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Abstract

When driven past their all-electric range, plug-in hybrid vehicles (PHEVs) must use their engines. Numerous
theoretical studies showed that the conventional control strategy, i.e. all-electric mode followed by a charge-
sustaining mode, is not the most energy-efficient control strategy. Better strategies require knowledge of the
trip ahead. In this paper, we present a method of predicting a trip for a given itinerary (vehicle speed, stop
time, and grade) defined by using a geographical information system (GIS). For each segment of the
itinerary, a vehicle speed profile is generated through a Markov process, defined by transition probabilities
extracted from a large database of real-world trip records. Ten trip predictions are then generated from a
single itinerary for evaluation of an optimal control strategy for a short-range power-split PHEV by using
Autonomie, a powertrain modeling environment. The baseline controller uses rules and optimal operating
point look-up tables when in charge-sustaining mode. The optimal controller uses the Pontryagin’s
Minimization Principle (PMP), the performance of which heavily depends on the choice of one scalar
parameter, the equivalence factor. Finally, we demonstrate the fuel-saving potential of the PMP controller,
using the aforementioned trip predictions.
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Stochastic dynamic programming [2] uses a
probabilistic distribution of drive cycles, rather than

1 Introduction
Detailed maps of the road network, increased on-

board computing capabilities, connectivity to
cloud-based computing resources, and ever-
increasing inclusion of global navigation satellite
systems (GNSS) make route prediction more and
more conceivable. One of the main applications of
route prediction is energy efficiency: knowledge
of future driving conditions, if used effectively,
can contribute to improving the efficiency of
advanced vehicles, such as hybrid electric
vehicles (HEVs) and plug-in HEVs (PHEV).

Several optimization techniques that use some
form of route prediction as an input already exist.
The most theoretical is dynamic programming [1],
which provides a global optimum. It is highly
computer-intensive and is hardly implementable
because of the very nature of the algorithm, which
runs backwards (i.e., starting from the end).

a single cycle. Another technique is mixed-integer
linear programming [3].

An alternative and easier to implement online
optimization technique relies on the Pontryagin’s
Minimization Principle (PMP) [4][5], which under
certain assumptions can be simplified to an
Equivalent Consumption Minimization Strategy
(ECMS) method [6][7][8]. In this case, global
optimality is not guaranteed, but it generally leads
to good results. However, the outcome of using this
method highly depends on one constant, the initial
co-state in one case, or equivalence factor in the
other, that is chosen for the online implementation.
Finding the optimal factor for a given trip can be
done by predicting the route.

Many studies assume the speed profile is given and
do not explore two major hurdles of real-world
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implementation of trip-based control
optimization: (1) how to predict the vehicle speed
profile for the trip and (2) how well the
optimization works when the predicted and the
actual speed differ — which invariably can happen
in the real world, given drivers unpredictability.
One approach to trip prediction is to model vehicle
speed as a Markov Chain [9][10]. This model
relies on a database of real-world vehicle speeds,
from which transition probabilities can be
computed. This allows the generation of
stochastic speed profiles. However, this method
per se does not provide a prediction for a
particular itinerary. Wu et al.[3] proposed
predicting the speed for a particular itinerary by
combining macroscopic average traffic speeds
with a disturbance generated by EPA’s MOVES.
We presented in [11] a method to generate a speed
profile for a given itinerary based on information
provided by a geographical information system
(GIS), ADAS-RP, published by HERE (a NOKIA
company). The prediction assumed the trip was
made in sections of constant speed, constant
acceleration, or constant deceleration. This
process is available in the public version of
Autonomie (version R12) [12], an automotive
systems modeling environment developed by
Argonne National Laboratory.

In this study, we present a method of obtaining a
stochastic vehicle speed profile for a given
itinerary using real geographical data and then
demonstrate how this could be used for PHEV
optimization by using a PMP-based controller.
Our guiding principle is to accurately represent
the causalities and uncertainties of the real world,
from the powertrain chosen to the flow of
information.

2 Trip Prediction

2.1 Markov Chain Generation Under
Constraints

A Markov chain is a random process characterized
as memory-less: the next state only depends on the
current state and not on the sequence of past
events. This type of mathematical model is good
for representing vehicle speed. Ivanco ([9]) and
later T.-K. Lee ([10]) used speed and acceleration
as the states of the process, leading to positive
results. We chose to use the same state definition
in this work.

