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Abstract

It has been forecast that by 2020, the penetration of renewable generation in the UK energy mix will reach
approximately 15%, predominantly from wind generation, and that the number of electric vehicles (EVS)
deployed is also expected to exceed 1 million. Over the same period it is also forecast that the security of
supply of the UK power system will be affected due to the increasing imbalance due to increased demand
(from EVs) and uncontrolled supply (i.e. from wind). This paper studies the use of applying smart EV
charging strategies to help the power system cope with high penetrations of local renewable generation.
Key to this work is the recognition that domestic vehicles are parked for typically 95% of the time, hence

these EVs can be utilised as a ready form of responsive demand.
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The penetration level of wind generation has been
assumed at 15 per cent of the typical day of month
for illustration purposes.

1 Introduction

By the year 2020 the Department of Energy and
Climate Change (DECC) has forecast that smart
meters will be installed in every house in the UK

2 Whole System  Framework

enabled by a £500 million incentive plan created
by Ofgem, the UK electricity and gas market
regulator, to support smart grid trials carried out
by Distribution Network Operators (DNOs), [1].
Mass rollout of smart meters will be the
foundation of future smart grid networks and the
anticipated outcomes are benefits for both energy
consumers as well as DNOs. In this paper smart
charging strategies are presented that have been
developed based on Monte Carlo modelling of
domestic EV use, itself based on extensive data
describing UK domestic driving patterns. A
specific aim of these strategies is to shift the
timing of EV charging in order to absorb the
excessive wind generation in the power system.

Development

Several studies have been undertaken that apply
smart charging strategies to enable EVs to support
renewable generation in the power system. In [2],
Bashash et al discuss how a sliding mode control
strategy for grid-connected vehicles was designed
to be robust to uncertainties in renewable energy
generation. Vlachogiannis presented a new
formulation and solution of probabilistic
constrained load flow problems, which includes
renewable generation, in [3]. Results of the load
flow calculation established the first benchmark
for the optimal integration of wind power
generation with EV integration into the power
systems, which is considered within this paper. In
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the following section, EV charging and wind
power profiles are presented and a proposed
smart charging strategy for these EVs is
illustrated.

2.1 Electric Vehicle Charging Profiles

The electric vehicle charging profiles have been
generated by a Monte Carlo model based on data
from the Time of Use UK Survey 2000 (TUS)
data, [4]. It creates synthesised household vehicle
movement based on the statistical distributions of
vehicle arrival and distance driven. Charging
rates were assumed to be constant powers of
2.88kW or 7.44kW depending on which of two
types of common single phase (230V, 50Hz) EV
charger is used, either 13A or 32A rated. Figure
1 shows the vehicle charging profiles 100% EV
deployment in the system (ie all domestic
vehicles are plug-in EVs). For these results, it is
further assumed that the charging starts when the
EV arrives home; sometimes referred to as
‘dumb’ charging.
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Figure 1. Electric vehicle charging profiles for 1,262
EVs over 24 hours for 7.44kW charging only. ()
frequency distribution of charging demand, (b) time-
series EV charging demand profile assuming charging
on return home.

2.2 State-of-Charge of EVs

The state of charge (SOC) is one of the critical
parameters to evaluate the battery health status and
also the key factor improving the performance of
electric vehicle. Knowing the amount of energy
left in the battery compared with the energy it had
when it was full gives the user an indication of
how much longer a battery will continue to
perform before it needs recharging. In some cases,
the state of charge information can also be
obtained by derived from electric vehicles driving
distances with known driving patterns. Qian and
his colleges have developed a simple yet effective
method to derive the SOC information from the
driving miles, [5-7]. The simplified state-of-charge
(SOC) model consists of two sub element for
discharging and charging the battery. The type of
battery modelled is lithium-ion battery and its
characteristics can be found in [8]. The SOC value
can be determined by the formula below:

soc(t,) D
100

SOC(t,) = ( )x100%

range

where t;, t; denote the starting time and ending
time of a trip, respectively. D is the distance been
driven, Drange is the range limit of the specific type
of electric vehicle, [8]. The state-of-charge
simulation results, shown in Figure 2, provide the
information of available amount of EV charging
load to be shifted and has been calculated
assuming vehicles start charging immediately on
return to the home (sometimes called dumb
charging). The red lines indicate the battery is at its
full capacity, and the blue lines imply unknown
value for state-of-charge. This is due to the
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Figure 2. Simulation results of state-of-charge for 100
EVs throughout 24 hours assuming charging on
return home.
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approach of Monte Carlo modelling, which
simulates the vehicle daily driving patterns. The
model can calculate the total amount of driving
time when the wvehicle returns home. As
illustrated in the figure, the amount of time
required to charge a vehicle battery is
significantly shorter than the total vehicle
parking period.

