

The 27th INTERNATIONAL
ELECTRIC VEHICLE
SYMPOSIUM & EXHIBITION

BARCELONA
17th-20th November 2013

EVs and post 2020 CO₂ targets for passenger cars

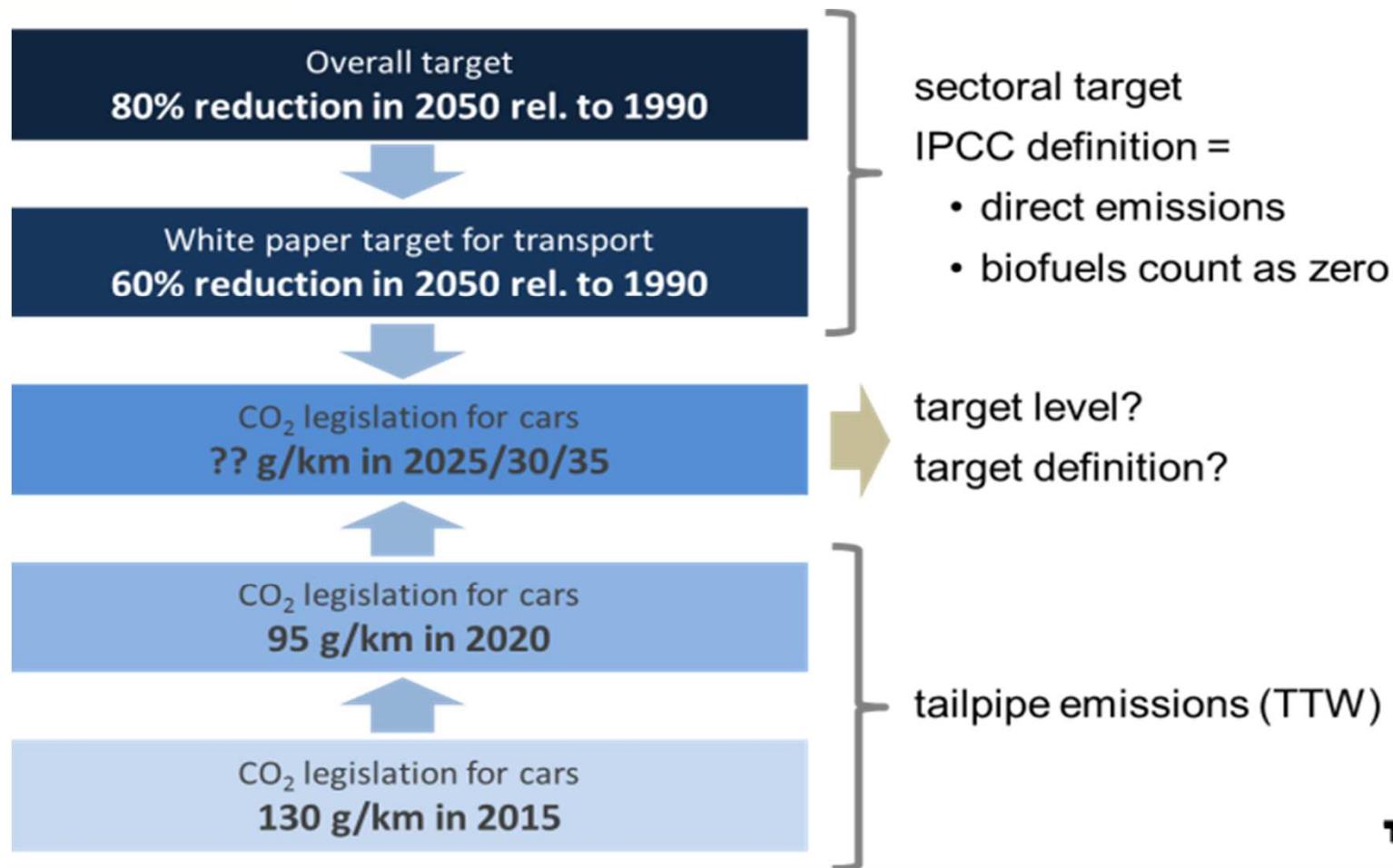
Richard Smokers, Maarten Verbeek, and Stephan van Zyl

richard.smokers@tno.nl

Organized by

Hosted by

In collaboration with



Supported by

CO₂ legislation for cars

A step towards meeting long term GHG emission targets

TNO innovation for life

Organized by

Hosted by

In collaboration with

Supported by

Post 2020 targets

Important for momentum of the transition towards
large-scale application of (L)EVs

