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Abstract 

When driven past their all-electric range, plug-in hybrid vehicles (PHEVs) must use their engines. Numerous 

theoretical studies showed that the conventional control strategy, i.e. all-electric mode followed by a charge-
sustaining mode, is not the most energy-efficient control strategy. Better strategies require knowledge of the 

trip ahead. In this paper, we present a method of predicting a trip for a given itinerary (vehicle speed, stop 

time, and grade) defined by using a geographical information system (GIS). For each segment of the 
itinerary, a vehicle speed profile is generated through a Markov process, defined by transition probabilities 

extracted from a large database of real-world trip records. Ten trip predictions are then generated from a 
single itinerary for evaluation of an optimal control strategy for a short-range power-split PHEV by using 

Autonomie, a powertrain modeling environment. The baseline controller uses rules and optimal operating 

point look-up tables when in charge-sustaining mode. The optimal controller uses the Pontryagin’s 
Minimization Principle (PMP), the performance of which heavily depends on the choice of one scalar 

parameter, the equivalence factor. Finally, we demonstrate the fuel-saving potential of the PMP controller, 

using the aforementioned trip predictions. 

Keywords: PHEV, control, optimization, GPS, prediction 

1 Introduction 
Detailed maps of the road network, increased on-

board computing capabilities, connectivity to 

cloud-based computing resources, and ever-

increasing inclusion of global navigation satellite 

systems (GNSS) make route prediction more and 

more conceivable. One of the main applications of 

route prediction is energy efficiency: knowledge 

of future driving conditions, if used effectively, 

can contribute to improving the efficiency of 

advanced vehicles, such as hybrid electric 

vehicles (HEVs) and plug-in HEVs (PHEV). 

Several optimization techniques that use some 

form of route prediction as an input already exist. 

The most theoretical is dynamic programming [1], 

which provides a global optimum. It is highly 

computer-intensive and is hardly implementable 

because of the very nature of the algorithm, which 
runs backwards (i.e., starting from the end). 

Stochastic dynamic programming [2] uses a 

probabilistic distribution of drive cycles, rather than 

a single cycle. Another technique is mixed-integer 

linear programming [3]. 

An alternative and easier to implement online 

optimization technique relies on the Pontryagin’s 

Minimization Principle (PMP) [4][5], which under 

certain assumptions can be simplified to an 

Equivalent Consumption Minimization Strategy 

(ECMS) method [6][7][8]. In this case, global 

optimality is not guaranteed, but it generally leads 

to good results. However, the outcome of using this 

method highly depends on one constant, the initial 

co-state in one case, or equivalence factor in the 

other, that is chosen for the online implementation. 

Finding the optimal factor for a given trip can be 

done by predicting the route. 

Many studies assume the speed profile is given and 

do not explore two major hurdles of real-world 
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implementation of trip-based control 

optimization: (1) how to predict the vehicle speed 

profile for the trip and (2) how well the 

optimization works when the predicted and the 

actual speed differ – which invariably can happen 

in the real world, given drivers unpredictability.  

One approach to trip prediction is to model vehicle 

speed as a Markov Chain [9][10]. This model 

relies on a database of real-world vehicle speeds, 

from which transition probabilities can be 

computed. This allows the generation of 

stochastic speed profiles. However, this method 

per se does not provide a prediction for a 

particular itinerary. Wu et al.[3] proposed 

predicting the speed for a particular itinerary by 

combining macroscopic average traffic speeds 

with a disturbance generated by EPA’s MOVES.   

We presented in [11] a method to generate a speed 

profile for a given itinerary based on information 

provided by a geographical information system 

(GIS), ADAS-RP, published by HERE (a NOKIA 

company). The prediction assumed the trip was 

made in sections of constant speed, constant 

acceleration, or constant deceleration. This 

process is available in the public version of 

Autonomie (version R12) [12], an automotive 

systems modeling environment developed by 

Argonne National Laboratory.  

In this study, we present a method of obtaining a 

stochastic vehicle speed profile for a given 

itinerary using real geographical data and then 

demonstrate how this could be used for PHEV 

optimization by using a PMP-based controller. 

Our guiding principle is to accurately represent 

the causalities and uncertainties of the real world, 

from the powertrain chosen to the flow of 

information. 

