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Abstract

Smart charging and Vehicle-to-Grid application can provide balancing services for grid operators to
accommodate the variable output from wind and solar generation resources. With the nation’s aspiration to
increase the generation mix of renewable energy sources, the balancing requirements are expected to grow
in accordance.

A recent study for the Pacific Northwest in the USA estimated the number of vehicles necessary to
accommodate the incremental balancing requirements for a 2020 grid that would meet the states’ renewable
portfolio standards. This study assumed customer driving behavior based on statistics using conventional
vehicles. This paper will focus on customer behavior from very recent American Recovery and
Reinvestment Act (ARRA) charging monitoring studies that reveal how customers drive EVs and EREV
(extended range electric vehicle), and when they are plugging vehicles into the power supply.

Explored will be uncertainties associated with customer driving and charging behavior and the impacts on
its resource availability to provide services to the grid as a smart load or as V2G resources. The results
provide key insights to grid operators to assess the value and certainty of the emerging resource. It also
provides important insights to policy makers and customers to understand what the potential value and

revenue expectations for advanced grid services using EVs, EREVs, and PHEVs could be.
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manage from grid operations perspective. Such
1 Introduction fluctuations can have significant impacts on the
power system[2]-[4]. To stabilize and mitigate
these fluctuations, storage or reserve generation is
often required [5][6].
The emerging electric vehicle (EV) fleet has
significant potential as a flexible load and as an
energy storage resource to mitigate the fluctuating
energy production from wind and solar
technologies [7]. With appropriate hardware, the
vehicle can even provide power into the grid,

Renewable portfolio standards are driving
significant deployments of wind and solar
generation.  Unfortunately, wind and solar
generation sources often have significant
variability in the output[1]. Lulls in the wind and
clouds across the photovoltaic panel can
significantly reduce the output of such generation
sources. Conversely, a sudden gust of wind can
create an excess in generation that is difficult to
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much like a generator. With an appropriate
control technology and control strategy, the
vehicle could offer these grid services as long as
the vehicle is fully or sufficiently charged when
the vehicle owner needs it. In the time between
connection to the grid and departure, which may
be hours, the battery can be charged and
discharged at a variety of rates and schedules and
still meet the 100% state-of-charge requirement
at departure.

Electric vehicles can provide benefit to the local
power system by controlling the charge and
discharge rates of the battery in response to grid
stress. Several approaches to this problem exist,
including centralized and decentralized control
schemes [8]-[10]. As part of the Grid Friendly
Charger technology development at the Pacific
Northwest National Laboratory (PNNL), one
such decentralized scheme was developed.

The PNNL Grid-Friendly Charger incorporates a
charging and discharging method described as a
"regulation-services" mode, or vehicle-to-grid
(V2G)[10].  In this operating mode, local
indications of grid stress, such as frequency, are
utilized to vary the charging and discharging rate
for an electric vehicle. Utilizing  this
autonomous, decentralized control scheme, a
population of electric vehicles can help meet the
additional imbalance and variability in power
generation caused by renewable generation
sources.

This paper explores utilizing electric vehicles to
help offset the additional imbalance requirements
associated with the capacity expansion from 3.3
GW (2008) to 14.4 GW (projected in 2019) wind
generation into the Northwest Power Pool
(NWPP) in the United States (~11 GW
additional). A previous report explored meeting
this imbalance using National Household Travel
Survey (NHTS) data as a basis for electric
vehicle behavior [11][12]. With measured data
from the Idaho National Laboratory (INL) EV
Project [13], this paper discusses the number of
EVs required for meeting the future balancing
requirements based on observed driving and
charging behavior.

The INL EV project provides data on actual
charging behavior. It also includes information
on the times a vehicle is physically connected to
a charging station, and therefore available as a
grid resource. The results obtained from these
measurements are compared against the original,
NHTS-based simulations to explore how actual
customer charging behavior affects the number
of vehicles needed to mitigate of the additional

imbalance associated with renewable generation
sources.

The rest of this paper is divided as follows:
Section 2 describes the approach used in the
simulation, including the underlying data sets and
methodology. Section 3 presents results from the
different simulations. Finally, the paper concludes
with Section 4.

2 Approach

To investigate the benefits EVs can provide the
grid, their charging behavior needed to be
simulated. All simulations were carried out in an
identical manner, but using different base
populations or underlying population behaviors.
The subsections that follow will provide details on
the different aspects of the simulation.

2.1 Simulation Environment

All simulations were carried out in the Mathworks
MATLAB environment. Each vehicle was
individually simulated over a 10-day period and
aggregated into a total population. Individual
charge and discharge rates, states of charge, and
vehicle locations (e.g., work, home, driving) were
all tracked during the simulation runs.

