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Abstract

In this work we address the efficient operation of public charging stations. Matching energy supply and
demand requires an interdisciplinary understanding of both the mobility of electric vehicle (EV) users
and the load balancing mechanisms.
As a result of existing mobility studies, we propose in this work a routing service for searching and
reserving public charging spots in the neighborhood of a given destination. When comparing the search
results for direct drive with those for a multimodal route (using driving, walking and public transport)
in an urban environment, we obtain for the latter significantly more charging options in particular at low
e-mobility penetration levels, at a cost of slightly longer trip duration.
Further contributions address the schedule optimization, that, due to the proposed distributed architec-
ture, can be performed independently at each public charging station. We formulate an integer program
for the controlled charging and compare results obtained both with the exact and with a greedy heuristic
method.

Keywords: e-mobility, EV routing service, multimodal route optimization, charging station, controlled charging,
power flow calculation

1 Introduction
A well studied scenario for charging electric ve-
hicles (EV) is charging overnight at home. This
scenario alone, however, fails to address certain
significant user groups such as residents of ur-
ban areas without own garage, vehicle fleets, ve-
hicles with higher mileage, etc. These users are
all dependent of the existence of public charg-
ing stations (PCS). Using a PCS poses however
two problems for the user: a) to find a PCS that
matches the mobility needs and b) the found PCS
must be available in terms of energy and parking
space in the desired charging period. We address
both interdependent problems in this work, that
has been conducted within the KOFLA project
[1]
As the vehicular mobility can shift energy charg-
ing energy very quickly from place to place, the
main idea we follow in this work is to plan re-
sources in advance that contribute both to user
satisfaction and to the service performance of the
grid operator.
Recent mobility studies [2],[3] reveal that EV
charging must be subordinated to the mobility
goal or activity and not viceversa. As a conse-

quence, users should plug-in their EVs in walk-
ing distance of their destination. Partial charging
is acceptable, if the stay duration is limited.
Based on these assumptions, we have defined a
query and reservation protocol between an EV
and a routing service that enables the user to:
a) query availability of charging stations anytime
in advance, b) reserve a time slot for charging
at an available charging station, and c) be noti-
fied, when a charging point becomes available.
The protocol runs over a wireless channel avail-
able in a cellular network GSM/UMTS/LTE, but
in the future it could be integrated in the ITS ser-
vice ecosystem, as proposed currently in ETSI
EV notification draft [18].
The routing service is designed to serve a geo-
graphical region and represents a broker between
EV users and energy providers. The broker en-
tails the best PCS match in terms of availabil-
ity of resources required for charging. It fur-
ther considers user preferences such as location
convenience, price importance, preferred energy
provider, etc.
There are two parameters in the user provided in-
formation (see Table 1) that help to route the user
and reserve resources at a selected PCS: the time
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window, i.e. estimated arrival and leave time,
and demand, i.e. the maximum amount of en-
ergy needed. Whereas the arrival time and en-
ergy can be estimated by the vehicle navigation
and the battery management system, the stay du-
ration has to be provided by the user (but it could
also be infered from the activity type).

Table 1: Parameters of the query message

Parameter value
timestamp
destination (next stop) coordinates
expected arrival time
expected departure time
expected State of charge (SoC)
may use public transport yes/no
charging rates supported slow/normal/quick
price importance high, low
waiting importance high, low
walking distance importance high, low
renewable importance high, low
payment means card name, null

For this scenario, we introduce a decentralized
system architecture, where each PCS is able to
schedule and control the charging of individual
EVs allocatd to it. In this way the architecture
supports a new stakeholder: the charging station
owner. This provider has the freedom and incen-
tive to setup charging stations and sell the park &
charge service in conjunction with added value
services like loyalty programs, public transporta-
tion (see discussion in [4]).
Figure 1 shows schematically the proposed archi-
tecture: the routing server dispatches the reser-
vations on the basis of the rough availability of
resources at certain selected public charging sta-
tions. Each PCS sends load status updates both to
the routing service and to a LV-grid agent, which
has the task to calculate periodically the feasible
charging load (available power) for each PCS, us-
ing a power flow model. In the example in Figure
1, PCS A and B are in the same LV-grid, whereas
PCS C is in a different LV-grid.
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Figure 1: System architecture: charging load balanc-
ing is performed through routing the requests to dif-
ferent PCSs and through optimized activity schedul-
ing in the PCS.