The transition from one state to another is
governed by a transition probability, which only
depends on those two states. Their collection

forms the transition probability matrix (TPM),
which can be built by processing all the data points
of a real-world trip database. In our case, we used
data from the 2007 Chicago Metropolitan Agency
for Planning (CMAP) database [13] of
approximately 6,000,000 data points that were
filtered, processed, and quality-checked before
being used to build the TPM.

One fundamental aspect of the “classic” Markov
chain is that the outcome is stochastic, and the only
control over the result is the time at which we stop
the Markov chain generation. If the itinerary is
given — for example the driver selects the
destination on his navigation unit — there is also a
deterministic aspect to speed prediction: there are
stops, speed limits and historical average speeds at
spatially defined points of the trips. There will be of
course stochastic variations of speed around those
determined conditions. To combine those two
aspects, we created an algorithm which consists of
generating stochastic speed profiles until a result
with characteristics “close” enough to the
deterministic prediction emerges. Information
about the trip, or the “target” (such as distance,
average speed) ahead can be provided by a GIS.
This process is illustrated in Figure 1.
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Figure 1: Stochastic vehicle speed generation under
constraints
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In a first loop, the Markov chain generation is
stopped when the current distance is higher than,
or close to the target distance and the speed is
close to the target final speed (or equal to it if a
stop is requested at the end of the segment). Once
the candidate stochastic speed profile is generated,
we check whether it satisfies a stopping criterion
that depends on the target trip. If it does not, the
algorithm computes a new vehicle speed profile.
The stopping criterion considers average speed,
number of stops, excessive speed, and distance. It
is given by the Performance Value (PV):

PV
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where
o (wy,w,, w3, w,) are constants;
® Vawg Nstop,d and V are explanatory
variables for the generated speed profile:
Vavg i the average speed, Ny, is the
number of stops, d is the distance, and
V(t) is the speed at time t; and
*  Vigt: Viim, dege are the constraints: Vg, is
the target average speed, V;;,,,is the speed
limit, and d,g; is the desired distance of
the section.
This PV measures the capability of the generated
speed profile to fit some constraints
corresponding to the target trip: the speed average
must be close to the traffic speed, the vehicle
should avoid stopping for no reason (although we
still allow unplanned stops), speed should not be
higher than the speed limit, and the distance of the
trip must be very close to the target distance.
Once the loop is exited and there is a speed profile
that matches the stopping criteria, the synthesized
speed profile does not match the target distance
exactly. We use an algorithm that “stretches” or
“shrinks” the vehicle speed profile accordingly,
mainly by adding or removing bits of constant
speed segments.
Figure 2 shows three vehicle speed traces for the
same short target segment. Because of the
stochastic nature of the method, no two
synthesized speed traces are the same.
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Figure 2: Three vehicle speed profiles synthesized by a
Markov Chain under the same constraints

2.2 Speed profile generation using a GIS

The intent of this project was to generate a speed
profile for an entire itinerary that could be tens of
kilometers long. Along such a target itinerary, there
are numerous stops and changes in average speed,
speed limits, and other variables. Using the
algorithm over the entire trip would not likely lead
to a prediction that would fit the target well. Hence,
the idea was to segment the target itinerary, and
iteratively apply the algorithm to each of the
segments. We also needed a way to obtain
information about the trip.
To that end, we leveraged the capabilities presented
in [11]. A process exists to define the itinerary in
ADAS-RP (a GIS developed by HERE), process
and format the data, segment the trip, and generate
segments of constant speed or acceleration. The
entire process is available in one of the public
versions of Autonomie [12]. We re-used the
itinerary acquisition and trip segmentation part of
that tool.
Figure 3 shows a schematic view of the algorithm.
The geographical data of the itinerary contain a
large number of attributes that may or may not be
available for each of the links. These raw data are
therefore processed into three main outputs:

e Grade as a function of distance,

e  Stop position and schedule, and

e Segmentation in segments of the same

speed limit and average speed.