Simulations conducted varied a parameter of the
vehicle population. All other parameters of the
simulation were held constant. For example, the
percentage of EVs that utilize a V2G charging
scheme were varied. However, other variables,
such as the departure/arrival schedule of those
vehicles, were fixed for each V2G penetration
level. This ensures changes in the total number of
EVs needed to mitigate the renewable generation
are associated with a specific parameter

2.2 Wind Imbalance Data

The V2G-based EV population is trying to offset
the variability associated with increased renewable
generation sources on the power system. In this
case, about 11 GW of additional wind generator
has been added to the NWPP to represent a 2019
scenario. The introduction of the additional wind
generation resulted in additional power balancing
requirements on the power system.  These
additional requirements were developed from a
stochastic-based methodology detailed in [14].
Fig. 1 shows a single day of the estimated
additional balancing requirements.
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Figure 1: Additional Balancing Requirements for 2019
Wind Deployment Scenario

For the charging and discharging strategy
employed by this study, frequency of the power
grid is used as a measurement of local grid stress.
The additional balancing requirements shown in
Fig. 1 were converted to frequency deviations
using a variation of the swing equations in power
systems:

AP
——=Af. 1
oY M

In equation (1), 4P is the change in power, D is a
load-damping constant, and Af is the change in
frequency [15][16]. For this study, D was
selected to be 94.74 GW/Hz and the base
frequency is assumed to be 60 Hz.

2.3 Vehicle Population

To fully capture the uncertainties of customer
charging and driving behavior, each individual
vehicle was simulated separately. While the
charging schedule varied, most of the other
vehicle parameters were drawn from a common
set.

Battery efficiency and sizing were one such
common parameter. All vehicles in this
simulation were assumed to be battery electric
vehicles designated as BEV-110 vehicles. This
assumes the battery has the capacity to optimally
drive 110 miles on a single charge. Different
vehicle sizes have different efficiencies on the
amount of energy needed to travel a single mile.
Table 1 shows the four different vehicle types
used in this simulation, along with the estimated
efficiencies [17][18]. Battery sizes, in kWh,
were obtained by scaling the per-mile
efficiencies to the 110-mile desired range. For
example, a compact car requires a 28.6 kWh
battery to meet the 110-mile range (0.26
kWh/mile * 110 miles).

Table 1: Vehicle Types and Efficiencies

. Energy Efficienc
Vehicle Type (kg\{’h /mile) y
Compact 0.26
Mid-size 0.30
Mid-size SUV 0.38
Full-size/Pickup 0.46

All vehicles simulated are assumed to have access
to level 2 AC charging at both home and work.
All simulated vehicles cycled their charge and
discharge rates based on the Grid Friendly
Charging Controller (GFCC) V2G scheme
developed at PNNL.  Using the simulated
frequency given in Section 2.2, the GFCC adjusted
charge rates in response to grid stress and customer
constraints (when to finish charging). Fig. 2 shows
an abbreviated response of a typical charging
cycle. Notice that the battery is both charging and
discharging during this period, an indication of full
V2G capabilities.
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Figure 2: Example V2G Charge Cycle

Availability of the vehicles to operate in V2G
mode was governed by two data sources. The first
source uses survey data from the 2001 NHTS
report [12]. The second source uses information
from the INL EV Project report [13]. These two
data sources provided the arrival and departure
times of the individual vehicles, dictating the
overall charging constraints to the system.

2.3.1 NHTS Data

The previous study used availability data extracted
from the 2001 National Household Travel Survey
[12]. This survey was not specific to electric
vehicles, but provided general guidance on typical
driving behavior.

The first item NHTS data provided was the arrival
and departure times for different vehicle types and
settings. Electric vehicles were mapped to random
entries in this data set. All vehicles were assumed
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to have charging capabilities whenever at home
or work. Furthermore, departure from home was
always assumed to be to work, and departure
from work was always assumed to be to home.
Fig. 3 shows a small subset of the NHTS data.
Transit times were variable, per the NHTS data,
but no explicit incidental trips were modelled in
this study.
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Figure 3: Sample 2001 NHTS Data

Distances from the NHTS data were utilized to
discharge the BEV battery. Using the
efficiencies of Table 1, the appropriate quantity
of energy was deducted from the BEV battery
any time a work-to-home or home-to-work trip
occurred.

2.3.2 EV Project Data

To add more realistic behavior to the charging of
the electric vehicles, information from the INL
EV Project was obtained [13]. The EV Project is
a U.S. Department of Energy project monitoring
various aspects of Chevy Volt and Nissan Leaf
electric vehicles. One aspect is the charging
behavior of the electric vehicle customers.