In the rest of the paper, we focus on two mech-
anisms that would drastically improve the avail-

ability of charging resources at a PCS. In section
2 we evaluate the park, charge & ride option and
in Section 3 we study the optimal allocation of
resources at a specific PCS.

2 Multimodal Routing
Multimodal routing covers the aspect of includ-
ing different means of transportation in a route.
Multimodality is relevant for park-and-ride sce-
narios where drivers park in the perimeter of the
city and continue to their destination using pub-
lic transport. Multimodality with public trans-
port can also be combined with e-mobility charg-
ing to increase the access to more charging sta-
tions while still ensuring end-to-end mobility. In-
creased charging station availability is important
in early low penetration scenarios. Further, iden-
tifying several charging station options can be
beneficial to increase the possibility of identify-
ing a charging station with free resources.
In this section, we will shortly revisit our previ-
ous work from [19], which introduces a multi-
modal routing scheme and a preliminary analysis
on gains in charging station availability. In this
work, the preliminary analysis is extended to as-
sess the travel time impact of multimodal routes
under different road traffic conditions.

2.1 Multimodal Routing Heuristic
The multimodal routing heuristic proposed in our
previous work [19] involves the modalities of
EV-driving, public transport and walking. The
objective of the heuristic is to identify a set of
charging stations which are adjacent to public
transport stops that can provide user-mobility to
the final destination. The heuristic is based on a
set of presumptions: 1) An EV-user can accept
to walk maximally Twalk seconds between two
points on a route i.e. from charging station to
public transport stop and from a public transport
stop to the destination, 2) The user can accept to
spend maximally Tpt seconds in public transport
transit, 3) The desired EV driving range is limited
to EVrange which enables for instance to satisfy
low battery EV range constraints. The heuristic
is realized as follows:
Off-line initialization: All charging stations
within Twalk seconds of a public transport stop
are identified.
Online processing (at route request):

A. Identify the public transport stop closest to
the destination Pds (destination stop), which
is within Twalk walking distance. If none
are found, return an empty set.

B. Identify public transport stops P i
css, i =

0...N (charging station stop). N corre-
sponds to the amount of stops that can
be reached within Tpt seconds from Pds
(assuming symmetric of public transport
routes). The travel time to each station can
be calculated from a shortest-path-tree [14].
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Based on P i
css, look-up all charging stations

CSj
all, j = 0...M where M are the amount

of charging stations within walking distance
of the stops in P i

css.

C. Of the charging stations CSj
all filter

out irrelevant charging stations based on
EVrange. In the following evaluations,
charging stations are considered in a radius
defined by the distance from the EV to the
destination stop + 2000 meter to avoid ex-
cessively long routes.

D. For each remaining charging station, calcu-
late two routes: 1) driving from the current
location of the EV to the charging station
and 2) public transport from the charging
station to the destination. These routes are
merged to a joint multimodal route.

E. The routes calculated for each charging
station in D. are returned in a final set
CSk

options, k = 0...P to the EV-user for a fi-
nal selection. P is the total amount of reach-
able charging stations returned.