- 60% reduction of transport CO₂ emissions is expected to require significant share of (L)EVs
- 95 g/km in 2020 feasible without (L)EVs
- 70 g/km is lowest average that can be achieved with ICEVs on the basis of current market division and vehicle models
- What is necessary from the overall perspective of the European CO₂ emission reduction strategy?
 - What would help to realize ambitions w.r.t. role of (L)EVs?
 - Target level + definition

TNO innovation for life

Organized by

Hosted by

In collaboration with

Supported by

Discussion about post 2020 targets For CO₂ regulation of passenger cars

- Target levels
 - informal proposal: 68 – 78 g/km for 2025
- Metric
 - TTW or WTW CO₂ (g/km)
 - TTW or WTW energy (MJ/km)
- Modalities
 - utility parameter: from mass to footprint?
 - shape of target function
 - mileage weighting
 - etc.

For this assessment a **TTW-based metric** is assumed, similar to current legislation.

Other modalities not relevant for this assessment

Organized by

Hosted by

In collaboration with

Supported by

How to motivate post-2020 target levels?

- Different approaches possible:
 - Extrapolation of annual reduction levels that are considered feasible, e.g. 3 or 5% p.a.
 - Bottom-up assessment of what is technically feasible in target year at acceptable costs
 - Will be done in the coming year
 - Top-down back-casting of the path along which vehicle target should develop in order to reach overall 60% target for 2050
 - Subject of this paper

Composition of new vehicle sales in 2035 must be similar to the overall fleet composition in 2050 required for meeting the target

TNO innovation for life

Organized by

Hosted by

AVERE

WEA

In collaboration with

EVAP

EDTA

Supported by

Top-down back-casting

The path along which vehicle target should develop in order to reach overall 60% target for 2050

- White Paper target of 60% is a sectoral target (IPCC rules)
 - EVs and FCEVs count as zero emission
 - biofuels count as zero emission
 - but have no effect under a TTW CO₂ target
 - WTT emissions are attributed to energy sector and agriculture
- Take into account that:
 - passenger cars may have to do more than 60%
 - volume of transport grows between 1990 and 2050
 - share of biofuels will change over time

TNO innovation for life

Organized by

Hosted by

In collaboration with

Supported by

Back-of-the-envelope calculation Assumptions

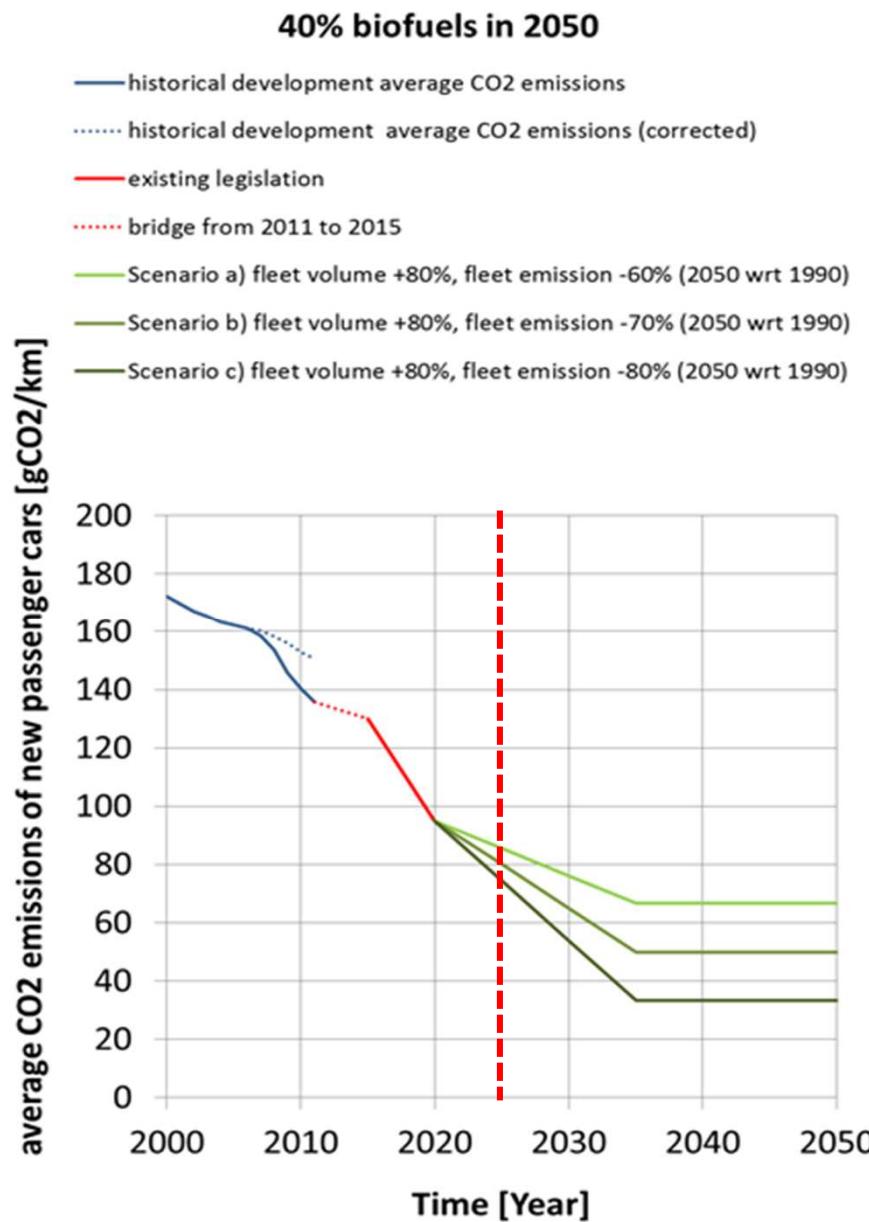
- Average TA CO₂ value of fleet in 1990 is 180 g/km
- New cars in 2035 must have same average CO₂ emission as entire fleet must reach in 2050
 - linear interpolation between 2020 target and required 2035 value
- TTW targets under 70 g/km can only be reached with a finite share of (L)EVs
 - for simplicity calculation for EVs only

