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Abstract

Today’s challenge of integrating highly variable and less predictable components in electric drive trains

requires new approaches of interactive vehicle control strategies derived by controlling SOH-parameters

actively. The paper describes which measurement methods extract physical parameters and why these

parameters are used as input variables for an additional SOH-management algorithm. Additionally, the

authors report from practical experience of integrating different parameter extraction methods and SOH-

models.
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1 Introduction

Safety and lifetime issues are the dominant
properties of a battery management system
(BMS) in automotive applications. To ensure an
always safe behaviour of the battery in an overall
lifetime of 10-15 years a different operating
strategy must be applied in comparison to typical
consumer or industrial applications. A good
knowledge of the current state of the battery cells
is required to adapt the operating mode to
achieve specified lifetime goals. While the state
of charge (SOC) information is used mainly for
the dynamic operation strategy, the SOH
information should be used for the long-term
coverage of the performance of the cell. The
automotive requirement of the increase of the
internal resistance must be less than 50 percent
above specification and the battery capacity loss
must be less than 20 percent at end of the
lifetime. Thus, the battery must be operated in its
optimum conditions at every time and even adopt
to specific driver profiles. In parallel, the BMS

has to protect the cells from any long-term defects
by not overestimating the cell performance also at
the last, often unknown period of lifetime.
Therefore two steps in the control strategy have to
be implemented:

e Precise determination of the current cell
state

e Deriving the optimum operating strategy
from the detected states

By intention, the additionally processed SOH
parameters will work in coexistence to SOC
parameters which are also processed at common
BMS control strategies. The main focus on this
paper is on the determination of the required
values and the adaptation of the operation strategy
according to the actual health state. In turn, as
drivers of today expect so called “range” and
“performance” modes, SOH management will
even effect SOC management and vice versa.
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2 Determination of the current
cell state

2.1 SOH Definition

The paper shall be uploaded as a pdf file only,
made up to the specifications of this template. In
the case special fonts (e.g. symbols) are used,
these shall be embedded in the pdf file. The size
of the file should not exceed 1,5MB for a total
allowed paper length of 12 pages.

The SOH represents the synthesized health state
of the traction battery. The range of this purely
synthetic parameter “SOH” is determined by O to
100 percent. At Begin of life (BOL) the SOH is
100%, at End of life (EOL) the SOH is 0%, that
means the battery can no longer be used for the
application specified in the vehicle requirements
specification. We define that the battery reaches
its EOL state if battery-capacity decreases to
80% of its initial value, or the internal resistance
doubles, or the required maximum power of a
cell can no longer be provided. Therefore, the
main measures for the SOH value are capacity
and internal resistance of the lowest performing
cell. This is true, as there is no major active
balancing circuit directly supporting under load
conditions. Depending on the type of vehicle, the
relevance of the particular parameter is different.
The achievable electrical range, defined by the
battery capacity is more important for an electric
vehicle. On the other side the maximum available
power is important for hybrid electric vehicles
(HEV), a constantly small internal resistance is
preferable. Summarized, there are different
requirements the SOH in EV and HEV/PHEV
applications. This can be considered with
weighting factors.[3]

We propose the SOH as:
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C,, actual capacity

Cy nominal capacity

CroL capacity at end of life

R, .. actual internal resistance

R nominal internal resistance

R cor internal resistance at end of life

a weighting factor capacity

S weighting factor internal resistance
2.2 SOH Modelling

There are two options to estimate the SOH
parameters. One possibility is an approach that
uses the electro-impedance spectroscopy (EIS).
This method operates in laboratory environment,
which is — stand alone - due to the big complexity
not suitable for in-vehicle use. Due to the fact that
a battery is a strong non-linear system (at high
current levels) with distinctive time dependability,
a measurement procedure, which does not need a
high stimulation or change the state of the cell, is
preferable. An approach to describe the complex
behaviour is to model the complex impedance of
the battery system by superposition of the single
cell impedances.

By the help of system theory methods, the non-
linear transfer function of the system can be found
and used for parameter identification. The aim is to
make EIS available for automotive applications to
determine the SOH parameters very accurate.
Impedance spectra gained from EIS include
physically linked information for parameterization
of an advanced battery model and can give
information on failure states. These information
are sometimes further processed in safety models
which generate additional information on cell-level
failure modes.

