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Abstract 

Southern California Edison (SCE) is performing accelerated life cycle testing on a subsystem of A123’s 

Grid Battery System (GBS).  SCE’s laboratory testing is being performed on one rack containing 6 

modules that provided 100 kW and 23 kWh.  The full GBS is a 2MW 500kWh system composed of 18 

racks with 8 modules in each.  A test profile composed of 1C and 2C 100% depth of discharge (DOD) 

cycles was produced to apply 9 cycles per day.  Assuming the full system will be used once per day, four 

months of testing corresponds to the cycles that would be applied over three years of operation.  To help 

track battery performance throughout the testing, Reference Performance Tests (RPTs) are performed every 

300 cycles (which corresponds to just over one month).  The rack is contained in an environmentally 

controlled chamber at 20°C during all cycling to simulate the thermal conditions in the GBS container. 

Over 3000 test cycles have been completed on the GBS system.  Approximately 10% decay in capacity has 

been observed for all power levels.  At 80% DOD the available power has decreased only 3%.  After 

approximately the 1200th cycle, a four month pause in testing occurred.  Upon restarting the cycling, a 

significant decrease in capacity was observed.  However, the capacity did not decay as quickly.  After 

about the 2000th cycle, the capacity trend resumed the initial rate of decay.  This pause in testing has 

produced interesting conclusions relating to the relationship of calendar life and accelerated cycling which 

could have significant impacts on electric vehicle or utility application of lithium-ion batteries.   

This report focuses entirely on the laboratory testing of the GBS single rack.  Future analysis will combine 

these results with those of other SCE tests to produce conclusions regarding the application of the GBS on 

SCE’s grid. 
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1 Introduction 
A123 Systems’ Grid Battery System (GBS) units 
apply technology used in hybrid electric vehicles 
to meet the power sector’s growing need for 
energy storage [1].  The GBS hybridizes a power 
plant by adding a multi-megawatt energy storage 
system to the plant.  The GBS uses Smart Grid 

technologies with energy storage to provide grid 
stabilizing ancillary services such as frequency 
regulation, fast ramping, T&D deferral and 
spinning reserve to increase power plant 
efficiency.  GBSs increase the capacity, 
responsiveness, and efficiency of individual power 
plants and whole power systems.  Testing by 
Southern California Edison’s (SCE’s) Advanced 
Technology Organization has been performed on a 
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partial GBS.  The system being tested is a single 
rack with 6 modules installed.  The complete 
system is rated at 2 MW for 15 minutes and 
includes 18 racks with 8 modules per rack.  In 
parallel, a full system is being tested at SCE’s 
Large Energy Storage Test Apparatus (LESTA).  
The laboratory test is focusing on the 
fundamental technology that composes the GBS 
(the battery and battery management system), 
while the full system test will focus on grid 
integration and control mechanisms.  The single 
rack being tested in the laboratory for this report 
does not contain A123 Systems’ Smart Grid 
Domain Controller (SGDC) which is typically 
installed in a complete GBS such as the GBS 
testing at the LESTA station.   
The GBS is composed of A123 System’s 
lithium-ion Nanophosphate® technology.  This 
chemistry is designed for high power capability 
and was initially used primarily in hybrid-electric 
buses and handheld power tools.  Based on this 
proven performance, A123 believes they could 
be effective for stationary storage applications as 
well. 
SCE is evaluating the performance of the GBS 
single rack to identify the benefits that this 
technology can provide.  While the full GBS can 
be used in all of the applications mentioned 
above, SCE is primarily interested in the 
system’s use on our distribution system.  The 
power capabilities of the system make it useful to 
provide relief to overloaded circuits and 
potentially help defer distribution upgrades.  SCE 
will also evaluate the full GBS for renewable 
integration.  This system could help smooth 
photovoltaic or wind turbine output. 

2 Objectives 

2.1 System Characterization Testing 
This project aims to thoroughly understand and 
measure the performance of the single rack of the 
A123 GBS.  To do so, SCE performed an initial 
preliminary characterization of the rack.  This 
characterization was performed by running 
several profiles on the system and recording 
detailed data during the entire test.  SCE used 
this data to: 
 Verify the capacity of the rack when 
discharged at various rates 
 Calculate the roundtrip efficiency of the 
system 
 Evaluate effectiveness of the battery 
management system (BMS) 

 Determine the thermal performance 

2.2 System Life Cycle Testing 
After the initial characterization of the GBS single 
rack, SCE used the performance data (electrical 
and thermal) to assemble a test cycle that could be 
run continuously on the pack.  This profile has 
been used for over two years to help determine the 
cycle life of the system.  Periodic reference 
performance tests (RPTs) are performed 
throughout the cycle testing.  These RPTs are used 
to measure the performance of the system after 
each interval and identify any decrease in 
performance as the system ages. 

3 Test Setup and Procedure 

3.1 Test Equipment 

3.1.1 Battery Cycler 

Tests are conducted using the Aerovironment 
AV900 battery cycler.  Voltage and current 
measurements are obtained from the cycler.  
Temperature measurements for all battery modules 
are obtained from the rack’s CAN Bus.  The 
battery cycler was calibrated locally prior to and 
periodically throughout testing to ensure the cycler 
is within factory standards. 