Back-of-the-envelope calculation Scenario variants

- Scenario variants:
 - Overall CO₂ reduction target passenger cars: 60%, 70%, 80%
 - Passenger cars may need to do more than 60% to compensate for smaller potential in other subsectors
 - Share of biofuels in 2050: 0%, 40%
 - Note: consumption of fuels in 2050 is very low, so high share of biofuels may still not be (much) more than present use
 - Mobility growth up to 2050
 - Reference scenario on basis of data from White Paper scenario
 - Scenario variants based on literature

Example calculation

- Average fleet emissions to be reached in 2050 in function of the reduction target and the assumed growth in traffic volume


Fleet average CO ₂ emissions (IPCC)	Volume of pass. car transport	Fleet average CO ₂ emissions (IPCC)
[g/km]	[vkm]	[g/km]
1990	180	1
change	-60%	+80%
2050	72	1.8

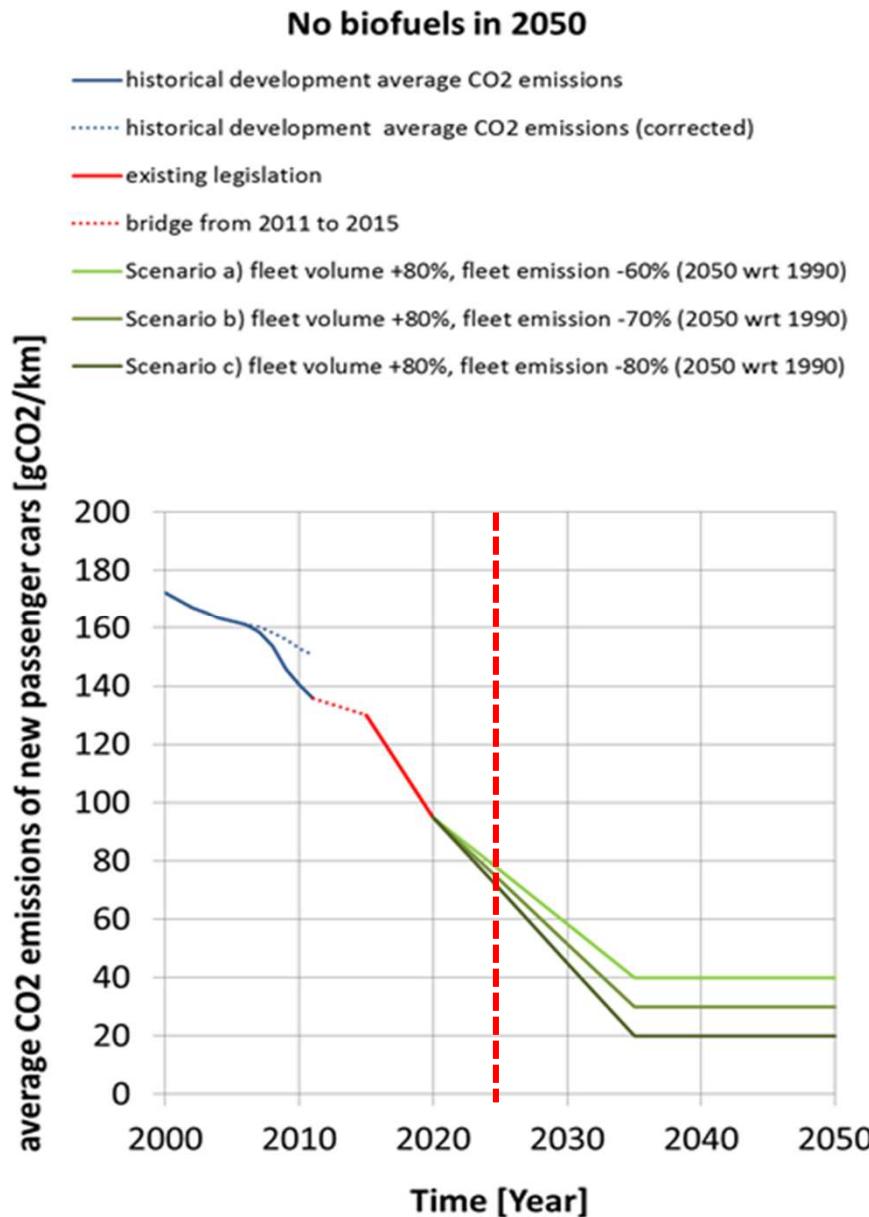