To evaluate the proposed mechanism, it has
been realized using open source route calcula-
tion tools. Graphserver [20] is applied to derive
the public transport and walking routes whereas
Gosmore [21] provides vehicle routes. An evalu-
ation scenario has been constructed from the Vi-
enna region which represents a large city with a
strong public transport network. For the evalu-
ation, only the subway system is considered. It
covers the major parts of the city region and also
a majority of all public transport trips conducted
in the region (64% [24]). Geographical data are
obtained from OpenStreetMap.org [12] and pub-
lic transport data from “Wiener Linien”.
Results on charging station reachability and im-
pact on total travelling time have been obtained
by generating trips in a 16 km by 16 km area de-
picted in Figure 2. Note, the term reachability
is used instead of availability as the scope of this
work only is to consider if a charging station can
be reached and not if it is free or occupied. A
trip consists of a starting point and a destination.
For each trip three routing schemes are calcu-
lated: 1) a direct route which defines the driving
time directly to the destination (without charg-
ing), 2) a charging in destination vicinity route,
where a charging station is within Twalk seconds
from the destination, and 3) a multimodal route
via a charging station and public transport. A
multimodal and a direct route for an example trip
is provided in Figure 2. To generate and com-
pare different trips, independent start and des-
tination locations are generated. Start locations
are randomly generated (uniform) all over the re-
gion to simulate trips starting in the city as well
as the surroundings. The destinations are ran-
domly chosen from a database with points-of-
interest (from data.wien.gv.at containing schools,
restaurants, hotels, sport centers, etc.) to ensure
commonly relevant destinations.
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Figure 2: Example trip from start to destination by
direct driving without charging, driving to a charging
station in vicinity of the destination and travelling via
public transport.

To assess the impact of multimodality in differ-
ent degrees of electrified public parking places,
three different EV penetration levels have been
compared: 10%, 50% and 100%. The pen-
etration levels are controlled by the parameter
pCS , which describes the probability that a public
parking place has been electrified. For the eval-
uation scenario, public parking places have been
obtained from the OpenStreetMaps data leading
to a total of 568 parking places. These are also
depicted in 2.

Table 2: Main parameters used in the simulation of
routing schemes.

Parameter Value
Trips evaluated 484
Walking speed 5 km/h
Trip start time 09:00:00 (weekday)
Tpt unlimited
Twalk 300 s

From the analysis presented in [19], significant
gains have been shown in terms of charging sta-
tion reachability. The previously obtained results
are summarized in Table 3 using the values of Ta-
ble 2 comparing the destination vicinity charging
scheme to the multimodel routing scheme. The
results show the fraction of trips where at least
one (P > 0) or at least 3 (P ≥ 3) charging sta-
tions are reachable. Identifying several reachable
charging stations is clearly necessary when con-
sidering that for a given charging station no free
capacity may be available.
For both results sets, significant benefits of the
multimodal scheme can be demonstrated; espe-
cially in low penetration scenarios. For more
details on this analysis interested readers are re-
ferred to [19].
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Table 3: Results of reachability of one or more charg-
ing stations on a trip.

CS set pCS = 0.1 pCS = 0.5 pCS = 1
P > 0 8 .7% 39 .3% 62 .6%

40.5% 61.0% 74.2%
P > 3 0 .0% 1 .9% 11 .0%

32.9% 35.7% 41.11%
Destination vicinity charging, Multimodal

2.2 Impact of Traffic Conditions
In the following, a quantification of the impact
of the multimodal routes is made compared to
destination vicinity charging routes in the Vi-
enna city scenario. The quantification focuses
on the change in average trip travel time between
the two schemes considering different road traffic
conditions. This enables to clarify the potential
advantages of the subway based transport, which
is clearly not affected by varying road traffic con-
ditions. For the study, two extremes are consid-
ered: perfect low traffic conditions and during
rush hour.
To model the road traffic conditions a simplistic
model is applied. The model separates the road
segments of the studied region into the classes
of city roads and motorways. Each class is
parametrized by an average speed. This sim-
plistic model is in correspondence with existing
traffic information systems for the Vienna region
allowing for a direct mapping of existing statis-
tics [23]. The traffic conditions are modelled as
average speed conditions for all vehicles in the
road network. As such the analysis does not take
into consideration potential congestion scenarios
in individual trips. Average speed parameters for
city roads have been obtained from the work in
[22]. The authors describe an ITS system for on-
line collection of traffic data based on taxis with
GPS. The system has been deployed in Vienna to
enable realistic average speed estimates under the
different conditions. Also based on GPS data, the
work of [23] similarly presents average values for
motorways in the Vienna region. A summary of
the utilized parameters is provided in Table 4.

Table 4: Average speed according to traffic conditions
and road type.