2 Trip Prediction 

2.1 Markov Chain Generation Under 

Constraints 

A Markov chain is a random process characterized 

as memory-less: the next state only depends on the 

current state and not on the sequence of past 

events. This type of mathematical model is good 

for representing vehicle speed. Ivanco ([9]) and 

later T.-K. Lee ([10]) used speed and acceleration 

as the states of the process, leading to positive 

results. We chose to use the same state definition 

in this work.  

The transition from one state to another is 

governed by a transition probability, which only 
depends on those two states. Their collection 

forms the transition probability matrix (TPM), 

which can be built by processing all the data points 

of a real-world trip database. In our case, we used 

data from the 2007 Chicago Metropolitan Agency 

for Planning (CMAP) database [13] of 

approximately 6,000,000 data points that were 

filtered, processed, and quality-checked before 

being used to build the TPM. 

One fundamental aspect of the “classic” Markov 

chain is that the outcome is stochastic, and the only 

control over the result is the time at which we stop 

the Markov chain generation. If the itinerary is 

given – for example the driver selects the 

destination on his navigation unit – there is also a 

deterministic aspect to speed prediction: there are 

stops, speed limits and historical average speeds at 

spatially defined points of the trips. There will be of 

course stochastic variations of speed around those 

determined conditions. To combine those two 

aspects, we created an algorithm which consists of 

generating stochastic speed profiles until a result 

with characteristics “close” enough to the 

deterministic prediction emerges. Information 

about the trip, or the “target” (such as distance, 

average speed) ahead can be provided by a GIS. 

This process is illustrated in Figure 1. 

 

 

Figure 1: Stochastic vehicle speed generation under 

constraints 
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In a first loop, the Markov chain generation is 

stopped when the current distance is higher than, 

or close to the target distance and the speed is 

close to the target final speed (or equal to it if a 

stop is requested at the end of the segment). Once 

the candidate stochastic speed profile is generated, 

we check whether it satisfies a stopping criterion 

that depends on the target trip. If it does not, the 

algorithm computes a new vehicle speed profile. 

The stopping criterion considers average speed, 

number of stops, excessive speed, and distance. It 

is given by the Performance Value (PV): 

 

 𝑃𝑉

= 𝑤1

|𝑉𝑎𝑣𝑔 − 𝑉𝑡𝑔𝑡| 

𝑉𝑡𝑎𝑟𝑔𝑒𝑡
+𝑤2

𝑁𝑠𝑡𝑜𝑝

𝑑𝑠𝑒𝑔

+𝑤3 ∑ max⁡((𝑉(𝑡) − 𝑉𝑙𝑖𝑚), 0)
2

𝑡=𝑇1…𝑇2

+𝑤4

|𝑑𝑠𝑒𝑔 − 𝑑𝑡𝑔𝑡| 

𝑑𝑡𝑔𝑡
⁡⁡⁡⁡⁡ 

(1)  

 

where 

 (𝑤1, 𝑤2, 𝑤3, 𝑤4) are constants; 

 𝑉𝑎𝑣𝑔, 𝑁𝑠𝑡𝑜𝑝,⁡𝑑 and 𝑉 are explanatory 

variables for the generated speed profile: 

𝑉𝑎𝑣𝑔 is the average speed, 𝑁𝑠𝑡𝑜𝑝 is the 

number of stops, 𝑑 is the distance, and 

𝑉(𝑡) is the speed at time t; and 

 𝑉𝑡𝑔𝑡, 𝑉𝑙𝑖𝑚, 𝑑𝑡𝑔𝑡 are the constraints: 𝑉𝑡𝑔𝑡 is 

the target average speed, 𝑉𝑙𝑖𝑚is the speed 

limit, and 𝑑𝑡𝑔𝑡 is the desired distance of 

the section. 

This PV measures the capability of the generated 

speed profile to fit some constraints 

corresponding to the target trip: the speed average 

must be close to the traffic speed, the vehicle 

should avoid stopping for no reason (although we 

still allow unplanned stops), speed should not be 

higher than the speed limit, and the distance of the 

trip must be very close to the target distance. 

Once the loop is exited and there is a speed profile 

that matches the stopping criteria, the synthesized 

speed profile does not match the target distance 

exactly. We use an algorithm that “stretches” or 

“shrinks” the vehicle speed profile accordingly, 

mainly by adding or removing bits of constant 

speed segments.  

Figure 2 shows three vehicle speed traces for the 

same short target segment. Because of the 

stochastic nature of the method, no two 

synthesized speed traces are the same. 