The grade does not need further processing,
whereas the stop schedule and the segmentation are
used in an iterative loop to generate stochastic
vehicle speed profiles on segments until the final
distance is reached.
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Figure 3: Schematic view of the trip generation
process

During the iterative speed profile generation,
several measures are applied to ensure
convergence and continuity of the vehicle speed
profile between segments:

e Initial speed definition: The initial speed
for each segment is set to the final speed
reached at the previous segment.

e Final speed computation: If there is a
stop at the end of the segment, the final
target speed is zero. Otherwise, we
compute final speed bounds that take into
account average target speed and speed
limit for the current and next segment.

e Adjustment of average speed: We adjust
the target average speed to take into
account the possible scheduled stop time
at the beginning, during, and at the end of
the segment. We also make sure that the
target average speed is realistic, given the
speed limit and the initial and final
speeds.

Finally, the speed profile is filtered to remove
quantization—in generating a Markov chain, the
speed variable is composed of discrete values
(from 0 to 38 m/s, with a step of 1 m/s). This rule
will ensure that we end up with a realistic speed
profile, suitable for fuel consumption simulation.
Figure 4 shows an example of an entire trip
generated by this process, along with the targets
for each segment.
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Figure 4: Target speeds/stops and synthesized trip

2.3 Trips Used for Study

To evaluate the optimal route-based control
described in section 4, we selected an itinerary in
ADAS-RP. The origin was BMW World in Munich,
Germany, and the destination is Possenhofen, 36
km to the southwest. The speed limit was
overwritten and set to 100 km/h, to allow EV
operations at each point of trip. Figure 5 shows the
trip on a map, and Figure 6 presents its
characteristics.
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Figure 5: Itinerary for a trip from Munich to
Possenhofen

Source: http://here.com/
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Figure 6: Characteristics of the Munich-Possenhofen
itinerary, as well as one possible speed prediction

A total of 10 stochastic trips were generated for
the chosen itinerary. The resulting travel time was
between 39 and 42 minutes.

3 Baseline Vehicle Model

3.1 Baseline Vehicle Definition

A PHEV with a medium all-electric range (AER)
is probably the best candidate to demonstrate
route-based control. It is more likely to be driven
past its AER, and therefore more likely to require
engine use. Among the existing or planned
vehicles, the Toyota Prius PHEV corresponds to
such a profile.

The vehicle powertrain model follows the known
specifications of the actual 2012 Prius PHEV. It
has a 200-V, 21-Ah Li-ion battery with 168 cells.
The top speed in all-electric mode is 100 km/h.
The AER of the vehicle is 26 km using the JC08
test cycle, according to Toyota (23 km for our
model). Since many key specifications were not
available, we made assumptions, which explains
the differences in the AER.

We modeled the vehicle in Autonomie (Figure 7).
It is important to note that this is a forward-
looking model and replicates the causality of the
real world. In particular, the vehicle controller in
the model uses the same type of inputs as those
available from sensors in a vehicle.

Figure 7: One-mode power-split PHEV model in
Autonomie

3.2 Optimal Operating Lines

The Prius powertrain is a one-mode, power-split
architecture. Thanks to two electric machines and a
planetary gear set, the engine speed can be
decoupled from the vehicle speed, thus introducing
an additional degree of freedom. For a given engine
and vehicle speed, the speeds of the electric
machines are defined. Likewise, steady-state,
electric machine torques are also defined if the
gearbox output torque and engine torque are known.
Engine torque and speed are therefore the natural
control variables. There are two potential sources of
losses in this system: operating the engine outside
its efficiency area and energy recirculation (by
which one electric machine generates current that is
totally or partially used by the other, with the
balance being taken to or from the battery).
Minimizing losses can be done by using optimum
operation maps. In our case, we made the battery
output power a control variable as it is generally
used for state of charge (SOC) control. The gearbox
output speed and torque are givens at each time step
— the latter comes from interpreting driver demand.
An algorithm was developed to generate the optimal
efficiency point for a given trio of gearbox output
speed, gearbox output torque, and battery power.
The two resulting 3-input look-up tables (one for
engine speed, the other for engine torque) can then
be used in the online controller. Figure 8 illustrates
a subset of the optimal speed look-up table.
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Figure 8: Optimal engine speed for a battery power of
-10 kw

3.3 Baseline Controller

The baseline control strategy is to run the vehicle
in EV mode as much as possible, at which point
the vehicle starts operating in charge-sustaining
(CS) mode, like a conventional HEV.

