
Using Trip Information for PHEV Fuel 

Consumption Minimization

Dominik Karbowski, Vivien Smis-Michel, Valentin Vermeulen

27th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium (EVS27)

Barcelona, Nov. 17-20, 2013

Work funded by the U.S. DOE Vehicle Technology Office 

(Program Managers: David Anderson, Lee Slezak)



Optimal Energy Management of xEVs Needs Trip 
Prediction
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Trip prediction

Increased connectivity and increased availability of data opens the door to trip prediction

Vehicle energy use can be reduced through application of control theory or fine tuning:

• Dynamic Programming (DP): finds the global optimum for the command law

• Instantaneous optimization:

o ECMS: Equivalent Minimization Consumption Strategy

o PMP: Pontryagin Minimization Principle

• All techniques require knowledge of the trip!



Trip Prediction
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Modeling Vehicle Speed with Markov Chains 

� What is a Markov chain?

– Collection of random variables {��, ��, … , ��}
– Memoryless:  the future only depends on the present, not the past
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– Homogenous, i.e. the probability 	�,� does not depend on time
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� Vehicle speed can be represented by a Markov chain:

– Random variable can be vehicle speed: 

Speed at time t+1 only depends on speed at time t

– Random variable can be vehicle speed and acceleration: 

Speed at time t+1 depends on speed and acceleration at time t

� The Markov chain is defined by a Transition Probability Matrix (TPM):

	 =
	�,� ⋯ 	�,�
⋮ ⋱ ⋮
	�,� ⋯ 	�,�



TPM Is Created from Real-World Trips

� From the CMAP Database:

– CMAP = Chicago Metropolitan Agency for Planning

– Data acquired as part of a comprehensive travel and activity survey for northeastern Illinois in 

2007-2008

� 9000+ trips / 400+ drivers / 6,000,000 data points

� Data filtered to remove outliers and unrealistic trips
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Constraining the Markov Chain to the Characteristics of a 
Given Segment  
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� Target segment defined by representative 

variables:

– Average speed ����
– Distance#���
– Speed limit �,�-

� Generated segment:

– Actual speed � +
– Average speed ����
– Distance #!$�
– Number of stops  !�"�

� The Performance Value PV quantifies how 

close to the target the generated segment 

is: 



Example of Segment
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Speed Limit
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32 km/h



Combining Markov Chains and Geographical Information
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Example of Entire Trip
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Itinerary Used for Study on Control

Munich area

~ 36 km

Speed limited to 100 km/h
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Optimal Control
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Definition of the Problem

� Simulation environment: Autonomie, forward-looking

� ~ Prius 2012 PHEV:

– Battery:  4 kWh, 200 V, Li-ion

– Rated all-electric range: 26 km

– Top EV speed = 100 km/h   

ICE ON

SOC

t

EV

Charge-Sustaining:

• Rule-based

• Optimum system efficiency 

look-tables

Baseline Control Strategy

+

1 itinerary, 10 different trips

Can the knowledge of the trip help reduce the fuel consumption? 



Optimal Control Uses Pontryagin’s Minimization 
Principle

� The high-level command variable is the battery power 	3
� At each time step, the optimal command is the one that minimises the Hamiltonian:
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	3∗ = argmin9:
( 	; 	3 + <(=)> 	3 	3)

Hamiltonian

Fuel Power

Function of 	3 through 

optimal operation maps

Equivalence 

Factor

Term close 

to 1

Battery Power 

Command

� In our study we make the assumption that ? + = ?@
� PMP only in Charge-depleting mode, then baseline Charge-Sustaining mode control



The Challenge of PMP: the Equivalence Factor Depends 
on the Trip!
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?@ too high:

• Electricity is too “expensive”

• There is battery energy left at the end of the trip

• Worst fuel consumption than baseline

?@ too low:

• Electricity is too “cheap”

• Battery is discharged too early

• Missed opportunity to displace more fuel

?@ optimal



Case 1: Equivalence Factor Is Optimal for each Trip

� Equivalence factor optimal for each trip = 

> best case scenario

� Different eq. factor for each trip
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� Fuel savings: 3.5 to 5.7 % , 4.6% on 

average



Operations with Optimal Control
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After this point, 

control switches to 

CS mode



In Real-World, the Exact Speed Profile Is not Known!

� Prediction will never match actual speed because of the stochastic nature of driving => 

Eq. factor will not necessarily be optimal

� How good is the optimization if this case?
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Using an Equivalence Factor not Optimized for Actual 
Speed Profile still Brings Benefits
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Equivalence Factor

1 point = 1 trip, 1 eq. factor

1 shape/color = 1 trip

Average benefit for a given eq. 

factor over all 10 trips

Average benefit for a given eq. 

factor over top 8 trips



Conclusion
� Improving vehicle energy efficiency through connectivity requires both control optimization 

and trip prediction. Each has to be implementable!

� Trip prediction is achieved using a combination of Markov chains and GIS:

– A GIS (e.g.: ADAS-RP) provides trip-specific information

– Predicted Trip = aggregation of stochastic “micro-trips” that fits constraints from GIS

� Optimal control using trip prediction:

– Achieved through PMP controller

– Key factor for PMP efficacy, equivalence factor, depends on trip

� Benefits of the technology can be evaluated in simulation; in our sample itinerary (not 

statistically representative):

– best case scenario (eq. factor is adapted to trip): 4-6 % fuel savings

– “real-world” scenario (one eq. factor per itinerary): 3-4% fuel savings 
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� Trip prediction: refine process and integrate in Autonomie

� Optimal control: 

– Develop fast optimal equivalence factor prediction algorithm for PMP

– Implement an adaptive equivalence factor

� Run large-scale study to quantify in a statistically representative way the benefits of trip-based 

control

Future Work
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From Itinerary Definition to Simulation of Optimal 
Control 

� Our approach:

– Work on both optimal control and prediction

– Propose implementable solutions

22

0 5000 10000
0

5

10

15

20

25

30

distance (m)

s
p
e
e
d
 (
m
/s
)

 

0 500 1000 1500
25

30

35

40

45

50

55

Time (s)

S
O
C
 (
%
)

 

 

r=2.58

r=2.6

r=2.62

r=2.64

r=2.66

r=2.68

r=2.7

r=2.72

0 5000 10000
0

5

10

15

20

25

distance (m)

s
p
e
e
d
 (
m
/s
)

 

Define Itinerary in GIS 

(ADAS-RP)

Generate Speed 

Profile Using Markov 

Chains

Compute Controller 

Optimal Tuning Optimal 

Controller

Simulate in a 

Forward-Looking 

Model (Autonomie)

Speed/Grade

Speed/Grade

r0



Operating the Powertrain Optimally (with a few Givens) 
Requires Optimal Operation Maps

� One mode power-split offers freedom, and no-easy “optimum”:

– Engine speed can be controlled independently from vehicle speed

– Depending on vehicle and engine speed, there is energy recirculation (inefficient)

� An offline algorithm computes the optimal operating point for given output speed, torque 

demand and battery power
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