Traffic
conditions

City roads Motorway

Ideal 30 km/h 85 km/h
Rush hour 20 km/h 58 km/h

The classification of road segments into respec-
tively city roads and motorways in the region
of Figure 4 has been made from maxspeed val-
ues available in the OpenStreetMap data. Road
segments with a maximum speed of 80 km/h or
above are classified as motorway.
Utilizing the evaluation approach introduced in
Section 2.1 and the values from Table 4 com-
plete route traveling times have been calculated.
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Figure 3: Comparison of the overall trip time increase
compared to driving directly to the destination.

Note, that for this evaluation Tpt is set to unlim-
ited to not sort out any routes where driving pri-
marily with the subway could be the fastest ap-
proach. Figure 3 presents the mean increase in
travel time for the two routing approaches un-
der different charging station penetration levels.
The increase is calculated in relation to the direct
route to the destination (without charging). The
results suggest under ideal road conditions that
the difference in increase between the destina-
tion vicinity charging and the fastest multimodal
route (grey bar) are between 4 and 7 minutes de-
pending on the penetration level. Also, it can be
observed that the mean travel time does not in-
crease significantly when considering using one
of the three fastest multimodal routes (the white
bar). Under rush hour traffic conditions, it can be
observed that this difference is decreased to be-
tween 1 minute (for PCS = 1) and 5 minutes for
low penetration scenarios.
Which increase in travel time EV owners subjec-
tively are willing to accept is up to future usabil-
ity studies to clarify. It is, however, clear that the
multimodal scheme offers a significant improve-
ment in the reachability of charging stations. Fur-
ther, our results suggest that in medium to high
penetration scenarios and rush hour conditions
the mean travel time increase is in the order of a
few minutes. Overall, the results are encouraging
and future work must establish how the increased
reachability of charging stations can be applied to
improve overall charging availability and poten-
tially geographical balancing of grid load.

3 Controlled Charging at the
Charging Station

With the increase of EV penetration, controlled
charging, i.e. the coordination of charging time
slots will become indispensable both in residen-
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tial areas such as apartment blocks with elec-
trified parking lots, and public charging facili-
ties. A controlled charging strategy schedules
the charging jobs in such a way that it reduces
load peaks caused by users that plug-in their cars
approximately in the same time. In contrast to
other works on recharge scheduling [8],[9],[10],
our model uses as key parameter the time window
corresponding to user’s estimated parking start
and end time. Further required are: the amount
of energy needed to fill up the battery and the
charging rates (in kW) supported by both the ve-
hicle and the charging station.

3.1 Problem Formulation
For the problem we want to solve there is given
a time horizon of T discrete periods, a number
of M charging points and a number of A ac-
tivities, so that each needs one of the M park-
ing places for a duration time window (earli-
est,latest), and 2) a power resource for a certain
duration which depends on the selected charg-
ing speed spk (from a discrete set). The solution
has to determine the start charging time for each
activity, the allocation to a charging point, such
that the total power consumed in each time pe-
riod does not exceed the planned value, and such
that a certain profit objective function to be ex-
plained below is maximized.
Note that we have to deal with two types of re-
sources: parking place during the whole time
window, and power limitation during the charg-
ing period. If we make the assumption that the
charging points are identical (machines), we can
split the problem into two sub-problems:

1. since the machines are identical, we allo-
cate first the activity time windows to the
charging points. This problem is similar to
scheduling classes to classrooms, and can
be solved optimally by a greedy heuristic
(increasing starting time rule). The intervals
are the activity time windows and cannot be
shifted. The resulted allocation of activity to
charging point allows us to address the sec-
ond subproblem as a one machine problem.

2. this is a bandwidth or resource allocation
problem over time intervals, or RAP) which
is NP-hard, since it can be reduced to a
knapsack problem if the time windows are
set to the intervaal [0,1]. The specific
problem which we denote EVRSTW (elec-
tric vehicle recharge scheduling with time
windows) requires that the charging takes
place within the time window of the activ-
ity, has different speeds (supported by both
car and charging point), and is limited by to-
tal power available in each of the T periods.

