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Abstract 

Today’s challenge of integrating highly variable and less predictable components in electric drive trains 

requires new approaches of interactive vehicle control strategies derived by controlling SOH-parameters 

actively. The paper describes which measurement methods extract physical parameters and why these 

parameters are used as input variables for an additional SOH-management algorithm. Additionally, the 

authors report from practical experience of integrating different parameter extraction methods and SOH-

models. 
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1 Introduction 
 

Safety and lifetime issues are the dominant 

properties of a battery management system 

(BMS) in automotive applications. To ensure an 

always safe behaviour of the battery in an overall 

lifetime of 10-15 years a different operating 

strategy must be applied in comparison to typical 

consumer or industrial applications. A good 

knowledge of the current state of the battery cells 

is required to adapt the operating mode to 

achieve specified lifetime goals. While the state 

of charge (SOC) information is used mainly for 

the dynamic operation strategy, the SOH 

information should be used for the long-term 

coverage of the performance of the cell. The 

automotive requirement of the increase of the 

internal resistance must be less than 50 percent 

above specification and the battery capacity  loss 

must be less than 20 percent at end of the 

lifetime. Thus, the battery must be operated in its 

optimum conditions at every time and even adopt 

to specific driver profiles. In parallel, the BMS 

has to protect the cells from any long-term defects 

by not overestimating the cell performance also at 

the last, often unknown period of lifetime. 

Therefore two steps in the control strategy have to 

be implemented: 

 

• Precise determination of the current cell 

state 

• Deriving the optimum operating strategy 

from the detected states 

 

By intention, the additionally processed SOH 

parameters will work in coexistence to SOC 

parameters which are also processed at common 

BMS control strategies. The main focus on this 

paper is on the determination of the required 

values and the adaptation of the operation strategy 

according to the actual health state. In turn, as 

drivers of today expect so called “range” and 

“performance” modes, SOH management will 

even effect SOC management and vice versa. 
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2 Determination of the current 

cell state 
 

2.1 SOH Definition 

The paper shall be uploaded as a pdf file only, 

made up to the specifications of this template. In 

the case special fonts (e.g. symbols) are used, 

these shall be embedded in the pdf file. The size 

of the file should not exceed 1,5MB for a total 

allowed paper length of 12 pages. 

 

The SOH represents the synthesized health state 

of the traction battery. The range of this purely 

synthetic parameter “SOH” is determined by 0 to 

100 percent. At Begin of life (BOL) the SOH is 

100%, at End of life (EOL) the SOH is 0%, that 

means the battery can no longer be used for the 

application specified in the vehicle requirements 

specification. We define that the battery reaches 

its EOL state if  battery-capacity decreases to 

80% of its initial value, or the internal resistance 

doubles, or the required maximum power of a 

cell can no longer be provided. Therefore, the 

main measures for the SOH value are capacity 

and internal resistance of the lowest performing 

cell. This is true, as there is no major active 

balancing circuit directly supporting under load 

conditions. Depending on the type of vehicle, the 

relevance of the particular parameter is different. 

The achievable electrical range, defined by the 

battery capacity is more important for an electric 

vehicle. On the other side the maximum available 

power is important for hybrid electric vehicles 

(HEV), a constantly small internal resistance is 

preferable. Summarized, there are different 

requirements the SOH in EV and HEV/PHEV 

applications. This can be considered with 

weighting factors.[3]  

 
We propose the SOH as:  
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in wich  

 

actC  actual capacity 

NC  nominal capacity 

EOLC  capacity at end of life 

actiR ,  actual internal resistance 

NiR ,  nominal internal resistance 

EOLiR ,  internal resistance at end of life 

α  weighting factor capacity 

β  weighting factor internal resistance 

 

 

2.2 SOH Modelling 

There are two options to estimate the SOH 

parameters. One possibility is an approach that 

uses the electro-impedance spectroscopy (EIS). 

This method operates in laboratory environment, 

which is – stand alone - due to the big complexity 

not suitable for in-vehicle use. Due to the fact that 

a battery is a strong non-linear system (at high 

current levels) with distinctive time dependability, 

a measurement procedure, which does not need a 

high stimulation or change the state of the cell, is 

preferable. An approach to describe the complex 

behaviour is to model the complex impedance of 

the battery system by superposition of the single 

cell impedances.  

By the help of system theory methods, the non-

linear transfer function of the system can be found 

and used for parameter identification. The aim is to 

make EIS available for automotive applications to 

determine the SOH parameters very accurate. 

Impedance spectra gained from EIS include 

physically linked information for parameterization 

of an advanced battery model and can give 

information on failure states. These information 

are sometimes further processed in safety models 

which generate additional information on cell-level 

failure modes. 