 

Figure 2: Three vehicle speed profiles synthesized by a 

Markov Chain under the same constraints 

 

2.2 Speed profile generation using a GIS 

The intent of this project was to generate a speed 

profile for an entire itinerary that could be tens of 

kilometers long. Along such a target itinerary, there 

are numerous stops and changes in average speed, 

speed limits, and other variables. Using the 

algorithm over the entire trip would not likely lead 

to a prediction that would fit the target well. Hence, 

the idea was to segment the target itinerary, and 

iteratively apply the algorithm to each of the 

segments. We also needed a way to obtain 

information about the trip. 

To that end, we leveraged the capabilities presented 

in [11]. A process exists to define the itinerary in 

ADAS-RP (a GIS developed by HERE), process 

and format the data, segment the trip, and generate 

segments of constant speed or acceleration. The 

entire process is available in one of the public 

versions of Autonomie [12]. We re-used the 

itinerary acquisition and trip segmentation part of 

that tool.  

Figure 3 shows a schematic view of the algorithm. 

The geographical data of the itinerary contain a 

large number of attributes that may or may not be 

available for each of the links. These raw data are 

therefore processed into three main outputs:  

 Grade as a function of distance, 

 Stop position and schedule, and 

 Segmentation in segments of the same 

speed limit and average speed. 

The grade does not need further processing, 

whereas the stop schedule and the segmentation are 

used in an iterative loop to generate stochastic 

vehicle speed profiles on segments until the final 

distance is reached. 
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Figure 3: Schematic view of the trip generation 

process 

  

During the iterative speed profile generation, 

several measures are applied to ensure 

convergence and continuity of the vehicle speed 

profile between segments: 

 Initial speed definition: The initial speed 

for each segment is set to the final speed 

reached at the previous segment. 

 Final speed computation: If there is a 

stop at the end of the segment, the final 

target speed is zero. Otherwise, we 

compute final speed bounds that take into 

account average target speed and speed 

limit for the current and next segment. 

 Adjustment of average speed: We adjust 

the target average speed to take into 

account the possible scheduled stop time 

at the beginning, during, and at the end of 

the segment. We also make sure that the 

target average speed is realistic, given the 

speed limit and the initial and final 

speeds. 

 

Finally, the speed profile is filtered to remove 

quantization―in generating a Markov chain, the 

speed variable is composed of discrete values 

(from 0 to 38 m/s, with a step of 1 m/s). This rule 

will ensure that we end up with a realistic speed 

profile, suitable for fuel consumption simulation. 

Figure 4 shows an example of an entire trip 

generated by this process, along with the targets 

for each segment. 
 

 

Figure 4: Target speeds/stops and synthesized trip 

 

2.3 Trips Used for Study 

To evaluate the optimal route-based control 

described in section 4, we selected an itinerary in 

ADAS-RP. The origin was BMW World in Munich, 

Germany, and the destination is Possenhofen, 36 

km to the southwest. The speed limit was 

overwritten and set to 100 km/h, to allow EV 

operations at each point of trip. Figure 5 shows the 

trip on a map, and Figure 6 presents its 

characteristics. 

 

 

Figure 5: Itinerary for a trip from Munich to 

Possenhofen 

Source: http://here.com/  
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Figure 6: Characteristics of the Munich-Possenhofen 

itinerary, as well as one possible speed prediction 

 

A total of 10 stochastic trips were generated for 

the chosen itinerary. The resulting travel time was 

between 39 and 42 minutes. 

 

3 Baseline Vehicle Model 

3.1 Baseline Vehicle Definition 

A PHEV with a medium all-electric range (AER) 

is probably the best candidate to demonstrate 

route-based control. It is more likely to be driven 

past its AER, and therefore more likely to require 

engine use. Among the existing or planned 

vehicles, the Toyota Prius PHEV corresponds to 

such a profile. 

The vehicle powertrain model follows the known 

specifications of the actual 2012 Prius PHEV. It 

has a 200-V, 21-Ah Li-ion battery with 168 cells. 

The top speed in all-electric mode is 100 km/h. 

The AER of the vehicle is 26 km using the JC08 

test cycle, according to Toyota (23 km for our 

model). Since many key specifications were not 

available, we made assumptions, which explains 

the differences in the AER. 

We modeled the vehicle in Autonomie (Figure 7). 