In case the machines are not identical, i.e. slow
and fast charging, the machine allocation can be
still made under the following assumption: fast
charging spot is an expensive resource, therefore
is will not be used for slow charging, which leads
to two disjoint activity groups. In the most gen-
eral case, instances have to be created for each

Description
T set of time periods t ∈ T
A Set of charging activities
M set of charging points
I instances generated from activities A

ej , lj time window (earliest, latest) j ∈ A
si, fi start and finish time of charging , i ∈ I
dj energy demand of activity j
P t total available power during t ∈ T
wi charging speed i ∈ I
vti parking period of instance i ∈ I, t ∈ T
ci completion degree of instance, one of C
pi profit generated by instance i
xi variable: xi ∈ {0, 1}, i ∈ I .

k[spi] cost for charging at speed spi

Table 5: Summary of notation.

individual machine, making the problem very
large.
In the rest of this section we assume the machines
are identical, so that the allocation activity-
charging spot has been done and focus only on
the second subproblem, the RAP. The RAP prob-
lem is highly combinatorial, since the charging
interval can be selected anywhere within the time
window, can have different durations determined
by the charging speed and the completeness cri-
teria, leading to different profits for the same ac-
tivity. In order to simplify the integer linear pro-
gram (ILP) formulation, we generate from each
parameter combination an instance i and use one
binary variable xi to denote that that instance is
selected in the solution, see Bar-Noy et al [15] :
for j ∈ A

for m ∈M (not identical m)
for n ∈ C

for k ∈ S
for l ∈ [ej , lj − dur], dur = ndi/k

generate instance inst(i,m, n, k, l)
end

end
end

end
end

The profit pi is defined as a weighted sum of
two objectives: the completion degree ci and the
cost factor k[spi] of the charging speed (quick
charging requires more expensive equipment and
shortens the battery life). We set α = 0.5

pi = αci + (1− α)/k[spi] (1)

Problem EVRSTW:

Z = max
∑
i∈I

pixi (2)
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s.t.
∑

i∈I|a[i]=j

xi = 1, j ∈ A (3)

∑
i∈I|t∈[si,fi]

wixi ≤ P t, t ∈ T (4)

∑
i∈I|m[i]=m

vtixi ≤ 1,m ∈M, t ∈ T (5)

xi ∈ {0, 1}, i ∈ I (6)∑
i∈I

xi ≤ 1 (7)

The inequality (4) limits for each time slot t the
total power due to simultaneous activities to the
available power P t. The equality (3) makes sure
that exactly one instance of each activity is se-
lected.

3.2 Heuristic Algorithm
Since problem EVRSTW is NP-complete, a nat-
ural step would be to look for approximation
heuristics that would performe satisfactorily in a
large charging station.
A first selection has been the local ratio algo-
rithm which belongs to a class of stack based
heuristics [16], and has been proposed in pack-
ing problems to maximize bandwidth through-
put [17], [15]. In our case the bandwidth corre-
sponds to the charging power. For this type of
problems, the algorithm can achieve a 1/3 ap-
proximation, which gets better as the ratio be-
tween the charging power (speed) of individual
activities and the total available charging power
is smaller. The algorithm works as follows: the
instances I are first sorted in increasing order of
their end (charging) times. In the first sweep we
select an instance with minimum end time and
decrease the profits of all instances that a) belong
to the same activity, b) overlap with the selected
instance. Instances with non-positive profits are
removed, and the selected activity is pushed on a
stack. When no activities remain unconsidered,
in the second sweep activities are popped from
the stack and those who violate the total power
constraint (4) are deleted. Denote the selected in-
stance ĩ, then the profits of conflicting instances
pi are reduced as follows: pi = pi−βw̄ipĩ, where
β = 2. Other than in the exact algorithm, the
amount of resource has to satisfy 0 ≤ w̄i ≤ 1.
The problem arises at the calculation of if w̄i if
wi varies in the interval [si, fi]. The conservative
rule would be

w̄i = min
t∈[si,fi]

wi (8)

Another rule would be to use the average over
the interval. The algorithm and its implementa-
tion are described in [15].

|A| |M | P ZIP tIP ZH tH
20 16 30 13,5 11 9,9 9
40 30 40 23,1 19 15,8 27
80 48 70 40,8 37 35,4 132
120 64 90 62 32 51,5 550
160 80 150 93,9 20 74,7 1260
50 32 40 25,1 18 20,2 45
50 32 50 30,0 17 24,5 48
50 32 60 32,3 17 26,9 55
50 32 70 33,2 22 29,0 60
50 32 80 33,9 18 28,6 62

Table 6: Results for the integer problem (IP) and
Heuristic(H): Z is the objective, t[s] is the runtime,
P[kW] is the available power (here constant).

