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Optimal Energy Management of XEVs Needs Trip
Prediction

Vehicle energy use can be reduced through application of control theory or fine tuning:
* Dynamic Programming (DP): finds the global optimum for the command law
* Instantaneous optimization:
o ECMS: Equivalent Minimization Consumption Strategy
o PMP: Pontryagin Minimization Principle
e All techniques require knowledge of the trip!

Increased connectivity and increased availability of data opens the door to trip prediction
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Trip Prediction
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Modeling Vehicle Speed with Markov Chains

=  What is a Markov chain?
— Collection of random variables {X;, X3, ..., X}, }
— Memoryless: the future only depends on the present, not the past
PXps1 =J X1 =11, X2 = ig, o, X = 1) = P(Xpq1 = J | X = i) = Py
— Homogenous, i.e. the probability P; ; does not depend on time

= Vehicle speed can be represented by a Markov chain:
— Random variable can be vehicle speed:
Speed at time t+1 only depends on speed at time t
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— Random variable can be vehicle speed and acceleration:

10 o Speed at time t+1 depends on speed and acceleration at time t
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= The Markov chain is defined by a Transition Probability Matrix (TPM):
Piqg - Py
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TPM Is Created from Real-World Trips

= From the CMAP Database:

— CMAP = Chicago Metropolitan Agency for Planning

— Data acquired as part of a comprehensive travel and activity survey for northeastern lllinois in
2007-2008

= 9000+ trips / 400+ drivers / 6,000,000 data points
= Data filtered to remove outliers and unrealistic trips
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Constraining the Markov Chain to the Characteristics of a
Given Segment

Initialization
. : (t=0, a=0, v=v,) )
= Target segment defined by representative /v K
variables:
— Average speed Vi ¢ Random Compute next state
_ Dist d number > <
IStancedsge generation

— Speed limit Vj;,

= Generated segment:
— Actual speed V' (t)
— Average speed V4

— Distance dgq
— Number of stops Nty
= The Performance Value PV quantifies how

close to the target the generated segment
is:
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Example of Segment

Speed Limit
50 km/h

Target Speed
32 km/h
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Combining Markov Chains and Geographical Information

ltinerary in GIS Raw Data Formatting + Segmentation
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Itinerary Used for Study on Control
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Optimal Control
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Definition of the Problem

/

Simulation environment: Autonomie, forward-looking
~ Prius 2012 PHEV:

Battery: 4 kWh, 200V, Li-ion
Rated all-electric range: 26 km

/\

AUTONOMIE

Top EV speed = 100 km/h

Baseline Control Strategy

' Charge-Sustaining:

EV * Rule-based
e Optimum system efficiency
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1 itinerary, 10 different trips

Can the knowledge of the trip help reduce the fuel consumption?




Optimal Control Uses Pontryagin’s Minimization
Principle

" The high-level command variable is the battery power P,
= At each time step, the optimal command is the one that minimises the Hamiltonian:

Hamiltonian

A
[ |

P, = argmin( P¢(Py,) + r(t)0(Py)Py)

Fuel Power Battery Power

. Term close Command
Function of Py, through Equivalence to 1
optimal operation maps Factor

" |n our study we make the assumption that r(t) = 1,
=  PMP only in Charge-depleting mode, then baseline Charge-Sustaining mode control
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The Challenge of PMP: the Equivalence Factor Depends
on the Trip!

1o too high:
- * Electricity is too “expensive”
\\“\:\ * There is battery energy left at the end of the trip
N . .
‘\|\:‘~-\ * Worst fuel consumption than baseline
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Ty too low:
* Electricity is too “cheap”

* Battery is discharged too early
* Missed opportunity to displace more fuel
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PMP Factor

N
0

Case 1: Equivalence Factor Is Optimal for each Trip

2.837
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Equivalence factor optimal for each trip =

> best case scenario

Different eq. factor for each trip
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= Fuel savings: 3.5t05.7 %, 4.6% on
average
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Operations with Optimal Control
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In Real-World, the Exact Speed Profile Is not Known!

* *
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= Prediction will never match actual speed because of the stochastic nature of driving =>
Eq. factor will not necessarily be optimal

= How good is the optimization if this case?

* Both trips are synthesized; “Predicted” and “Actual” labels for illustration purpose
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Using an Equivalence Factor not Optimized for Actual
Speed Profile still Brings Benefits

1 point = 1 trip, 1 eq. factor
1 shape/color = 1 trip

Average benefit for a given eq.
factor over all 10 trips

Fuel Saving (%)

V. Average benefit for a given eq.
factor over top 8 trips
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Conclusion

Improving vehicle energy efficiency through connectivity requires both control optimization
and trip prediction. Each has to be implementable!
Trip prediction is achieved using a combination of Markov chains and GIS:

— AGIS (e.g.: ADAS-RP) provides trip-specific information

— Predicted Trip = aggregation of stochastic “micro-trips” that fits constraints from GIS
Optimal control using trip prediction:

— Achieved through PMP controller

— Key factor for PMP efficacy, equivalence factor, depends on trip
Benefits of the technology can be evaluated in simulation; in our sample itinerary (not
statistically representative):

— best case scenario (eq. factor is adapted to trip): 4-6 % fuel savings

— “real-world” scenario (one eq. factor per itinerary): 3-4% fuel savings

Future Work

Trip prediction: refine process and integrate in Autonomie

Optimal control:
— Develop fast optimal equivalence factor prediction algorithm for PMP
— Implement an adaptive equivalence factor

Run large-scale study to quantify in a statistically representative way the benefits of trip-based
control
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From Itinerary Definition to Simulation of Optimal
Control

G(.enera.te Speed Compute Controller .
Define Itinerary in Gls ' "°M® ::J:n.g Markov Optimal Tuning cOptlmI?I
(ADAS-RP) ains ontroller

Speed/Grade

SN

Simulatein a

Forward-Looking
| Model (Autonomie)

=  Qur approach:
— Work on both optimal control and prediction
— Propose implementable solutions
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Operating the Powertrain Optimally (with a few Givens)
Requires Optimal Operation Maps

= One mode power-split offers freedom, and no-easy “optimum”:
— Engine speed can be controlled independently from vehicle speed
— Depending on vehicle and engine speed, there is energy recirculation (inefficient)

= An offline algorithm computes the optimal operating point for given output speed, torque

demand and battery power
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