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Abstract 

It has been forecast that by 2020, the penetration of renewable generation in the UK energy mix will reach 

approximately 15%, predominantly from wind generation, and that the number of electric vehicles (EVs) 

deployed is also expected to exceed 1 million. Over the same period it is also forecast that the security of 

supply of the UK power system will be affected due to the increasing imbalance due to increased demand 

(from EVs) and uncontrolled supply (i.e. from wind). This paper studies the use of applying smart EV 

charging strategies to help the power system cope with high penetrations of local renewable generation. 

Key to this work is the recognition that domestic vehicles are parked for typically 95% of the time, hence 

these EVs can be utilised as a ready form of responsive demand. 
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1 Introduction 
By the year 2020 the Department of Energy and 

Climate Change (DECC) has forecast that smart 

meters will be installed in every house in the UK 

enabled by a £500 million incentive plan created 

by Ofgem, the UK electricity and gas market 

regulator, to support smart grid trials carried out 

by Distribution Network Operators (DNOs), [1]. 

Mass rollout of smart meters will be the 

foundation of future smart grid networks and the 

anticipated outcomes are benefits for both energy 

consumers as well as DNOs. In this paper smart 

charging strategies are presented that have been 

developed based on Monte Carlo modelling of 

domestic EV use, itself based on extensive data 

describing UK domestic driving patterns. A 

specific aim of these strategies is to shift the 

timing of EV charging in order to absorb the 

excessive wind generation in the power system. 

The penetration level of wind generation has been 

assumed at 15 per cent of the typical day of month 

for illustration purposes. 

2 Whole System Framework 

Development 
Several studies have been undertaken that apply 

smart charging strategies to enable EVs to support 

renewable generation in the power system.  In [2], 

Bashash et al discuss how a sliding mode control 

strategy for grid-connected vehicles was designed 

to be robust to uncertainties in renewable energy 

generation. Vlachogiannis presented a new 

formulation and solution of probabilistic 

constrained load flow problems, which includes 

renewable generation, in [3]. Results of the load 

flow calculation established the first benchmark 

for the optimal integration of wind power 

generation with EV integration into the power 
systems, which is considered within this paper. In 
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the following section, EV charging and wind 

power profiles are presented and a proposed 

smart charging strategy for these EVs is 

illustrated. 

2.1 Electric Vehicle Charging Profiles 

The electric vehicle charging profiles have been 

generated by a Monte Carlo model based on data 

from the Time of Use UK Survey 2000 (TUS) 

data, [4]. It creates synthesised household vehicle 

movement based on the statistical distributions of 

vehicle arrival and distance driven. Charging 

rates were assumed to be constant powers of 

2.88kW or 7.44kW depending on which of two 

types of common single phase (230V, 50Hz) EV 

charger is used, either 13A or 32A rated. Figure 

1 shows the vehicle charging profiles 100% EV 

deployment in the system (ie all domestic 

vehicles are plug-in EVs). For these results, it is 

further assumed that the charging starts when the 

EV arrives home; sometimes referred to as 

‘dumb’ charging. 

 
(a) 

 
(b) 

Figure 1. Electric vehicle charging profiles for 1,262 

EVs over 24 hours for 7.44kW charging only. (a) 

frequency distribution of charging demand, (b) time-

series EV charging demand profile assuming charging 

on return home. 

2.2 State-of-Charge of EVs 

The state of charge (SOC) is one of the critical 

parameters to evaluate the battery health status and 

also the key factor improving the performance of 

electric vehicle. Knowing the amount of energy 

left in the battery compared with the energy it had 

when it was full gives the user an indication of 

how much longer a battery will continue to 

perform before it needs recharging. In some cases, 

the state of charge information can also be 

obtained by derived from electric vehicles driving 

distances with known driving patterns. Qian and 

his colleges have developed a simple yet effective 

method to derive the SOC information from the 

driving miles, [5-7]. The simplified state-of-charge 

(SOC) model consists of two sub element for 

discharging and charging the battery. The type of 

battery modelled is lithium-ion battery and its 

characteristics can be found in [8]. The SOC value 

can be determined by the formula below: 
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where t1, t2 denote the starting time and ending 

time of a trip, respectively. D is the distance been 

driven, Drange is the range limit of the specific type 

of electric vehicle, [8]. The state-of-charge 

simulation results, shown in Figure 2, provide the 

information of available amount of EV charging 

load to be shifted and has been calculated 

assuming vehicles start charging immediately on 

return to the home (sometimes called dumb 

charging). The red lines indicate the battery is at its 

full capacity, and the blue lines imply unknown 

value for state-of-charge. This is due to the 
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Figure 2. Simulation results of state-of-charge for 100 

EVs throughout 24 hours assuming charging on 

return home. 
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approach of Monte Carlo modelling, which 

simulates the vehicle daily driving patterns. The 

model can calculate the total amount of driving 

time when the vehicle returns home. As 

illustrated in the figure, the amount of time 

required to charge a vehicle battery is 

significantly shorter than the total vehicle 

parking period. 