In contrast, the use of Kalman filters for the
estimation of the SOH parameters capacity and
internal resistance is a second possibility for SOH
estimation. The equivalent circuit diagram of the
battery model is transferred into a state space
model and the state matrices and vectors have to
be identified. The filters are designed and adjusted
for the targeted state space. [3] The schematic of
the Kalman Filter is shown in figure 1. The
algorithm consists of a set of equations and works
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in two steps. In the first step called “Time
update” the Kalman Filter predicts the state of
the system given the past state estimation and the
system input. It also computes the uncertainty of
the prediction.

N

Time update Measurement update

« Project the state ahead
= Project the error
covariance ahead

« Compute the Kalman gain
« Update estimate with measurement
« Update the error covariance

N

‘ Initial estimation ‘

Figure 1: Schematic of Kalman Filter

In a second step called “Measurement update”
the algorithm compares the predicted values with
the measured values. Based on the prediction
error, the state estimation is updated. In reference
to the prediction error the uncertainty is also
updated.

It should be made clear, the calibration of robust
Kalman Filter arrangements require very
extensive measurement work. Current
benchmarking shows, these Kalman Filter
algorithms sometimes can not deliver true
values, if cells fade to internal defects the
algorithm can not differentiate the cause.
Therefore, a clear analysis for robustness is
required to prevent misleading functionality.

2.3 Measurement methods

The described method of EIS application to
battery cells measures the currents and voltages
in the time domain for a full frequency sweep or
step response. Afterwards the collected data will
be digital signal processed. By a fourier
transformation the spectra I(jo) and U(jw) are
generated. By divisions of I(jw) and U(jo) the
impedance is calculated. The quality of
impedance spectra depends to the hardware in
use. To choose the appropriated hardware it
needs to take into account different requirements
for sampling time and precision. For the
application of EIS on board of a car a low cost
and low space consuming solution is required.
The challenges of an automotive application are
the high number of cells inside of a battery which
have to be checked and the strong EMC
disturbances generated by high currents inside
and outside the battery enclosure. Innovative

solutions for the on board application of EIS can
be thought of using cell controller slaves with
integrated signal processing. This reduces the
amount of measurement data transferred to the
master unit. Currently promoted solutions that
make use of on board passive balancing circuits to
excite cells only generate a very low voltage
response. The authors believe in higher modulation
currents to get clear impedance results with high
signal to noise ratio. As no commercial solution is
currently available, the authors initiated an internal
project to develop a research hardware platform to
investigate in future solutions for EIS on board
measurement.

2.4 Battery modelling

For the diagnosis of batteries different models are
used. Empirical models describe the behaviour of
the cell voltage for a given current in the time
domain.

To model the impedance behaviour of a battery
cell two Randles circuits in series were used which
will lead to ambiguities in the parameter extraction
process. Another problem is the assumption of a
flat electrode surface which is not the case for
modern large porous electrodes. Based on the work
of DeLevie and others, models for porous
electrodes were developed using different
approaches like transmission line theory or
fractional electrodes. These models can describe
the high frequency behavior of the impedance
which often employs a flat slope towards higher
frequencies.

With an infinite number of RC-elements with
distributed time constants it would be possible to
represent the Randles model in the frequency as
well as in the time domain. For the simulation the
number of RC elements is most often limited. All
these models describe the information that’s in the
impedance spectra or in the time behavior of a cell
by a limited number of parameters and are
therefore highly suitable for defining more
complex measures of the battery like SOC or SOH.
One of the main problems is therefore the
extraction of  these parameters from
measurements.[1,4] Solutions for innovative
parameter extraction have been presented in a
dedicated paper last year.

2.5 On-line battery modelling

Due to the preconditioning criteria for the
impedance  spectroscopy  (Causality, Time
Invariance, Stationarity and Linearity) it is limited
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to applications in the laboratory. By using
intelligent algorithms the criteria causality and
linearity can be neglected, i.e. the excitation
signal could be a multi frequency signal. Before
calculating the impedance, a correction of non-
linearities has to be carried out. If the impedance
spectrum is found, the parameter of a suitable
cell model can be evaluated by using
optimization  algorithms.  The  measured
spectrums were used to evaluate the parameters
of two different cell models; one is considering
solid electrodes the other one is considering
porous electrodes. Different cell chemistries were
used for verification.

For on-line applications the total battery current
as excitation signal was also considered. The
current signals in the car will be dominated by
the drive train current. Therefore, the signal is
high dynamically during the different driving
cycles and high current values can be observed.
Also, the frequency spectrum over time is much
limited, however, relevant spectral components
can be determined.[1,4] To overcome these
limitation, pre-calibrated impedance models are
required. This helps to find parameters even if
the spectral bandwidth is limited and the values
are noisy.