It is important to note that this is a forward-

looking model and replicates the causality of the 

real world. In particular, the vehicle controller in 

the model uses the same type of inputs as those 

available from sensors in a vehicle. 

 

 

Figure 7: One-mode power-split PHEV model in 

Autonomie 

 

3.2 Optimal Operating Lines 

The Prius powertrain is a one-mode, power-split 

architecture. Thanks to two electric machines and a 

planetary gear set, the engine speed can be 

decoupled from the vehicle speed, thus introducing 

an additional degree of freedom. For a given engine 

and vehicle speed, the speeds of the electric 

machines are defined. Likewise, steady-state, 

electric machine torques are also defined if the 

gearbox output torque and engine torque are known. 

Engine torque and speed are therefore the natural 

control variables. There are two potential sources of 

losses in this system: operating the engine outside 

its efficiency area and energy recirculation (by 

which one electric machine generates current that is 

totally or partially used by the other, with the 

balance being taken to or from the battery). 

Minimizing losses can be done by using optimum 

operation maps. In our case, we made the battery 

output power a control variable as it is generally 

used for state of charge (SOC) control. The gearbox 

output speed and torque are givens at each time step 

– the latter comes from interpreting driver demand.  

An algorithm was developed to generate the optimal 

efficiency point for a given trio of gearbox output 

speed, gearbox output torque, and battery power. 

The two resulting 3-input look-up tables (one for 

engine speed, the other for engine torque) can then 

be used in the online controller. Figure 8 illustrates 

a subset of the optimal speed look-up table. 
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Figure 8:  Optimal engine speed for a battery power of 

-10 kW 

3.3 Baseline Controller 

The baseline control strategy is to run the vehicle 

in EV mode as much as possible, at which point 

the vehicle starts operating in charge-sustaining 

(CS) mode, like a conventional HEV.  

To provide a fair comparison between the optimal 

case and the reference case, we must ensure that 

the reference case is not poorly implemented. One 

way to approach this goal is to limit the 

differences between baseline and optimal 

controller. Therefore, we developed a baseline 

controller in which the high-level energy 

management aspect is clearly separated from other 

functions of the controller (such as engine speed 

control), which allowed us to easily swap 

strategies while keeping the lower level functions 

the same. Figure 9 shows the top level view of the 

controller in Simulink. Using the nomenclature in 

Figure 9, Block 3 is related to high-level energy 

management. As such, it is the only block that 

changes between the reference and baseline 

controller. 

 

Figure 9: View of the vehicle-level controller with 

Inputs (I), Outputs (O), Driver Interpretation (1), 

Combined Constraints Computation (2), High-Level 

Energy Management/Target Generation (3), and 

Target Tracking (4) 

The baseline control strategy is to run the vehicle in 

EV mode until the SOC reaches the discharge level, 

unless the vehicle speed is too high (above 100 

km/h) or the power demand exceeds what the 

components can provide. Once a low SOC level is 

reached, the vehicle operates in charge-sustaining 

(CS) mode, like a conventional HEV.  

In CS mode, the high-level energy management 

strategy follows commonly used rules. The engine 

is turned on (respectively shut down) when the 

driver power demand is higher (respectively lower) 

than an SOC-dependent threshold. When the engine 

is on, battery power demand is computed from an 

SOC-dependent look-up table: the battery is 

charged below the target SOC and discharged above 

the target SOC. The optimal operating point maps 

described previously are then used to generate the 

speed and torque targets. This strategy is 

schematically presented in Figure 10.  

 

Figure 10: Schematic view of baseline high-level energy 

management 

 

4 Optimal Control Using the 

Pontryagin’s Minimization 

Principle (PMP) 

4.1 Optimization Problem and PMP 

Theory 

The goal of this project is to optimize a PHEV so 

that it uses less fuel energy than the baseline 

version. The vehicle must meet the driver demands, 

so we assume that vehicle speed and gearbox output 

torque are givens. The battery state of charge 𝑆𝑏 is 

the state of the vehicle. Since fixing the battery 

power 𝑃𝑏 is enough to compute an optimal 

operating point, we consider 𝑃𝑏 as the command 

variable. By using the look-up tables described 

previously, we can link the fuel power to the battery 
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power such that 𝑃𝑓 = 𝑔(𝑃𝑏, 𝑆𝑏, 𝑡). The battery 

SOC is linked to the battery power by the 

following dynamic equation: 

 

𝑆𝑏̇ = −
𝑃𝑏
𝑄𝑉𝑛

 
2
𝑉𝑛
𝑉𝑜𝑐

1 + √1 −
4𝑃𝑏𝑅

𝑉𝑜𝑐
2 

 
(2)  

 

where Q is the battery capacity, 𝑉𝑛 is the battery 

nominal voltage, 𝑉𝑜𝑐 is the open-circuit voltage, 

and R is its internal resistance. 