2.3 Wind Farm Data 

The wind farm data used within this paper has 

been taken from an operational Scottish Power 

owned site consisting of 26 Bonus 600kW stall 

regulated turbines producing a total installed 

(rated) capacity of approximately 15MW [9]. 

The instantaneous penetration of the wind 

generation in the system has been scaled down to 

represent approximately 2.3MW of locally 

installed wind capacity. Figure 3 shows the wind 

generation profiles obtained from April 2005. 

Most of the turbines produced electricity in one 

day of April during daytime and the total energy 

produced is 33.92MWh. 
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(b) 

Figure 3. Wind farm turbines output power for one 

day in April. (a) Individual wind turbine power 

generation from the wind farm, (b) Local wind power 

output through the day. 

3 Charging Strategy to Respond 

to Wind Generation 
In this analysis we will assume that there is 

significant local wind penetration (2.3 MW), so 

that not all this power is absorbed locally by load, 

or can be exported due to network constraints. 

Thus at times of high surplus the local electricity 

cost will be driven towards zero. It is assumed that 

a local electricity price signal is available to EV 

owners and that they individually seek to minimise 

the their EV charging costs consistent with their 

daily EV use pattern, and in particular the time 

parked at home when charging can take place. The 

wind power surplus has been calculated by 

deducting the local (non-EV) domestic load for 

1,262 households. The aggregate behaviour of the 

EV owners will thus be as far as possible to absorb 

wind surplus as shown in Figure 3 for a particular 

example of wind power availability during the day 

examined. The patterns of EV use have been 

generated house by house using an established 

Monte Carlo model, [10], described in more detail 

below. The objective of the system as a whole is to 

enable, as far as possible, for the aggregated 

electric vehicle charging demand to track the 

desired wind power surplus trajectory, in this case 

the measured wind power generation. 

3.1 Constructing EV Load profiles  

Before, constructing EV load to absorb the surplus 

wind power, some constraints must be considered 

which limit the clustering and shifting the EV 

loads. The charging time Tcharging of an EV cannot 

be longer than its parking period Tparking. A simple 

linear electricity price function is assumed that 

gives the cost of vehicle charging as a function of 
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Figure 3. Applied strategy for electric vehicle 

charging as leveraged by surplus-wind price. 



EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium  4 

the surplus wind power in the local power 

system. 

 

  

 

where Pwind is the surplus wind in the system. 

Where the wind surplus exceeds 1 MW, the cost 

of local electricity is assumed to be zero 

reflecting power export constraints. In these 

cases vehicle users can charge their EVs at no 

cost; however, when there is no surplus wind 

locally, the electricity price is fixed at the 

standard charge rate for domestic consumers. 

The charging cost varies for users only when 

there is less than 1 MW surplus wind in the 

system. 

Depending on the duration of vehicle charging, a 

previous continuous charging event will now 

potentially be broken down into several small 

charging events in order to achieve the most cost 

effective way to charging the vehicle as well as 

to satisfy vehicle user’s next journey 

requirement. As results of the cost model used 

for the example considered, the cost of charging 

is free as long as the surplus wind power is 

greater than 1 MW. After each individual vehicle 

charging calculation, the absorbed surplus wind 

and electricity price is recalculated. Results 

indicate that for the example day, vehicle 

charging absorbed 42% of surplus wind and the 

average charging cost per house per day reduces 

from 13.84 pence per units down to 2.08 pence 

per units. 

 

4 Conclusions 
This paper presents the capability of utilising 

electric vehicle charging to regulate surplus wind 

power by implementing an electricity price 

function. Synthesised electric vehicle charging 

profiles are generated by the Monte Carlo model 

and state-of-charge (SOC) information is derived 

from these charging profiles. Real-world wind 

farm power output monitoring data are used to 

create a realistic example daily electricity cost 

function. For users charging their electric 

vehicles at minimum cost, the cost function shifts 

charging to the cheapest electricity time 

consistent with the EV being parked at home, 

and thus absorbs as much surplus wind as 

possible. This enables the power distribution 

network operators to benefit from the reduced 
curtailment of wind and for the users, identifies 

the cheapest way to charge vehicle batteries. In 

this example day, the cost savings to the consumer 

associated with EV charging is considerable. 
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