To provide a fair comparison between the optimal
case and the reference case, we must ensure that
the reference case is not poorly implemented. One
way to approach this goal is to limit the
differences between baseline and optimal
controller. Therefore, we developed a baseline
controller in  which the high-level energy
management aspect is clearly separated from other
functions of the controller (such as engine speed
control), which allowed us to easily swap
strategies while keeping the lower level functions
the same. Figure 9 shows the top level view of the
controller in Simulink. Using the nomenclature in
Figure 9, Block 3 is related to high-level energy
management. As such, it is the only block that
changes between the reference and baseline
controller.

Figure 9: View of the vehicle-level controller with
Inputs (1), Outputs (O), Driver Interpretation (1),
Combined Constraints Computation (2), High-Level
Energy Management/Target Generation (3), and
Target Tracking (4)

The baseline control strategy is to run the vehicle in
EV mode until the SOC reaches the discharge level,
unless the vehicle speed is too high (above 100
km/h) or the power demand exceeds what the
components can provide. Once a low SOC level is
reached, the vehicle operates in charge-sustaining
(CS) mode, like a conventional HEV.

In CS mode, the high-level energy management
strategy follows commonly used rules. The engine
is turned on (respectively shut down) when the
driver power demand is higher (respectively lower)
than an SOC-dependent threshold. When the engine
is on, battery power demand is computed from an
SOC-dependent look-up table: the battery is
charged below the target SOC and discharged above
the target SOC. The optimal operating point maps
described previously are then used to generate the
speed and torque targets. This strategy is
schematically presented in Figure 10.
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Figure 10: Schematic view of baseline high-level energy

management
4 Optimal Control Using the
Pontryagin’s Minimization

Principle (PMP)

4.1 Optimization Problem and PMP
Theory

The goal of this project is to optimize a PHEV so
that it uses less fuel energy than the baseline
version. The vehicle must meet the driver demands,
S0 we assume that vehicle speed and gearbox output
torque are givens. The battery state of charge S, is
the state of the vehicle. Since fixing the battery
power P, is enough to compute an optimal
operating point, we consider P, as the command
variable. By using the look-up tables described
previously, we can link the fuel power to the battery
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power such that Pr = g(Py,Sp,t). The battery
SOC is linked to the battery power by the

following dynamic equation:
2 Vn
P e
Qv @)

"1 [1-2BR
V2
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where Q is the battery capacity, V,, is the battery
nominal voltage, V,. is the open-circuit voltage,
and Ris its internal resistance.

In equation (3), we introduce A, a negative
constant, and @, a scalar function of P, and S,
(viaV,. and R) close to 1 in the operating range of
the system.

As a result, equation (2) is equivalent to equation
(4):
Sp = A8 (Pp, Sp)Pyp @)

Therefore, the optimization problem consists of
finding successive optimal battery power
demands that will minimize the fuel energy while
reaching the target SOC S, 4, at the end of the trip:

T
P, = argmin <J Pf(Pb,Sb,t)dt> (5)
Pb 0

Sh(r)=Stgt

The Hamiltonian H of the system is:
H = P +p()S, (6)

where p is the co-state. The PMP states that a
necessary condition of optimality is that the
optimum command P,  minimizes the
Hamiltonian (equation (7)) with the co-state
verifying equation (8), as well as boundary
conditions, especially regarding SOC.

Py = ar%r:min( H(Py, Sp,p, 1)) 7
b
as,

p= —P(t)a—sb ®)

In this study, the characteristics of the battery (V,.
and R) do not vary much as a function of the SOC.
As a result, we will assume the co-state to be

constant: p(t) = p,. We also introduce in (9) the
equivalence factor.

To = AoPo 9)

This allows to rewrite (6) into (10), which then
gives a physical interpretation of the Hamiltonian:
it is the equivalent power used by the system at any
given time.

H :Pf+r09(Pb,Sb)Pb (10)

The practical implementation of the PMP requires
to find the battery power that minimizes the
Hamiltonian at each time step. However, there is
another problem to solve, which is to find r, such
that the final SOC is the target SOC (30%).

4.2 PMP Implementation

The PMP optimal controller is derived from the
baseline controller. Only the high-level energy
management is different. The other three blocks are
the same. The PMP is implemented only for the
charge-depleting mode (i.e., until the battery
reaches the low SOC threshold used in the baseline
control). Once that happens, the control is the same
CS control as in the baseline control.