Example calculation

- Required share of EVs to meet the target for 2050 in the scenario assessed in previous slide, for two different assumed shares of biofuels

Fleet average CO ₂ emission in 2050 (IPCC)	ICEVs TA CO ₂ (TTW)	Biofuels share	ICEVs IPCC CO ₂	ICEVs share	EVs share
[g/km]	[g/km]	[%]	[g/km]	[%]	[%]
40	70	0%	70	57%	43%
40	70	40%	42	95%	5%

40% biofuels for ICEVs

40% biofuels in 2050


Scenario	Fleet average IPCC CO ₂ emission 1990	reduction of pass. car CO ₂ emissions 2050 - 1990	Pass. car traffic volume growth 2050 - 1990	Fleet average TTW CO ₂ emission 2050
[#]	[g/km]	[%]	[%]	[g/km]
a)	180	-60%	+80%	66.7
b)	180	-70%	+80%	50.0
c)	180	-80%	+80%	33.3

40% biofuels in 2050

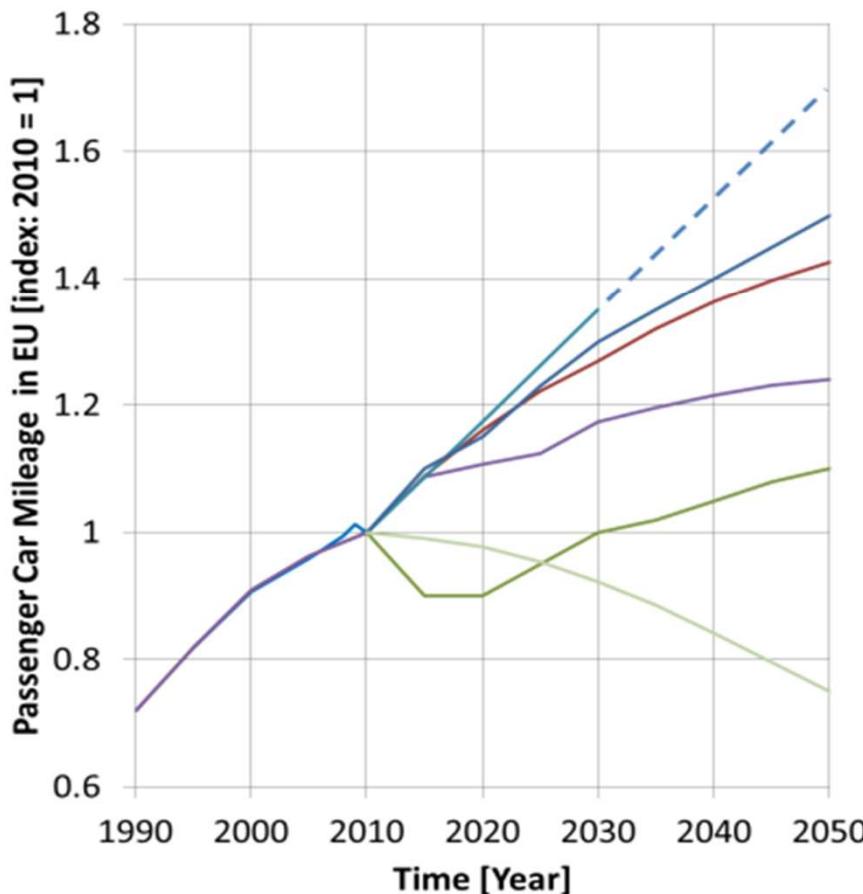
Scenario	EVs share 2050	TA CO ₂ target (TTW)			
		2025	2030	2035	
[#]	[%]	[g/km]	[g/km]	[g/km]	
a)	5%	86	76	67	
b)	29%	80	65	50	
c)	52%	74	54	33	