2.3  Wind Farm Data

The wind farm data used within this paper has
been taken from an operational Scottish Power
owned site consisting of 26 Bonus 600kW stall
regulated turbines producing a total installed
(rated) capacity of approximately 15MW [9].
The instantaneous penetration of the wind
generation in the system has been scaled down to
represent approximately 2.3MW of locally
installed wind capacity. Figure 3 shows the wind
generation profiles obtained from April 2005.
Most of the turbines produced electricity in one
day of April during daytime and the total energy
produced is 33.92MWh.
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Figure 3. Wind farm turbines output power for one
day in April. (a) Individual wind turbine power
generation from the wind farm, (b) Local wind power
output through the day.

3 Charging Strategy to Respond
to Wind Generation

In this analysis we will assume that there is
significant local wind penetration (2.3 MW), so
that not all this power is absorbed locally by load,
or can be exported due to network constraints.
Thus at times of high surplus the local electricity
cost will be driven towards zero. It is assumed that
a local electricity price signal is available to EV
owners and that they individually seek to minimise
the their EV charging costs consistent with their
daily EV use pattern, and in particular the time
parked at home when charging can take place. The
wind power surplus has been calculated by
deducting the local (non-EV) domestic load for
1,262 households. The aggregate behaviour of the
EV owners will thus be as far as possible to absorb
wind surplus as shown in Figure 3 for a particular
example of wind power availability during the day
examined. The patterns of EV use have been
generated house by house using an established
Monte Carlo model, [10], described in more detail
below. The objective of the system as a whole is to
enable, as far as possible, for the aggregated
electric vehicle charging demand to track the
desired wind power surplus trajectory, in this case
the measured wind power generation.

3.1 Constructing EV Load profiles

Before, constructing EV load to absorb the surplus
wind power, some constraints must be considered
which limit the clustering and shifting the EV
loads. The charging time Tcharging Of an EV cannot
be longer than its parking period Tparking. A simple
linear electricity price function is assumed that
gives the cost of vehicle charging as a function of
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Figure 3. Applied strategy for electric vehicle
charging as leveraged by surplus-wind price.

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 3



the surplus wind power in the local power
system.
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where Pying is the surplus wind in the system.
Where the wind surplus exceeds 1 MW, the cost
of local electricity is assumed to be zero
reflecting power export constraints. In these
cases vehicle users can charge their EVs at no
cost; however, when there is no surplus wind
locally, the electricity price is fixed at the
standard charge rate for domestic consumers.
The charging cost varies for users only when
there is less than 1 MW surplus wind in the
system.

Depending on the duration of vehicle charging, a
previous continuous charging event will now
potentially be broken down into several small
charging events in order to achieve the most cost
effective way to charging the vehicle as well as
to satisfy vehicle user’s next journey
requirement. As results of the cost model used
for the example considered, the cost of charging
is free as long as the surplus wind power is
greater than 1 MW. After each individual vehicle
charging calculation, the absorbed surplus wind
and electricity price is recalculated. Results
indicate that for the example day, vehicle
charging absorbed 42% of surplus wind and the
average charging cost per house per day reduces
from 13.84 pence per units down to 2.08 pence
per units.

4 Conclusions

This paper presents the capability of utilising
electric vehicle charging to regulate surplus wind
power by implementing an electricity price
function. Synthesised electric vehicle charging
profiles are generated by the Monte Carlo model
and state-of-charge (SOC) information is derived
from these charging profiles. Real-world wind
farm power output monitoring data are used to
create a realistic example daily electricity cost
function. For users charging their electric
vehicles at minimum cost, the cost function shifts
charging to the cheapest electricity time
consistent with the EV being parked at home,
and thus absorbs as much surplus wind as
possible. This enables the power distribution
network operators to benefit from the reduced
curtailment of wind and for the users, identifies

the cheapest way to charge vehicle batteries. In
this example day, the cost savings to the consumer
associated with EV charging is considerable.
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