In equation (3), we introduce 𝜆0, a negative 

constant, and 𝜃, a scalar function of  𝑃𝑏 and  𝑆𝑏 

(via 𝑉𝑜𝑐 and 𝑅) close to 1 in the operating range of 

the system. 

 

𝜆0 = −
1

𝑄𝑉𝑛
⁡⁡⁡ ; ⁡⁡𝜃 =

2
𝑉𝑛
𝑉𝑜𝑐

1 + √1 −
4𝑃𝑏𝑅

𝑉𝑜𝑐
2 

 
(3)  

 

As a result, equation (2) is equivalent to equation 

(4):  

 𝑆𝑏̇ = 𝜆0𝜃(𝑃𝑏, 𝑆𝑏)𝑃𝑏 (4)  

 

Therefore, the optimization problem consists of 

finding successive optimal battery power 

demands that will minimize the fuel energy while 

reaching the target SOC 𝑆𝑡𝑔𝑡 at the end of the trip:  

 

 
𝑃𝑏
∗ = argmin

𝑃𝑏
𝑆𝑏(𝑇)=𝑆𝑡𝑔𝑡

(∫ 𝑃𝑓(𝑃𝑏, 𝑆𝑏 , 𝑡)𝑑𝑡
𝑇

0

) (5)  

 

The Hamiltonian 𝐻 of the system is:  

 

 𝐻 = 𝑃𝑓 + 𝑝(𝑡)𝑆𝑏̇ (6)  

 

where 𝑝 is the co-state. The PMP states that a 

necessary condition of optimality is that the 

optimum command 𝑃𝑏
∗ minimizes the 

Hamiltonian (equation (7)) with the co-state 

verifying equation (8), as well as boundary 

conditions, especially regarding SOC. 

 

 𝑃𝑏
∗ = argmin

𝑃𝑏

(𝐻(𝑃𝑏, 𝑆𝑏, 𝑝, 𝑡)) (7)  

 
𝑝̇ = −𝑝(𝑡)

𝜕𝑆𝑏
𝜕𝑆𝑏

̇
 (8)  

 

In this study, the characteristics of the battery (𝑉𝑜𝑐 

and 𝑅) do not vary much as a function of the SOC. 

As a result, we will assume the co-state to be 

constant: 𝑝(𝑡) = 𝑝0. We also introduce in (9) the 

equivalence factor.  

 

𝑟0 = 𝜆0𝑝0 (9)  

 

This allows to rewrite (6) into (10), which then 

gives a physical interpretation of the Hamiltonian: 

it is the equivalent power used by the system at any 

given time.  

 

𝐻 = 𝑃𝑓 + 𝑟0𝜃(𝑃𝑏, 𝑆𝑏)𝑃𝑏 (10)  

 

The practical implementation of the PMP requires 

to find the battery power that minimizes the 

Hamiltonian at each time step. However, there is 

another problem to solve, which is to find 𝑟0 such 

that the final SOC is the target SOC (30%). 

 

4.2 PMP Implementation 

The PMP optimal controller is derived from the 

baseline controller. Only the high-level energy 

management is different. The other three blocks are 

the same. The PMP is implemented only for the 

charge-depleting mode (i.e., until the battery 

reaches the low SOC threshold used in the baseline 

control). Once that happens, the control is the same 

CS control as in the baseline control. 

Figure 11 shows a simplified view of the high- level 

management block. It is a practical implementation 

of equation (7) and deals with the choice of 

operating point and the decision to turn the engine 

on or leave it off. 

The first step is to compute the Hamiltonian for both 

the EV and engine-on modes. In EV mode, the 

computation is straightforward as there is only one 

way of controlling the vehicle in that mode. In 

engine-on mode, the computation of the 

Hamiltonian first relies on computing it for a vector 

of battery power demands and resulting fuel 

powers. The lowest Hamiltonian and the 

corresponding power demand are then selected. 

The ON/OFF decision is based on the relative 

difference of the respective Hamiltonians in the EV 

and engine-on mode: in the ON/OFF logic block, 

we select the mode with the lowest Hamiltonian. 

