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Background: Charging time of BEVs
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• CC(Constant Current)

• CV (Constant Voltage)

• Taper Charging

• Constant Power Charging 
Multi-Step CC Charging

Multi-Step CC Charging + 

Taper Charging

Pulse Charging

• One-Directional Pulse

• Bi-Directional Pulse

Review: Charging Methodologies

1or 2-Step CC + CV 

charging

Optimization for reduction of charging time, battery life or efficiency 

1. Experimental data:  Ant-Cycle System, Wolf Pack , Taguchi-based Algorithm, Sinusoidal Current Charging with the Minimum 

AC Impedance, Grey Prediction Technique

2. Control theory and model: 
• Fuzzy Controls, Residual Energy Evaluation,  Built-in Resistance Compensator , Multiple Rate, Probabilistic Fuzzy Neural 

Network Control, integral linear programming algorithm, first order dynamic model, a single one-step prediction 

3. Cycle numbers or SOC
• Offline battery charger, Negative Pulse Discharge, Frequency- varied Technique

Proposed methods do not consider fundamental transport mechanism of lithium ions 

and their intercalation/de-intercalation in details
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Limiting factors for high current Charging

Effects of Lithium plating:
� Capacity

• Irreversible loss of  active Lithium

� Safety

• Dendrites can cause shorts within the electrodes 

� Heat generation

• A mat of dead lithium and dendrites can increase the chances minor shorts will lead to 

thermal runway

� The reaction on the negative electrode is described as:

� When operated improperly, Li-ions are deposited on the anode 

surface instead of intercalating during charging:

66 CLieLiC xxx →++ −+

s)(LieLi →+ −+

Causes of Lithium plating:
� Large current rate during charging, especially at 

high Li ion concentration

� Low temperature

Reference: C. J. Mikolajczak, J. Harmon, From Lithium plating to Lithium –

ion cell runaway Exponent [Ex(40)]annual report, 2009

Observed Li plating
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Models for Estimation ion concentrations

Empirical Model:

Peukert’s equation

Full order of Electrochemical, thermal and 

mechanical Model (ETMM: FOM): 

Electrochemical kinetics, Potential theory, 

energy and mass  balance, and charge 

conservation , Ohm’s law, Empirical OCV and 

elasticity    

Electric equivalent circuit Model (EECM): 

Randles models with the 1st, 2nd and 3rd 

order

Reduced order of Electrochemical thermal 

Model (ETM: ROM ): Empirical OCV

Polynomial, State space, Páde approx., POD, 

Galerkin Reformulation and others

Comp. time

Accuracy

Improvement of cell 

designs

BMS Functionalities 

High

Intermediate

Low

Low                                      Moderate                                    High
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Modeling Approach for LiPB
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Cell specification

Anode Carbon

Cathode Li[MnNiCo]O2

(NMC),

Separator polymer

Electrolyte LiPF6, EC/DMC 

Size 164mm×250m

m×5mm 

Capacity 15.7Ah 
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Models based on electrochemical and thermal principle

Full Order Model (FOM) Reduced Order Model(ROM) Order reduction

Ion concentration in solid

particles C
s

� Polynomial

approach

NR*NL to 3*NL

Ion concentration in

electrolyte C
e
� State space

approach

NL to 3

Potentials and current

density � Parameters

simplification

2*NL to 1*NL

Energy equation and

temperature dependence

SOC estimation
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Validation of the Reduced Order Model
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Test condition:

Mode: Depleting

Temperature: 25ºC

Current: 1C, 2C, 5C

Initial SOC: 100%

Test condition:

Mode: Depleting

Temperature: 25ºC

Current: 1C, 2C, 5C

Initial SOC: 0%

Terminal voltage:                                    Temperature:
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Validation of the ROM at multiple cycles

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

Time/s

V
t/
V

 

 

exp@45
o
C

sim@45
o
C

exp@25
o
C

sim@25
o
C

exp@0
o
C

sim@0
o
C

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-10

0

10

20

30

40

50

60

Time/s

T
/o
C

 

