

The possibility for energy regeneration by electrification in Swedish car driving

Lars-Henrik Kullingsjö, Sten Karlsson

Physical Resource Theory
Department of Energy & Environment
Chalmers University of Technology

Organized by **fira** Hosted by **avale** In collaboration with **AVERE** **neA** **EDTA** Supported by **European Commission**

Regenerative braking is a valuable advantage of hybrid and electric cars

- How valuable?
 - How much energy is lost through braking?
 - Power levels needed in regeneration?

The results are compared with standardized test cycles (NEDC and the suggested WLTP)

Organized by **fira** Hosted by **avale** In collaboration with **AVERE** **neA** **EDTA** Supported by **European Commission**

The database including real world drive cycles

- 430 privately driven Swedish cars
- Car model 2002 and younger
- GPS installed for 1-2 months
- Logging was conducted in 2.5 Hz
- March 2010-Sept 2012

Detailed speed, acceleration and altitude profiles of 430 cars!

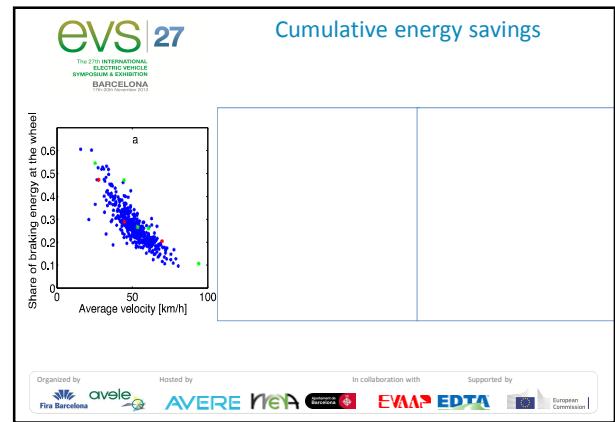
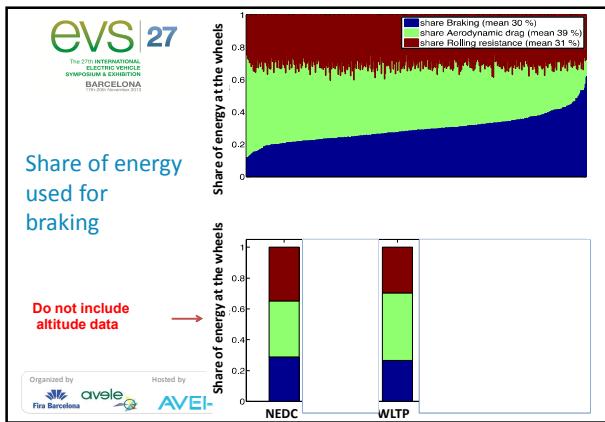
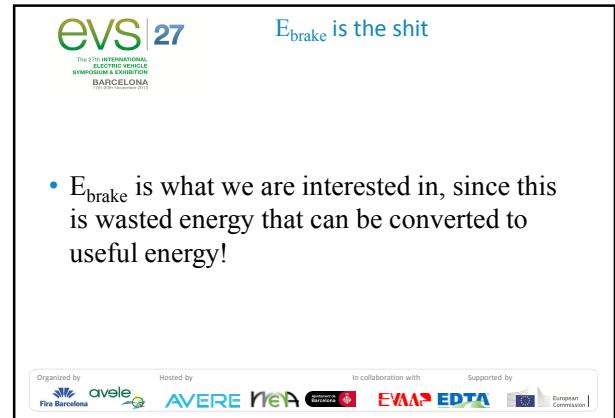
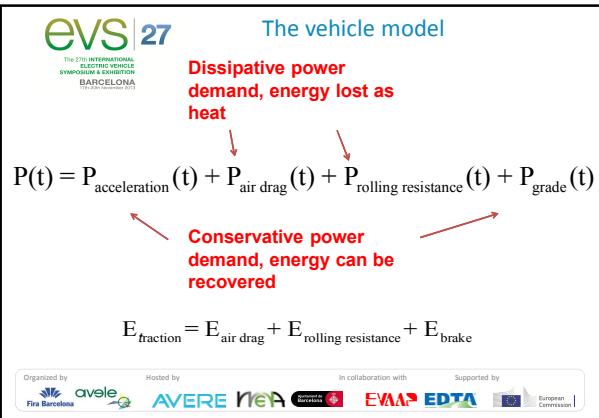
Not only for a typical trip but for all trips during 30 to 60 days!

Organized by **fira** Hosted by **avale** In collaboration with **AVERE** **neA** **EDTA** Supported by **European Commission**

The vehicle model

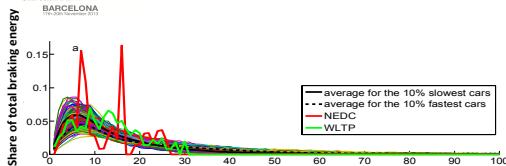
$$P(t) = P_{\text{acceleration}}(t) + P_{\text{air drag}}(t) + P_{\text{rolling resistance}}(t) + P_{\text{grade}}(t)$$

$$P_{\text{acceleration}}(t) = m \cdot a(t) \cdot v(t)$$





$$P_{\text{air drag}}(t) = \frac{1}{2} \rho_a \cdot A \cdot C_d \cdot v^2(t)$$

$$P_{\text{rolling resistance}}(t) = c_r \cdot m \cdot g \cdot \cos(\alpha(t)) \cdot v(t)$$

$$P_{\text{grade}}(t) = m \cdot g \cdot \sin(\alpha(t)) \cdot v(t)$$


Vehicle parameters	
Mass of car	1500 kg
Air resistance ($C_d \cdot A$)	0.7 m ²
Rolling resistance c_r	0.01

Organized by **fira** Hosted by **avale** In collaboration with **AVERE** **neA** **EDTA** Supported by **European Commission**

evs|27

Power need in regeneration

evs|27

Assumptions, average regeneration potential and savings for the two exemplary drivelines

	BEV	mHEV
Power limit	40 kW	10 kW
Engine braking	-	4.7 kW
Two-way efficiency	0.6	0.5
Driveline efficiency	0.72	0.17
Charger efficiency	0.94	-
Share regen potential, E_{regen}/E_{reg}	30%	Energy lost through braking (as before)
Share recoverable energy, E_{rec}/E_{reg}	27%	Max 40 kW
Share reusable energy, E_{reus}/E_{reg}	16%	5.5% max 10 kW and engine braking
Yearly savings at the wheels, E_{reg}	510 kWh	After charging and discharging
Yearly savings at electric outlet/tank, $E_{reg} \cdot \eta_{driveline}$	750 kWh	10 x more than in the mHEV
Yearly savings in €	300 kWh	2.5 x more than in the mHEV
Yearly savings in €	50€	1.5 x more than in the mHEV

European Commission

evs|27

Conclusions

- Data from real world driving (including altitude data) is important to better understand the potential benefits from regeneration

Thank you for listening!

Larshenr@chalmers.se

Organized by avelo Hosted by AVERE NeA In collaboration with EVAP EDTA Supported by European Commission

evs|27

The 27th INTERNATIONAL ELECTRIC VEHICLE SYMPOSIUM AND EXHIBITION

Organized by avelo Hosted by AVERE NeA In collaboration with EVAP EDTA Supported by European Commission