Some filters are implemented to prevent an 

excessive number of state changes.  



EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  8 

 

Figure 11: Schematic of the high-level energy 

management in the PMP controller 

 

5 Benchmarking the Optimal 

Control by Using a Real-World 

Itinerary 

5.1 Design of Experiments 

Ten trips were synthesized by using the stochastic 

vehicle speed profile generation process described 

in section Error! Reference source not found.. 

All ten trips are based on the itinerary defined in 

section 2.3. The reference vehicle and the one with 

the PMP controller were run on each of those trips. 

For the vehicle with the PMP controller, 

equivalence factors of 2.795 to 2.83 were used, 

with a 0.005 step. We also assumed that the goal 

was to minimize fuel use (no fuel/electricity trade-

off was sought), and that the battery was fully 

charged at the beginning of the trip. 

5.2 Operation with Optimal Choice of 

Equivalence Factor 

In this section, we assume that the equivalence 

factor is optimally chosen. As shown in Figure 12, 

this means that the equivalence factors may be 

different from one trip to another.  

 

 

Figure 12: Optimal equivalence factor for each trip 

 

The fuel consumption during each cycle with 

optimal equivalence factors is shown in Figure 13. 

There is ~10% difference between the most fuel 

intensive trip (#7) and the least intensive trip (#6) 

because of the stochastic nature of the process used 

to generate them. We observe that the PMP 

controller leads to fuel savings in all cases and 

reduces the consumption by as much as 5.8% 

(Trip #1) and by 4.6% on average.  

 

 

Figure 13: Mass of fuel consumed on each trip for the 

optimal PMP case and reference case; percentages are 

fuel savings in the PMP case compared to the reference 

case 

 

Figure 14 shows several key descriptive parameters 

for both the reference case and the PMP case (see 

caption for detailed description). The engine is used 

less with the PMP controller, both in terms of 

energy (Parameter 1) or time (Parameter 4), and 

slightly more efficiently at that (Parameter 2). 

Parameter 5 is intended to give a sense of the level 

of recirculation, which occurs when part of the 

engine output is converted into electricity by motor 

2 (or generator) and converted back to mechanical 

power by motor 1. Recirculation is a source of 

inefficiency, but it is at times necessary to preserve 

engine efficiency and system efficiency as a whole. 

It appears here that recirculation is lower with the 

PMP controller, which means more engine energy 

goes directly to the wheels. Better efficiency is 

gained thanks to more frequent engine state 

changes: the number of engine starts (Parameter 3) 

almost tripled.  
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Figure 14: Key descriptive parameters for the PMP 

and reference case (error bars represent variability on 

trip): 

1= Total engine mechanical energy (MJ)(x10) 

2 = Engine efficiency (%) 

3 = Number of engine starts 

4= Share of time engine is ON (%) 

5 = Ratio of motor2 energy over engine energy 

(counted when the engine is operating) 

 

Figure 15 shows how the energy is used 

throughout one trip (trip 10, equivalence factor of 

2.81).  

 

Figure 15: Operations of reference and optimized 

vehicles on trip 10, equivalence factor of 2.81 

 

All through the trip, the engine and the battery are 

used in conjunction with the PMP controller, 

whereas the engine stays off during the first 18 km 

in the reference case (at which point it switches to 

CS mode). With the PMP controller, the CS mode 

is reached at 34.2 km (highlighted in Figure 15 by a 

green dot), about 2 km from the end of the trip. 

 

5.3 Sensitivity of PMP Controller to 

Equivalence Factor 

In a potential real-world setting, the optimal co-state 

cannot be precisely known ahead of time because 

the predicted and actual speed will always differ. 

The results shown in the previous sections are 

therefore best-case scenarios. A more realistic 

scenario would be to obtain an equivalence factor 

based on a set of trip predictions and apply it to a 

different set, thus modeling the prediction/actuality 

discrepancy.  

We do not propose a prediction method here; 

however, the analysis of whether the PMP 

controller will still bring benefits with sub-optimal 

equivalence factors will provide valuable guidance. 

Figure 16 shows the outcome of simulations over 

three different trips using the entire sweep of 

equivalence factor values, along with the reference 

case (in red).  

 

 
 

Figure 16: Final fuel mass and SOC for three different 

trips (different shapes), PMP different equivalence 

factors (cyan to purple colors), and Reference control 

(red).  