Figure 11 shows a simplified view of the high- level
management block. It is a practical implementation
of equation (7) and deals with the choice of
operating point and the decision to turn the engine
on or leave it off.

The first step is to compute the Hamiltonian for both
the EV and engine-on modes. In EV mode, the
computation is straightforward as there is only one
way of controlling the vehicle in that mode. In
engine-on mode, the computation of the
Hamiltonian first relies on computing it for a vector
of battery power demands and resulting fuel
powers. The lowest Hamiltonian and the
corresponding power demand are then selected.
The ON/OFF decision is based on the relative
difference of the respective Hamiltonians in the EV
and engine-on mode: in the ON/OFF logic block,
we select the mode with the lowest Hamiltonian.
Some filters are implemented to prevent an
excessive number of state changes.
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Figure 11: Schematic of the high-level energy
management in the PMP controller

5 Benchmarking the Optimal
Control by Using a Real-World
Itinerary

5.1 Design of Experiments

Ten trips were synthesized by using the stochastic
vehicle speed profile generation process described
in section Error! Reference source not found..
All ten trips are based on the itinerary defined in
section 2.3. The reference vehicle and the one with
the PMP controller were run on each of those trips.
For the vehicle with the PMP controller,
equivalence factors of 2.795 to 2.83 were used,
with a 0.005 step. We also assumed that the goal
was to minimize fuel use (no fuel/electricity trade-
off was sought), and that the battery was fully
charged at the beginning of the trip.

5.2 Operation with Optimal Choice of
Equivalence Factor

In this section, we assume that the equivalence
factor is optimally chosen. As shown in Figure 12,
this means that the equivalence factors may be
different from one trip to another.

2.83
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2.81

2.8
2.79

PMP Factor

1 2 3 4 5 6 7 8 9 10
Trip

Figure 12: Optimal equivalence factor for each trip

The fuel consumption during each cycle with
optimal equivalence factors is shown in Figure 13.
There is ~10% difference between the most fuel
intensive trip (#7) and the least intensive trip (#6)
because of the stochastic nature of the process used
to generate them. We observe that the PMP
controller leads to fuel savings in all cases and
reduces the consumption by as much as 5.8%
(Trip #1) and by 4.6% on average.
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Figure 13: Mass of fuel consumed on each trip for the

optimal PMP case and reference case; percentages are

fuel savings in the PMP case compared to the reference
case

Figure 14 shows several key descriptive parameters
for both the reference case and the PMP case (see
caption for detailed description). The engine is used
less with the PMP controller, both in terms of
energy (Parameter 1) or time (Parameter 4), and
slightly more efficiently at that (Parameter 2).
Parameter 5 is intended to give a sense of the level
of recirculation, which occurs when part of the
engine output is converted into electricity by motor
2 (or generator) and converted back to mechanical
power by motor 1. Recirculation is a source of
inefficiency, but it is at times necessary to preserve
engine efficiency and system efficiency as a whole.
It appears here that recirculation is lower with the
PMP controller, which means more engine energy
goes directly to the wheels. Better efficiency is
gained thanks to more frequent engine state
changes: the number of engine starts (Parameter 3)
almost tripled.
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and reference case (error bars represent variability on
trip):
1= Total engine mechanical energy (MJ)(x10)
2 = Engine efficiency (%)
3 = Number of engine starts
4= Share of time engine is ON (%)
5 = Ratio of motor2 energy over engine energy
(counted when the engine is operating)

Figure 15 shows how the energy is used
throughout one trip (trip 10, equivalence factor of
2.81).
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Figure 15: Operations of reference and optimized
vehicles on trip 10, equivalence factor of 2.81

All through the trip, the engine and the battery are
used in conjunction with the PMP controller,
whereas the engine stays off during the first 18 km

in the reference case (at which point it switches to
CS mode). With the PMP controller, the CS mode
is reached at 34.2 km (highlighted in Figure 15 by a
green dot), about 2 km from the end of the trip.

5.3 Sensitivity of PMP Controller to
Equivalence Factor

In a potential real-world setting, the optimal co-state
cannot be precisely known ahead of time because
the predicted and actual speed will always differ.
The results shown in the previous sections are
therefore best-case scenarios. A more realistic
scenario would be to obtain an equivalence factor
based on a set of trip predictions and apply it to a
different set, thus modeling the prediction/actuality
discrepancy.