 

In contrast, the use of Kalman filters for the 

estimation of the SOH parameters capacity and 

internal resistance is a second possibility for SOH 

estimation. The equivalent circuit diagram of the 

battery model is transferred into a state space 

model and the state matrices and vectors have to 

be identified. The filters are designed and adjusted 

for the targeted state space. [3] The schematic of 

the Kalman Filter is shown in figure 1. The 

algorithm consists of a set of equations and works 
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in two steps. In the first step called “Time 

update” the Kalman Filter predicts the state of 

the system given the past state estimation and the 

system input. It also computes the uncertainty of 

the prediction. 

 

Figure 1: Schematic of Kalman Filter 

 

In a second step called “Measurement update” 

the algorithm compares the predicted values with 

the measured values. Based on the prediction 

error, the state estimation is updated. In reference 

to the prediction error the uncertainty is also 

updated. 

It should be made clear, the calibration of robust 

Kalman Filter arrangements require very 

extensive measurement work. Current 

benchmarking shows, these Kalman Filter 

algorithms sometimes can not  deliver true 

values, if cells fade to internal defects the 

algorithm can not differentiate the cause. 

Therefore, a clear analysis for robustness is 

required to prevent misleading functionality. 

 

2.3 Measurement methods 

The described method of EIS application to 

battery cells measures the currents and voltages 

in the time domain for a full frequency sweep or 

step response. Afterwards the collected data will 

be digital signal processed. By a fourier 

transformation the spectra I(jω) and U(jω) are 

generated. By divisions of I(jω) and U(jω) the 

impedance is calculated. The quality of 

impedance spectra depends to the hardware in 

use. To choose the appropriated hardware it 

needs to take into account different requirements 

for sampling time and precision. For the 

application of EIS on board of a car a low cost 

and low space consuming solution is required. 

The challenges of an automotive application are 

the high number of cells inside of a battery which 

have to be checked and the strong EMC 

disturbances generated by high currents inside 

and outside the battery enclosure. Innovative 

solutions for the on board application of EIS can 

be thought of using cell controller slaves with 

integrated signal processing. This reduces the 

amount of measurement data transferred to the 

master unit. Currently promoted solutions that 

make use of on board passive balancing circuits to 

excite cells only generate a very low voltage 

response. The authors believe in higher modulation 

currents to get clear impedance results with high 

signal to noise ratio. As no commercial solution is 

currently available, the authors initiated an internal 

project to develop a research hardware platform to 

investigate in future solutions for EIS on board 

measurement. 

 

2.4 Battery modelling 

For the diagnosis of batteries different models are 

used. Empirical models describe the behaviour of 

the cell voltage for a given current in the time 

domain.  

To model the impedance behaviour of a battery 

cell two Randles circuits in series were used which 

will lead to ambiguities in the parameter extraction 

process. Another problem is the assumption of a 

flat electrode surface which is not the case for 

modern large porous electrodes. Based on the work 

of DeLevie and others, models for porous 

electrodes were developed using different 

approaches like transmission line theory or 

fractional electrodes. These models can describe 

the high frequency behavior of the impedance 

which often employs a flat slope towards higher 

frequencies. 

With an infinite number of RC-elements with 

distributed time constants it would be possible to 

represent the Randles model in the frequency as 

well as in the time domain. For the simulation the 

number of RC elements is most often limited. All 

these models describe the information that’s in the 

impedance spectra or in the time behavior of a cell 

by a limited number of parameters and are 

therefore highly suitable for defining more 

complex measures of the battery like SOC or SOH. 

One of the main problems is therefore the 

extraction of these parameters from 

measurements.[1,4] Solutions for innovative 

parameter extraction have been presented in a 

dedicated paper last year. 

 

2.5 On-line battery modelling 

Due to the preconditioning criteria for the 

impedance spectroscopy (Causality, Time 

Invariance, Stationarity and Linearity) it is limited 
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to applications in the laboratory. By using 

intelligent algorithms the criteria causality and 

linearity can be neglected, i.e. the excitation 

signal could be a multi frequency signal. Before 

calculating the impedance, a correction of non-

linearities has to be carried out. If the impedance 

spectrum is found, the parameter of a suitable 

cell model can be evaluated by using 

optimization algorithms. The measured 

spectrums were used to evaluate the parameters 

of two different cell models; one is considering 

solid electrodes the other one is considering 

porous electrodes. Different cell chemistries were 

used for verification. 

For on-line applications the total battery current 

as excitation signal was also considered. The 

current signals in the car will be dominated by 

the drive train current. Therefore, the signal is 

high dynamically during the different driving 

cycles and high current values can be observed. 

Also, the frequency spectrum over time is much 

limited, however, relevant spectral components 

can be determined.[1,4] To overcome these 

limitation, pre-calibrated impedance models are 

required. This helps to find parameters even if 

the spectral bandwidth is limited and the values 

are noisy. 