If the equivalence factor is too high, battery energy 

is too expensive, and as a result the final SOC is too 

high: there is battery energy left at the end of the trip 

that could have been used to displace fuel 

Trip 1, 2, 3 

PMP simulations with 

 𝑟0=[2.79,…, 2.83] 
Reference simulations 
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consumption. In that case, the performance of the 

PMP controller vehicle is actually worse.  

On the other hand, if the equivalence factor is too 

low, the battery will be discharged prematurely, 

and the fuel consumption will approach the 

reference case. As a result, the benefits will 

diminish. However, it is unlikely that it will do 

worse than the reference strategy. 

Figure 17 provides another way to look at these 

results and shows fuel savings for all trips and 

equivalence factors. We adjusted the fuel mass 

value to account for differences in final SOC 

between the PMP and reference case for those 

PMP runs in which the CS mode was reached. We 

also included the average savings for any given 

equivalence factor, which peaks at 3.3%, for an 

equivalence factor of 2.805. Another curve shows 

the average over the best eight savings, which 

provides a slightly better result of 4.3%, for an 

equivalence factor of 2.81. 

 

 

Figure 17: Fuel savings as a function of Equivalence 

factor for all 10 trips 

 

Note that there is a high sensitivity to the 

equivalence factor for certain trips. For example, 

an equivalence factor of 2.81 can bring 5.7% 

savings on one trip while increasing the 

consumption by over 2% on another one. This 

suggests that the “one-size-fits-all” equivalence 

factor approach may not be the best for yielding 

the highest results; an adaptive algorithm could 

resolve this issue. 

 

6 Conclusion 

6.1 Summary 

 

Trip prediction offers great opportunities for 

improving the energy efficiency of PHEVs, but it is 

also greatly challenging. In theory, while significant 

fuel savings are to be expected, few solutions have 

been proposed for real-world implementation. 

To fully demonstrate the potential of this new data-

driven technology, one must address three key 

questions: 

 How can the future be predicted? Or more 

exactly, how can a usable prediction of 

future speed and grade be proposed? 

 How can the prediction be used to improve 

energy efficiency? 

 How can the benefits of this simulated 

technology be evaluated? Or, how can we 

adequately model the uncertainties and 

inaccuracies associated with prediction? 

 

We believe the work presented in this paper tackles 

all three questions and proposes ideas that could 

eventually answer them and be implemented in the 

cars of tomorrow. 

Our proposed tool for prediction combines 

deterministic and stochastic aspects. It is closely 

related to the chosen itinerary in terms of road 

topography, positions of stops, speed limits, and 

traffic speeds, among other parameters, by 

gathering information for that itinerary for that 

particular trip. The stochastic nature comes from 

synthesizing each segment with a Markov chain 

defined by probabilities extracted from a database 

of real-world trip values. 

We also demonstrated an implementation of the 

much-researched PMP in a vehicle-level controller 

for a forward-looking powertrain model. Besides 

using inputs and outputs similar to those available 

in the real world, it also takes into account the main 

dynamic aspects of control and addresses some 

driveability issues (e.g., unrealistic and excessive 

engine state changes). Furthermore, we deployed 

best efforts to ensure the baseline controller using 

the “EV+CS” strategy is itself efficient, to limit the 

effect of a “bad” reference control on the results. 

The PMP controller is definitely an attractive 

approach and yields positive results in our limited 

experiments, but its sensitivity to the choice of the 

equivalence factor can be a hurdle for real-world 

benefits, and further research is needed. 

Finally, we addressed the question of evaluating the 

impact of the discrepancies between predicted and 

Trip 1, 2, …  
Average Saving 
Average of top 8 
savings 

… 
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actual speed profiles in an indirect way by 

showing how an optimum parameter for one 

prediction works on another prediction for the 

same itinerary. 

6.2 Future Work 

Future work will continue to address the three 

questions of prediction, use of prediction in 

control, and accurate evaluation of its benefits.  

We will work on improving the robustness and 

speed of our algorithm, possibly leading to its 

integration in future releases of Autonomie. We 

will also explore ways to better match transition 

probabilities with particular segments from the 

GIS. 

On the control side, we will focus on fast 

equivalence factor prediction, as well as adaptive 

algorithms, so that we reduce the sensitivity to the 

equivalence factor. Better control and better 

prediction will help us further evaluate this 

promising technology.  
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