 

exp@45
o
C

amb@45
o
C

sim@45
o
C

exp@25
o
C

amb@25
o
C

sim@25
o
C

exp@0
o
C

amb@0
o
C

sim@0
o
C

0 5 10 15 20

-5

0

5

Time/h

C
u
rr
e
n
t/
C

0 5 10 15 20
2.5

3

3.5

4

Time/h

V
t/
V

0 5 10 15 20

25

30

35

Time/h

T
/o
C

 

 

exp@25
o
C

amb@25
o
C

sim@25
o
C2. Test condition:

Mode: Depleting

Cycle #: 5

Temperature: 

25ºC

Current: 1C, 2C, 

5C

Initial SOC: 0%

1. Test condition:

Mode: Depleting

Cycle #: 2

Temperature: 0ºC, 

25ºC, 45ºC

Current: 1C, 2C, 5C

Initial SOC: 0%

Model
Full 

dischar.@1C

Full 

dischar.@2C

Full 

dischar.@5C

FOM 79 45 26

ROM 8.7 3.9 2.7
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Analysis of the battery at Charging 
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Vt @ 1/2/5C discharging at 25°C Vt @ 1/2/5C discharging at 25°C 

Cs @  5C charging at 25°C Cs @ 1/2/5C charging at 25°C
High ion concentration
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Model:

Initialization: Initial state estimation: 

Initial error covariance : Pk-1

Initial process noise covariance : Wk

Initial measurement covariance : Vk

Time update: State prediction: 

Error covariance prediction:

Measurement 

update:

Kalman gain: 

State correction:

Error covariance correction:

Estimation of SOC based on EKF and ROM 
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Results of the EKF based ROM
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Test condition:

Mode: JS

Temperature: 25ºC

Initial SOC: 100%

Initial error: 0.2V 

(30% SOC)

Test condition:

Mode: Depleting 

Temperature: 25ºC

Initial SOC: 0%

Initial error: 0.5V 

(6.5% SOC)
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New Charging method

Battery
i(t)

Positive Terminal 

Estimated concentrations, SOC and temperature

+ -

ROM Model 

Ambient Temperature; T

Terminal Voltage: VT

Charging/Discharging current Negative  Terminal 

Reference: Maximum allowed concentrations and 

temperature, and desired SOC

Pulse generator

• Two level or

• Three level
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Simulation Results of Fast Charging 

method
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Experimental results of the proposing Fast 

charging method

0 500 1000 1500
-5

-4

-3

-2

-1

0

1

time/s

c
u
rr
e
n
t/
C

 

 

Pulse

CC/CV

0 500 1000 1500
3

3.2

3.4

3.6

3.8

4

4.2

4.4

time/s

V
t/
V

 

 

Pulse

CC/CV

sim

0 500 1000 1500
-2

0

2

4

6

8

time/s

d
e
lt
a
 T
/o
C

 

 

Pulse

CC/CV

0 500 1000 1500
0.01

0.015

0.02

0.025

0.03

0.035

0.04

Dimensional thickness
S
u
rf
a
c
e
 c
o
n
c
e
n
tr
a
ti
o
n

 

 

Pulse

• Reduction of Charging time in an amount of 30-40% 

• Less heat is generated

• Surface concentration can be kept under upper limitation that slows down Lithium-plating
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Fast Charging Algorithm

Cell No. 1 2

Ambient temperature (°C) 25 25

Charging method CC/CV Pulse

Charging current (C) 4 4

Discharging current (C) 2 2

Rest time (min) 10 10

Cycles 100 100

• Less capacity fade: 0.24Ah after 100 cycles 

compared to 0.34Ah by  the CC and CV.

• Proof of limitation of the surface concentration 

of particles in the negative electrode  and 

reduction of charging capacity losses by a 

relatively high charging current. 

Test conditions:
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Pulse-exp
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Pulse-estIf there is no significant 

degradation, 

Qmax = Cycle*P1 + P2



Organized by Hosted by In collaboration with                      Supported by

Summary

New fast charging algorithm is proposed

• Development of a reduced Order Model based on electrochemical thermal 

model

• Design of SOC estimator based on EKF

• Validation of the model and SOC estimation at different current profiles

Preliminary experimental results show;

• Reduction of charging time up to 30-40%

• Reduction of capacity fade up to  6.3% at 100 cycles

• Less heat is generated

• SOC estimation errors less than 5 % 
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Thanks for your attention.

choe@auburn.edu