2.6 Test results

The developed parameter extraction routines
successfully set up the Randles and DeLevie
models. The obtained values can be used in
parallel for quality assessment. Tests of a
stressed and a factory new battery cell showed
the drift of almost all parameters. Therefore the
used parameters give information of the
degrading of cell internal mechanisms, i.e. the
charge transfer to the collector foils, the ion
transport ability or the double layer behaviour.
Also the harmonization of anode and cathode can
be observed by evaluating the time constants of
each electrode. Having analyzed the results, the
authors believe that EIS also can support failure
models.

Hardware limitations and not optimal
measurement conditions of standard automotive
electronics make the EIS still difficult. Higher
specification of voltage and current measurement
is required i.e. increase of sampling frequency
and synchrony. This could add extra cost to cost-
sensitive electronic parts. One solution is to
identify the parameters with pre-calibrated
models that estimate the parameter values in the

time domain. The authors believe more tests with
advanced parameter estimation algorithms need to
be carried out to prove the concept for different
conditions.[1]

In turn, first results of Kalman Filters show the
possibility to make use for SOH optimization
features if standard hardware electronic devices are
used.

3 Optimizing BMS

strategy

To find optimal operating strategies, the problem
needs to be defined generally. An always valid
optimization function and constraints need to be
defined. The general optimization problem is
defined by

operating

F(x,,x,,....,x,) = min (1)
and the constraints
G, (x,,xy,....,x,)<d, @)

There are several optimization strategies with
different characteristics and implementations. A
common classification is noted below:

a) Global optimization
b) Local optimization
¢) Heuristic optimization

Global optimization methods can be numerical or
analytical. Information about the constraints are
given at each time step. In Local optimization the
global problem is separated in a set of local
problems. In this case information about past and
present conditions is necessary. Heuristic
approaches have no explicit optimization.

Derived from energy management of hybrid
electric vehicles, that is also supposed to find the
optimal solution to use a combustion engine in
combination with an electric motor, the SOH
Management needs to solve the problem to find the
optimal performance limits against the drive mode
and the estimated parameters of the SOH, shown
in figure 2. The Input values for the SOH
estimation are the actual current, voltage and
temperature. A special configuration of Kalman-
Filters was used to estimate the SOH parameters
capacity and internal resistance. The driving mode
can accept the values “sport” and “range”. In the
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sports-mode the major aim is the allocation of the
maximum power, the electrical range would be
disregarded. On the other side the range-mode
stands for preserve driving. The developed SOH-
Management consists of an aging model and an
optimization block.
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Figure 2: Schematic of SOH-Management and
processing for different EE-Architectures

With the information about the current estimated
SOH parameters, the aging model for SOH-
prediction and the optimization block finds the
optimal values for the performance limits to
achieve the specified driving mode.

The performance values are the state of charge
limits, the maximum current, the time limits for
the maximum current, and the temperature limits.
Finally, these values are processed differently in
different EE-architectures. Some architectures
process performance prediction decentralized,
others integrate drive control strategies on
vehicle-control-unit level.

For demonstration purpose, Figure 3 shows an
exemplary history of the synthetic SOH
parameter for a traction battery in use for some
years. Section I describes a moderate driver. The
estimated SOH is higher than the Reference-
SOH-line (broken line). Section II shows the
SOH in a critical area below specification. The
SOH falls under the Reference line due to an
aggressive driving style. Without an optimizing
strategy it can not be assured, that the battery will
reach the predefined EOL target, shown in area
III. By using the proposed optimization strategy
the performance values will be limited to assure
the lifetime goal.

SOH
1
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without “~. -~

~. ~. N
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= > time
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Figure 3: SOH-Management with optimized and without
optimized strategy

This method also can be helpful if the vehicle
changes its place of application. Different ambient
storage and operation temperatures have a major
influence of the SOH even if the car has been
never driven in this period. So the adaption of the
performance values guarantees the achievement of
the predefined EOL targets in different sales
regions. It also helps to keep the vehicles
economic value predictable for a long time period
which in many sales regions is important to attract
customers.

As the traction battery still is a very expensive
service component, the reliability of the health
state over long-term becomes extremely relevant.
It also needs to be mentioned, the life-time
expectations differ much from customer specific
drive cycles, the propose method for SOH
management minimizes the engineering and
validation efforts to assure EOL specifications for
all occurring cycles. The validation efforts can be
concentrated on standard ageing modelling that are
required to set up reliable aging models.
Interactive calibration of the performance values
help to control the highly varying aging behaviour
of battery cells.
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