We do not propose a prediction method here;
however, the analysis of whether the PMP
controller will still bring benefits with sub-optimal
equivalence factors will provide valuable guidance.
Figure 16 shows the outcome of simulations over
three different trips using the entire sweep of
equivalence factor values, along with the reference
case (in red).
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Figure 16: Final fuel mass and SOC for three different
trips (different shapes), PMP different equivalence
factors (cyan to purple colors), and Reference control
(red).

If the equivalence factor is too high, battery energy
is too expensive, and as a result the final SOC is too
high: there is battery energy left at the end of the trip
that could have been used to displace fuel
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consumption. In that case, the performance of the
PMP controller vehicle is actually worse.

On the other hand, if the equivalence factor is too
low, the battery will be discharged prematurely,
and the fuel consumption will approach the
reference case. As a result, the benefits will
diminish. However, it is unlikely that it will do
worse than the reference strategy.

Figure 17 provides another way to look at these
results and shows fuel savings for all trips and
equivalence factors. We adjusted the fuel mass
value to account for differences in final SOC
between the PMP and reference case for those
PMP runs in which the CS mode was reached. We
also included the average savings for any given
equivalence factor, which peaks at 3.3%, for an
equivalence factor of 2.805. Another curve shows
the average over the best eight savings, which
provides a slightly better result of 4.3%, for an
equivalence factor of 2.81.
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Figure 17: Fuel savings as a function of Equivalence
factor for all 10 trips

Note that there is a high sensitivity to the
equivalence factor for certain trips. For example,
an equivalence factor of 2.81 can bring 5.7%
savings on one trip while increasing the
consumption by over 2% on another one. This
suggests that the “one-size-fits-all” equivalence
factor approach may not be the best for yielding
the highest results; an adaptive algorithm could
resolve this issue.

6 Conclusion
6.1 Summary

Trip prediction offers great opportunities for
improving the energy efficiency of PHEVS, but it is
also greatly challenging. In theory, while significant
fuel savings are to be expected, few solutions have
been proposed for real-world implementation.

To fully demonstrate the potential of this new data-
driven technology, one must address three key
guestions:

e How can the future be predicted? Or more
exactly, how can a usable prediction of
future speed and grade be proposed?

e How can the prediction be used to improve
energy efficiency?

e How can the benefits of this simulated
technology be evaluated? Or, how can we
adequately model the uncertainties and
inaccuracies associated with prediction?

We believe the work presented in this paper tackles
all three questions and proposes ideas that could
eventually answer them and be implemented in the
cars of tomorrow.

Our proposed tool for prediction combines
deterministic and stochastic aspects. It is closely
related to the chosen itinerary in terms of road
topography, positions of stops, speed limits, and
traffic speeds, among other parameters, by
gathering information for that itinerary for that
particular trip. The stochastic nature comes from
synthesizing each segment with a Markov chain
defined by probabilities extracted from a database
of real-world trip values.

We also demonstrated an implementation of the
much-researched PMP in a vehicle-level controller
for a forward-looking powertrain model. Besides
using inputs and outputs similar to those available
in the real world, it also takes into account the main
dynamic aspects of control and addresses some
driveability issues (e.g., unrealistic and excessive
engine state changes). Furthermore, we deployed
best efforts to ensure the baseline controller using
the “EV+CS” strategy is itself efficient, to limit the
effect of a “bad” reference control on the results.
The PMP controller is definitely an attractive
approach and yields positive results in our limited
experiments, but its sensitivity to the choice of the
equivalence factor can be a hurdle for real-world
benefits, and further research is needed.

Finally, we addressed the question of evaluating the
impact of the discrepancies between predicted and
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actual speed profiles in an indirect way by
showing how an optimum parameter for one
prediction works on another prediction for the
same itinerary.

6.2 Future Work

Future work will continue to address the three
questions of prediction, use of prediction in
control, and accurate evaluation of its benefits.
We will work on improving the robustness and
speed of our algorithm, possibly leading to its
integration in future releases of Autonomie. We
will also explore ways to better match transition
probabilities with particular segments from the
GIS.

On the control side, we will focus on fast
equivalence factor prediction, as well as adaptive
algorithms, so that we reduce the sensitivity to the
equivalence factor. Better control and better
prediction will help us further evaluate this
promising technology.
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