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2 / 15OBJECTIVE AND OUTLINE

1. Studied CVT-based Hybrid Electric Vehicle

2. Energetic Macroscopic Representation of the CVT-based HEV

3. Inversion-based control of the CVT-based HEV

4. Simulation results

Objective: definition of the control scheme of a Hybrid Electric Vehicle 

(HEV) using a Continuously Variable Transmission (CVT)



3 / 15CONTINUOUS VARIABLE TRANSMISSION (CVT)
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CVT =  gearbox with continuous evolution of the gear ratio 

Different (friction-based) technologies of CVT: 

• pulley-based CVT

• roller-based CVT

• cone-based CVT

• etc.

Example of pulley based CVT



4 / 15CVT-BASED HYBRID ELECTIC VEHICLE (HEV)
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6 / 15CVT MODEL AND REPRESENTATION
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CVT =  gearbox with continuous evolution of the gear ratio 
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CVT model: EMR of the CVT 
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The control has to define all tuning variables to impose the desire velocity vhev-ref
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INVERSION-BASED CONTROL OF THE HEV
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Tblt-ref Ttc-ref Tcvt-ref

STRATEGY OF ENERGY MANAGEMENT
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The strategy aims to reduce the fuel consumption by:

• the energy distribution between e-drive and ICE (kD2)

• the brake distribution between e-brake and m-brake (kD1)

• the choice of the CVT ratio (ucvt)

• the connection of the ICE (ktc)



11 / 15PRINCIPLE OF THE STRATEGY
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13 / 15SIMULATION USING SIMULINK
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14 / 15FUEL CONSUMPTION

Thermal vehicle

with a 4-speed gearbox
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15 / 15CONCLUSION

• A CVT-based HEV is a complex vehicle to manage because of the high number of 

tuning variable to achieve the velocity by reducing the fuel consumption

• EMR and the deduced inversion-based control is a valuable way to organize the 

control of this complex vehicle

• The interest of the CVT has been demonstrated in term of fuel consumption but the 

gain between a CVT thermal vehicle and a CVT hybrid vehicle is not relevant using a 

rule-based strategy for energy management

A optimal energy management should now be used to develop a more efficient

strategy and to improve the fuel saving for a CVT-based HEV
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18 / 15STRATEGY FOR A CVT-BASED THERMAL VEHIC.
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As a CVT can only act on torque ratio OR speed ratio,

the optimal operation line is the preferable operation line
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