The EV project provided two sets of data to
further examine the additional uncertainties of
realistic EV charging and customer behavior.
The first data set is the aggregated charge of the
full population of 2690 Nissan Leaf vehicles on a
day of peak charge demand. This data was made
available in February 2012. This data set is
shown in Fig. 4. It is important to note that this
data encompasses many cities, not just those in
the Pacific Northwest. However, individual
cities followed similar demand profiles.

25
2
=
=
815
% \
a
21 A~
(=]
5 \ /,f'
=
- 00 \’_/w—\_fJJ
0 T )
0:00 6:00 12:00 18:00 0:00
Time of Day

Figure 4: Peak charging demand from EV Project data

The second data piece from the EV Project is
detail on times an EV is connected to a charging
station. This is similar to the arrival and departure
times of the NHTS data, but derived from actual
measured quantities. Unfortunately, the data from
the EV Project is only publicly available as the
aggregate population. Individual vehicle behavior
is not available.

To extrapolate individual behavior from the data,
the 2001 NHTS data was utilized. A 1000-vehicle
subset was taken from the NHTS data. This subset
was fit via a least-squares technique. The
technique solved for the number of individual
vehicles in 1000-vehicle subset needed to create an
aggregate availability profile that matched the EV
Project data. Fig. 5 shows the extracted EV
Project data, as well as the least-squares fit of
NHTS data.
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Figure 5: EV Project vehicle availability and NHTS-fit
data

Given the individual behavior’s origins in the
NHTS data, distances associated with those
specific vehicles were utilized in the EV Project
data set. Average travel distance and statistics on
the distances are available in the EV Project report,
but consistency with travel times required the
associated NHTS distances to be used.

Once the populations of electric vehicles under
various availability scenarios were simulated, the
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output results needed comparing. The
underlying goal of the simulations was to
determine the number of electric vehicles to aid
the integration of about 11 GW of additional
wind in the NWPP.

The number of vehicles required to meet the
future balancing requirements begins with an
aggregate charge curve. Each individual
vehicle’s charging power is accumulated into a
data set similar to Fig. 4. This accumulated
curve was mathematically divided into the
balancing requirements data of Fig. 1 to
determine the scaling of the initial EV population
needed. This population scale was used to
provide an equivalent charging profile for larger
populations of EVs. The energy difference
between this charging profile and Fig. 1 was used
as a parameter to describe compliance with the
future balancing requirements (see Fig. 6). Note
that Fig. 6 is the ideal, stationary storage (100%
availability) simulation case.

1

o
3

4
)

\

\

\

80 100

I
~

Millions of Vehicles

o
[N}

0 20 40 60

% Balancing Energy Unserved
Figure 6: Number of Vehicles as a Function of
Balancing Energy Unserved — assuming stationary
storage or V2G

As the population of EVs increases, more of the
additional balancing requirements associated
with the wind generation are met. As such, the
energy not served is decreased.

3 Results

Simulations for a variety of different scenarios
were carried out. For each data set, the balancing
energy unserved associated with the future
balancing requirements of the 14.4 GW of wind
generation was determined. These values were
plotted to examine the impacts real EV behavior
has on previous assumptions. With the same grid
stress signal, only changes in the population and
its behavior will produce changes on the
unserved energy curves.

3.1 NHTS-based Charging

The first scenario examined is utilizing a 1000-
vehicle population based on the 2001 NHTS data.
The authors’ previous wind integration study
utilized this same data set, but under different
charging scenarios [11].

Fig. 7 shows the compliance to meet future
balancing requirements. As one would expect, the
amount of balancing energy unserved decreases as
the number of vehicles increases. With a larger
population of EVs, the resource availability
increases and more of the additional balancing
requirements can be met.
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Figure 7: Number of Vehicles as a Function of
Balancing Energy Unserved — NHTS population

Fig. 7 serves as a baseline for this study. It
incorporates the energy requirements of individual
vehicles, as well as survey-based customer
behavior data. Compared to the stationary storage
case of Fig. 6, it is clear that a larger population is
required. Decreased resource availability
associated with driving times and full batteries
requires a larger population to meet the additional
balancing requirements. However, the vehicle
information is based off of normal, petroleum-
powered transportation and may not accurately
reflect EV customer behavior.

3.2 Measured Charging Behavior — EV
Project

The first EV Project data set was the aggregate
charge curve for all Nissan Leaf vehicles in the
project, as was shown in Fig. 4. No individual
simulation took place for this section. The
underlying vehicle population of 2690 vehicles
was scaled to various levels to examine the
balancing energy unserved at each population
point. Fig. 8 shows the results of the simulation.
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Figure 8: Number of Vehicles as a Function of
Balancing Energy Unserved — Measured EV Project
population

Using measured data of EV charging, the curve
of Fig. 8 does not appear to differ significantly
from Fig. 7. While the overall shape of the
energy curve is the same, the populations
associated with it are wvastly different. The
measured data indicates nearly 20 times as many
vehicles are needed to meet the additional
balancing requirements.

