to
spatially model the future impacts of EV usage
on the electrical grid, based on spatially
projected EV uptake rates, spatially distributed
travel patterns, and charging (and discharging)
scenarios, and the spatially projected residential
energy demand. An example of this application
is given in Fig. 7, which shows the impacts of
EV charging on the grid on a particular hour, on
a hot summer day in the year 2030 in
metropolitan Melbourne, Victoria. The left hand
diagram in Fig. 7 spatially projects the
percentage increase in household peak electrical
load when EVs are charged on demand (as soon
as they arrive home). The lower diagram in Fig.
7 shows, spatially, the changes in peak load
under a scenario where the EV delays charging
until off-peak periods and discharges energy
back into the grid at peak periods, subject to
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limits on battery capacity and the need to satisfy
household travel requirements, as determined by
the travel model. The scenario modelled is an
extreme example, which shows that in some
areas of the city, at this particular time of day,
the increase in peak load could be in the order of
10-20%. This type of analysis allows pinpointing
of the ‘hot-spots’ on the electrical grid under
different charging and discharging scenarios, and
will assist governments and industry in assessing
the costs and benefits of different EV charging
incentives, policies, regulations and technologies.

ir: A
cr{-? ¥
_"‘ .
- o)
\verage EV Uptake = 10%
EC SENNNEEEEEER
-10% <€ 0% > +20%
% Change in Peak Load
Melbourne, Australia, 2030
Average EV Uptake = 10%
1 SENEEEEEEEER
-10% <€ 0% > +20%

% Change in Peak Load
Figure 7: Spatially projected impact of different EV-
grid integration scenarios on electrical grid peak load
in metropolitan Melbourne, Australia.

8 Summary and Conclusions

In this paper we report on successful
implementation of a composite modelling
framework comprising an innovative diffusion
model and models of travel and household
energy usage. This framework is designed to
estimate the market share, travel patterns and
grid impacts of BEVs across a landscape of
heterogeneous consumers. The combination of
fine geographical and demographic granularity
allows adoption and usage rates to be assessed at
a sub-precinct level. This provides a useful

capability for energy providers to better
understand capacity constraints across their
electricity grid, allowing for variation in uptake
and usage of BEVs at different locations. A case
study of Victoria for the period 2011 to 2030
estimated uptake of BEVs and PHEVSs, alongside
HEVs and ICE wvehicles. The fine spatial
resolution of the study revealed notable
differences at local and regional levels,
attributable to driving distance, employment
status and household income. By testing the
uptake model on scenarios of government
financial rebates and BEV range improvements,
we demonstrated a powerful capability to inform
or optimise various government policy schemes
targeted towards increasing adoption of BEVs at
minimal cost.

An essential accompaniment to the uptake
modelling was the modelling of travel behaviour
to a level of disaggregation in space and time to
match the modelling of residential electrical
loads. This required some ingenuity, both in the
application of travel activity data and in the use
of traffic data to estimate temporal patterns in
travel activity. Possible extensions include study
of scenarios involving recharge at locations such
as parking stations and other off-driveway
locations, and elaboration of the travel model in
light of projected future changes in land use and
travel behaviour. Another important avenue for
further research lies in the development of
algorithms  for efficient household energy
management, along the lines of the model
presented in Section 6.
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