 

2.6 Test results 

The developed parameter extraction routines 

successfully set up the Randles and DeLevie 

models. The obtained values can be used in 

parallel for quality assessment. Tests of a 

stressed and a factory new battery cell showed 

the drift of almost all parameters. Therefore the 

used parameters give information of the 

degrading of cell internal mechanisms, i.e. the 

charge transfer to the collector foils, the ion 

transport ability or the double layer behaviour. 

Also the harmonization of anode and cathode can 

be observed by evaluating the time constants of 

each electrode. Having analyzed the results, the 

authors believe that EIS also can support failure 

models. 

 

Hardware limitations and not optimal 

measurement conditions of standard automotive 

electronics make the EIS still difficult. Higher 

specification of voltage and current measurement 

is required i.e. increase of sampling frequency 

and synchrony. This could add extra cost to cost-

sensitive electronic parts. One solution is to 

identify the parameters with pre-calibrated 

models that estimate the parameter values in the 

time domain. The authors believe more tests with 

advanced parameter estimation algorithms need to 

be carried out to prove the concept for different 

conditions.[1] 

In turn, first results of Kalman Filters show the 

possibility to make use for SOH optimization 

features if standard hardware electronic devices are 

used. 

 

3 Optimizing BMS operating 

strategy 
To find optimal operating strategies, the problem 

needs to be defined generally. An always valid 

optimization function and constraints need to be 

defined. The general optimization problem is 

defined by  

 

1 2( , ,..., ) min
n

F x x x →  (1) 

 

and the constraints 

 

ini dxxxG ≤),...,,( 21  (2) 

 

There are several optimization strategies with 

different characteristics and implementations. A 

common classification is noted below: 

 

a) Global optimization 

b) Local optimization 

c) Heuristic optimization 

 

Global optimization methods can be numerical or 

analytical. Information about the constraints are 

given at each time step. In Local optimization the 

global problem is separated in a set of local 

problems. In this case information about past and 

present conditions is necessary. Heuristic 

approaches have no explicit optimization.  

 

Derived from energy management of hybrid 

electric vehicles, that is also supposed to find the 

optimal solution to use a combustion engine in 

combination with an electric motor, the SOH 

Management needs to solve the problem to find the 

optimal performance limits against the drive mode 

and the estimated parameters of the SOH, shown 

in figure 2. The Input values for the SOH 

estimation are the actual current, voltage and 

temperature. A special configuration of Kalman-

Filters was used to estimate the SOH parameters 

capacity and internal resistance. The driving mode 

can accept the values “sport” and “range”. In the 
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sports-mode the major aim is the allocation of the 

maximum power, the electrical range would be 

disregarded. On the other side the range-mode 

stands for preserve driving. The developed SOH-

Management consists of an aging model and an 

optimization block.  

 

 

Figure 2: Schematic of SOH-Management and 

processing for different EE-Architectures 

 

With the information about the current estimated 

SOH parameters, the aging model for SOH-

prediction and the optimization block finds the 

optimal values for the performance limits to 

achieve the specified driving mode. 

The performance values are the state of charge 

limits, the maximum current, the time limits for 

the maximum current, and the temperature limits. 

Finally, these values are processed differently in 

different EE-architectures. Some architectures 

process performance prediction decentralized, 

others integrate drive control strategies on 

vehicle-control-unit level.  

For demonstration purpose, Figure 3 shows an 

exemplary history of the synthetic SOH 

parameter for a  traction battery in use for some 

years. Section I describes a moderate driver. The 

estimated SOH is higher than the Reference-

SOH-line (broken line). Section II shows the 

SOH in a critical area below specification. The 

SOH falls under the Reference line due to an 

aggressive driving style. Without an optimizing 

strategy it can not be assured, that the battery will 

reach the predefined EOL target, shown in area 

III. By using the proposed optimization strategy 

the performance values will be limited to assure 

the lifetime goal.  

 

 

Figure 3: SOH-Management with optimized and without 

optimized strategy 

 

This method also can be helpful if the vehicle 

changes its place of application. Different ambient 

storage and operation temperatures have a major 

influence of the SOH even if the car has been 

never driven in this period. So the adaption of the 

performance values guarantees the achievement of 

the predefined EOL targets in different sales 

regions. It also helps to keep the vehicles 

economic value predictable for a long time period 

which in many sales regions is important to attract 

customers.  

As the traction battery still is a very expensive 

service component, the reliability of the health 

state over long-term becomes extremely relevant. 

It also needs to be mentioned, the life-time 

expectations differ much from customer specific 

drive cycles, the propose method for SOH 

management minimizes the engineering and 

validation efforts to assure EOL specifications for 

all occurring cycles. The validation efforts can be 

concentrated on standard ageing modelling that are 

required to set up reliable aging models. 

Interactive calibration of the performance values 

help to control the highly varying aging behaviour 

of battery cells. 
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