- Combination of 60% target and 40% biofuels share leads to negligible required EV share in 2050

No biofuels for ICEVs

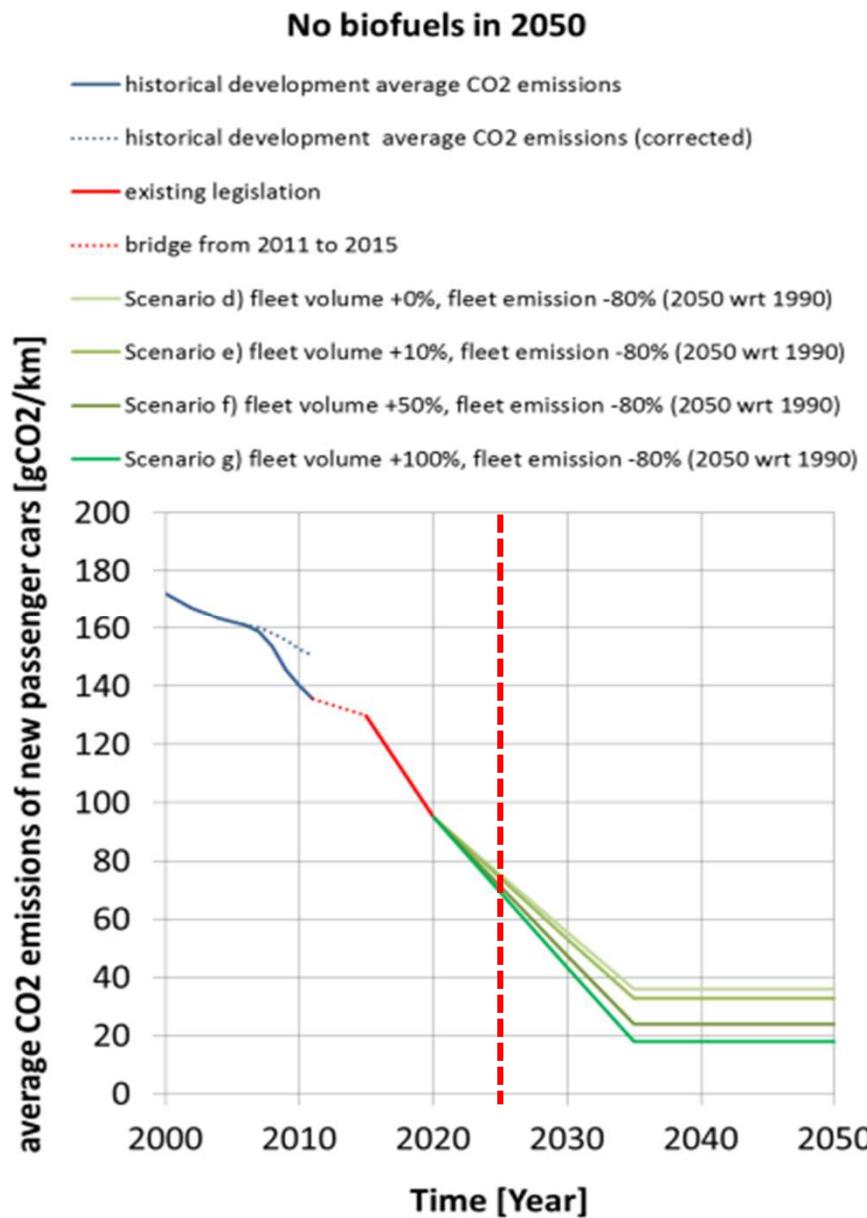
0% biofuels in 2050

Scenario	Fleet average IPCC CO ₂ emission	reduction of pass. car CO ₂ emissions	Pass. car traffic volume growth	Fleet average TTW CO ₂ emission
	1990	2050 - 1990	2050 - 1990	2050
[#]	[g/km]	[%]	[%]	[g/km]
a)	180	-60%	+80%	40
b)	180	-70%	+80%	30
c)	180	-80%	+80%	20


0% biofuels in 2050

Scenario	EVs share	TA CO ₂ target (TTW)			
		2050	2025	2030	2035
[#]	[%]	[g/km]	[g/km]	[g/km]	[g/km]
a)	43%	77	58	40	
b)	57%	73	52	30	
c)	71%	70	45	20	

- Without biofuels a large EV share is needed to meet 2050 target


Growth scenarios: passenger car mileage EU

- historical development passenger car mileage in EU [9]
- EU-Roadmap: Reference scenario with low world energy prices [9]
- EU-Roadmap: Energy efficiency scenario [9]
- TREMOVE: Reference scenario [10]
- ITF Transport Outlook: high car ownership, high GDP [11]
- ITF Transport Outlook: low car ownership, low GDP [11]
- Peak car scenario [12]

- Various scenarios from literature
 - incl. a “peak car” scenario
- Sensitivity assessed under assumption that passenger cars need to reduce 80% in 2050 relative to 1990

Scenario variation: volume

0% biofuels in 2050

Scenario	Fleet average IPCC CO ₂ emission	reduction of pass. car CO ₂ emissions	Pass. car traffic volume growth	Fleet average TTW CO ₂ emission
[#]	[g/km]	[%]	[%]	[g/km]
1990	2050 - 1990	2050 - 1990	2050	
d)	180	-80%	0%	36
e)	180	-80%	+10%	33
f)	180	-80%	+50%	24
g)	180	-80%	+100%	18

0% biofuels in 2050

Scenario	EVs share	TA CO ₂ target (TTW)			
		2050	2025	2030	2035
[#]	[%]	[g/km]	[g/km]	[g/km]	[g/km]