3.1.2 Environmental Chamber 

The ambient temperature during all testing is 
maintained through the use of an Environmental 
Chamber.  Throughout the course of testing, the 
GBS rack has been placed in two different 
chambers, and each was set to maintain at an 
average of 20° C.  The full GBS includes an 
HVAC system that will maintain the full system at 
a similar temperature.  In the first chamber the 
temperature ranged from 16 to 24°C, while the 
second controlled the temperatures to within 1° (19 
to 21° C).  During the installation of the new 
chamber, the rack was removed and placed in the 
lab from June 18 through October 27, 2010. The 
rack was fully charged prior to this resting period.  
Over the summer, the temperature in the lab varied 
greatly.  Fig. 1 below shows the temperature 
profile throughout this period.  The rack was not 
cycled during this period. 
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4 Results and Analysis 

4.1 Preliminary Testing 

4.1.1 Capacity Test 

As described in 3.2.1, the system was discharged 
at various rates to determine usable capacity for 
each discharge rate. The data in Table 2 is 
averaged from two discharges at each rate to 100 
% DOD. From the data we can determine that 
there was essentially no difference in capacity as 
the system is discharged at higher rates. The 
lower capacities seen at the lower rates most 
likely can be attributed to the system requiring 
more time to fully discharge.  Since the passive 
balancing system is always active in the rack, the 
balancing circuit is constantly removing energy 
from the cells.  Thus the lower rate discharges 
had a slightly lower capacity due to the energy 
lost during cell balancing.  The thermal evolution 
and resulting lower impedance of the cells may 
also be a factor in this behavior. 

Table 2: System capacity and temperatures at various 
discharge rates 

Discharge 
Rate 

Energy 
(kWh) 

Capacity 
(Ah) 

Starting 
Module 
Temp. 
(°C) 

Ending 
Module 
Temp. 
(°C) 

16A (0.5C) 22.96 32.85 21.4 23.8 
32A (1C) 23.50 33.98 21.5 24.3 
64A (2C) 23.13 34.04 21.9 28.1 
96A (3C) 22.79 34.06 22.1 31.0 
128A (4C) 22.44 34.03 22.2 33.0 

4.1.2 System Efficiency 

The capacity retention test was performed as 
specified in 3.2.2.  From Table 3 it is evident that 
there is a significant capacity loss in a 24 hour 
period. This loss can be attributed to the load 
imposed on the battery modules by the BMS (for 
balancing). Although the energy loss may seem 
significant for one daily cycle, it is not 
significant if the battery is cycled continuously 
during the same period of time.  It should be 
noted that since the rack is not part of a full GBS, 
this is an abnormal operating condition.  A123 
has provided a firmware update to reduce decay 
by cell balancing.  However, this update has not 
been implemented in this test. 

Table 3: Twenty-four hour capacity retention test 

 Energy (kWh) Capacity (Ah) 
Pre-cycle 23.06 33.31 
Following  

24 h rest at full 
charge 

19.91 28.86 

Capacity loss 
(%) 

17.2 13.4 

Overall system efficiency was calculated at 
different discharge rates. Ancillary loads (such as 
BMS and system fans) were not taken into account 
for these calculations as they were powered 
externally. Elapsed time was defined as the time 
the discharge is started to the time the charge is 
completed. A one hour rest was included between 
the charge and discharge. The difference in system 
efficiency at different rates was small, with only a 
four percent difference between the efficiencies of 
the 1C to 4C discharge rate (Table 4).  The lower 
efficiency rate observed at the 0.5C discharge rate 
may have been due to the longer period of time 
during which the cell balancing circuits were 
active. 

Table 4: System efficiency at different discharge rates 

Elapsed 
Time (h) 

Rate In 
(C) 

Rate Out 
(C) 

System 
Eff. (%) 

4.8 1.5 0.5 90.3 
3.5 1.5 1 91.4 
3.1 1.5 1 91.7 
2.5 1.5 2 89.9 
2.3 1.5 3 88.6 
2.2 1.5 4 87.2 

4.1.3 Thermal Performance of the System 

Temperature was measured throughout each cycle 
to determine the temperature rise for each rate in 
Table 5. For both charges and discharges, the 
temperature rise was calculated using the 
maximum temperature at or after the end of each 
charge or discharge.  In some cases the maximum 
temperature did not occur until several minutes 
after the charge or discharge was completed; this 
maximum value was used.  However, cooling was 
seen during the constant voltage portion of some of 
the charges (as the current tapered).  In this case, 
the temperature at the end of the charge was used, 
and the charge rises may take into account some of 
this cooling (and not reflect the absolute maximum 
temperature rise observed during the charge).  In 
addition, the negative temperature rise for the 1C 
charge can be attributed to cooling of the GBS 
after an elevated initial temperature.  Fig. 3 below 
shows the temperature profile for the 4C discharge. 
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