The significantly larger population is likely a
result of two differences with Fig. 7. Vehicles in
the EV Project demonstration are not charging in
a “grid-sensitive” manner. That is, they are not
responding to local grid stress, so may be over
charging during periods the grid requires relief.
The vehicles are serving customer constraints
first, with little regard to impact on the grid.

The second significant contributor is charging
availability. Vehicles in the EV Project (Nissan
Leafs, for this data set) are designed to delay
charge until after midnight. The result is low
resource availability during the day and early
evening hours. To meet the additional balancing
requirements associated with these time periods,
significantly more vehicles are required to be
available.

3.3 Recorded Availability

The next simulations utilized the extrapolated
INL EV Project availability to simulate a
population of V2G-capable EVs. These vehicles
are simulated in a manner similar to the NHTS-
data population earlier, with individual energy
requirements and customer departure constraints
governing the charge.

3.3.1 Diverse BEV Results

To provide a comparable simulation to the NHTS
data, the EV Project availability is first applied to
a diverse vehicle population. Like the NHTS
data, this population is composed of all four

vehicle types shown in Table 1. The result is a
different overall energy capacity of the EV fleet,
with larger SUV batteries requiring (and
potentially providing) more energy to the grid.

Fig. 9 shows the unserved portions of the
additional balancing energy requirements for the
diverse population. With the ability to vary their
charge rate and respond whenever connected
(including during the day and early evening), the
EV population is significantly lower than the
population of Fig. 8. Greater resource availability
allows the electric vehicles to provide more energy
storage to the grid, offsetting more of the
imbalance associated with the 11 GW of additional
wind.
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Figure 9: Number of Vehicles as a Function of
Balancing Energy Unserved — Diverse population

3.3.2 Compact Car Results

To be more in line with the measured results of
Fig. 8, the EV Project availability was used on a
second vehicle population. Rather than being a
diverse mix of vehicle sizes, all vehicles were
fixed to a 110-mile compact car. This should be
synonymous with the Nissan Leafs currently
deployed in the EV Project.

As Fig. 10 shows, even with similar battery sizes,
the population required is still significantly lower
than that of Fig. 8. This again is due to greater
resource availability. Even though a smaller
battery capacity is available, the ability for the
vehicles to respond to wind energy imbalances is
vastly increased. Allowing GFCC-based V2G
charging during the daytime and early evening
hours reduces the number of vehicles required to
offset the additional wind balancing requirements.
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Balancing Energy Unserved — Compact car population

3.4 Simulation Comparison

The simulation results for Fig. 7, Fig. 9, and Fig.
10 are all very similar. To determine the impacts
the customer variability had on the required
population, a direct comparison is necessary.
Fig. 11 shows the overlay of the different
simulations, as well as the ideal, stationary
storage case.
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Figure 11: Number of Vehicles as a Function of
Balancing Energy Unserved — Simulation comparison

Clearly the EV Project availability is increasing
the required number of vehicles to meet the
additional balancing requirements. Both the EV
Project availability (INL) and EV Project with
compact car (INL-Leaf) curves require more
vehicles than the base NHTS simulation to meet
the full energy requirements.

Given the EV project charging behavior, the
previously estimated numbers of vehicles
necessary to accommodate the future balancing
requirements are about 50 percent higher than
those using NHTS data sets. This is primarily
attributable to more diversity and different
charging times than were inferred from the
NHTS data. The NHTS data was also
fundamentally  based  around  traditional
petroleum-fueled vehicles, so customer behavior
associated with EVs may not have been
accurately represented.

It is useful to point out how much the variability of
vehicle use influences the required number, in
general. The diversity in the charging behavior
and availability as a grid resource requires nearly
double the amount of storage (as embodied in
vehicles) compared to a stationary resource with a
24/7 availability. The use of measured EV Project
availability  further refines this customer
variability’s impact on the simulation results.

4 Conclusions

From the impact of overall balancing energy
unserved percentages, the additional variability of
real customer use appears to have minimal impact
on the use of EVs as a grid resource. The largest
factor is the nature of the charging. Charging the
vehicles with a simple dispatch scheme and “grid
agnostic” method required significantly more
vehicles than any other situation. Previous work
demonstrated that by adding simple intelligence to
the charging hardware, the ability in help integrate
renewables is significantly improved [11].

Under ideal situations, the EV Project availability
increased the required vehicle count by
approximately 50% (to achieve 100% energy
served). While the numbers are higher, the
behavior is not significantly different than the
NHTS data used in earlier situations. The results
indicate that the EV Project customer behavior
causes resource availability to be less than that of
the NHTS simulations, and should serve as a more
conservative estimate than NHTS-derived data.
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