d)	49%	75	56	36	
e)	53%	74	53	33	
f)	66%	71	48	24	
g)	74%	69	44	18	

- Even with 40% biofuels the “peak car” scenario would still require 14% EVs to achieve 80% reduction

Conclusions

- EVs and other LEVs such as PHEVs and FCEVs can be expected to play a prominent role in achieving the long term CO₂ reduction goal for transport
 - **0% biofuels:** LEV share of 40 to 70% necessary in 2050 to reduce the direct emissions of passenger car fleet by 60 to 80% compared to 1990
 - **40% biofuels:** 60% reduction in 2050 feasible with a **limited share of LEVs** and a 2030 target of 70 g/km
- Required intermediate target levels strongly depend on:
 - assumed growth in vehicle kilometres between 1990 and 2050
 - extent to which >60% reduction in passenger cars is necessary
- 60% target for transport sector does not automatically put sufficient pressure on the system to reach other goals of White Paper wrt phasing out of conventional vehicles in cities
 - E.g. “Halve the use of ‘conventionally-fuelled’ cars in urban transport by 2030; phase them out in cities by 2050”

Conclusions

- Proper choice of post-2020 targets under the CO₂ regulation for passenger cars can be a powerful instrument to:
 - motivate manufacturers to continue their efforts in marketing and further development of (L)EVs in the coming decade
 - pull EVs through the “valley of death”
 - support the transition towards longer term sustainable mobility system
- A 2025 CO₂ target of at most 70 g/km, and a significantly lower target for 2030 should be announced as early as possible

richard.smokers@tno.nl

TNO innovation
for life

Organized by

Hosted by

AVERE

WEA

In collaboration with

EVAP

EDTA

Supported by

European
Commission