3.3 Computational Results
We first have evaluated the integer program
EVRSTW and the local ratio algorithm in terms
of running time and accuracy. The time horizon
was 32 time slots of 15 minutes each. The sys-
tem is initially empty, the activities are created
from randomly uniformly distributed time win-
dows and energy demand values (earliest [0,20],
duration [4,10], demand [5,10]).The main pa-
rameter to determine the runtime performance is
number of activities A. M and P are selected ac-
cordingly to provide similar load conditions. Ta-
ble 6 shows the results with the weighted objec-
tive (1) with α = 0.5.
Furthermore, we have investigated the impact of
the available power P on the solution for both the
ILP and heuristic algorithm. Relaxing the con-
straint P both solutions slightly improve.
The computations reveal that the solutions ob-
tained with the ILP model, using the CPLEX
solver are superior both in accuracy and runtime,
see Table 6. The computational complexity of
the local ratio heuristic depends mainly on the
number of instances which is proportional to the
number of activities. The number of generated
instances depends on the input, because a large
time window will create more instances than a
small one. The runtime depends also on the
weight w of instances. The profit of an instance
decreases during the first sweep iterations, until it
is eventually deleted. Therefore, for small weight
values w(i, j) (i.e large P), the instances will per-
sist for more iterations, increasing the runtime of
the heuristic. The solution quality of the heuristic
is in worst case 1/2 of the optimum (for ”small”
bandwidth activities), as stated in [16] and [15].
Finally, we simulated a varying available power
over time (as obtained by real consumption mea-
surements, and by applying a grid flow calcula-
tion procedure [5]). The created schedule using
the ILP model produces a cumulative load, de-
fined as L(t) =

∑
i|t∈[si,fi] xidi that is quite tight

to the limiting available power profile, see Figure
4.
If we repeat the experiment using the heuris-
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Figure 4: Cumulative load of the optimized activity
schedule versus the available power

tic, the performance depends on the calculation
of w̄i according to (8) or based on the average
value. Using the average, the cumulative load
gets closer to the upper limit P t, however some-
times it exceeds this limit. Using the minimum
rule, the solution is feasible but the performance
is poor, see Figure 4.

4 Conclusions and Future Work

In this work we addressed two related aspects of
e-mobility: the logistic problem of finding a pub-
lic charging station, and the charging energy bal-
ancing problem that affects both the grid provider
and the user. We proposed a distributed archi-
tecture in which the charging station has some
local control autonomy, and which achieves en-
ergy balancing at three levels: at the charging sta-
tion level through controlled charging, at the LV
grid level through grid flow calculation and at the
routing level using the brokerage function.
We proposed for the user logistic problem an on-
line routing service that uses mobile communica-
tion, and by including public city transportation,
we have shown that the availability of charging
spots can be drastically increased, particularly at
low charging station densities.
For the scheduling of charging intervals, we have
given an integer linear formulation and a local
ratio heuristic and provided preliminary results
that show in practice that greedy is too slow and
that the accuracy has to be improved. Currently,
research is being done to evaluate local search
heuristics to the scheduling problem.
The system components, routing server, charg-
ing station controllers and low voltage grid flow
calculation module are currently integrated with
a discrete event simulator that will simulate the
routing and energy related processes: activity
based mobility model in which EVs issue reser-
vation requests on-trip, routing, arrival and plug-
in, charging and leaving. Efficiency metrics such
as utilization of charging resources, overall per-
formance of different charging strategies and in-
teraction usability are going to be evaluated.
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