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Abstract

Global warming and fuel depletion issues demand for more sustainable means of transportation, where
the electric vehicles are gaining prominence on the transportation market perspectives. Fast development
of power electronics and electric vehicles suitable energy storage systems allows the production of high
efficiency electric vehicles. In this paper are discussed the advantages and drawbacks of three different
arrangements for two considered energy sources, batteries and supercapacitors, using a bidirectional DC-
DC converter. Two different control solutions based on proportional-integral controllers and a low-pass
filter are also discussed. The global system performance from the energy storage system perspective is
presented. The presented results were preformed using a 410 seconds sample of the Artemis drive cycle

and Matlab/Simulink environment for the simulations.
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1 Introduction

The electric vehicle (EV) has been receiving
growing attention in the last few years especially
due to the greenhouse gases effects and the global
energy crises. These issues led to a new con-
sciousness towards the transportation sector, one
of the top global pollution contributors due the
massive utilization of internal combustion engine
vehicles. The EV utilization has several advan-
tages but also some important challenges, being
the most important the energy storage and the
related vehicle autonomy. One interesting pos-

sibility, to improve this aspect, is to have more
than one energy source type which combines and
improves both the energy and power system re-
sponses [1, 2, 3]. In this case, one crucial as-
pect is to try to maximize the efficiency of the
multiple energy storage systems (ESS) utiliza-
tion. The hybridization concept of several ESS
relies on the optimized management of the trans-
ferred power between the sources and the EV
powertrain, including between the sources itself
[4, 5, 6]. This is possible by energy management
decisions applied to the controllers designed for
the power electronic converters of each consid-
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ered topology. Therefore, a hybrid energy stor-
age system (HESS) is a combination of multi-
ple ESS merging their energy through a common
stable voltage DC-Link, for optimized load sup-
ply under controlled decisions. These decisions
imply energy management and power flow con-
trol algorithms, which can be more or less com-
plex accordingly to the used HESS and the power
converter topology. Many HESS topologies are
presented in the literature being the passive and
active topologies the most referred which can be
subdivided in other types as discussed in [7, 8, 9].
For EV applications a bidirectional DC-DC con-
verter is commonly used as a two-way power
flow interface device between each ESS and the
DC-Link [10]. In this paper three cases are stud-
ied. The first is designated as battery topology
which uses a power electronics converter, to sta-
bilize the DC-Link voltage, and a battery pack.
The second one uses a direct parallel between
batteries and supercapacitors (SCs) and only one
bidirectional DC-DC converter to the same pur-
pose. This is designated as passive hybrid to-
pology. Finally, the third is designated in the
literature as parallel active hybrid topology, and
is formed by two bidirectional DC-DC conver-
ters parallel linked, each devoted to the consid-
ered ESS (i.e. batteries and SCs), enhancing the
performance facing the passive topology, but in-
creasing the control complexity.

2 Case Study

2.1 Considered Hybrid Energy Storage
System Topologies

In this topic the studied topologies are presented,
where the usage of, at least, one DC-DC con-
verter is crucial. This remains by the necessity of
a constant DC-Link voltage regulation, avoiding
voltage sources fluctuations. The topology pre-
sented in Fig.1, designated as battery topology, is
formed by only one battery pack as ESS, which
is linked to the bidirectional DC-DC converter.
This topology is the most simple. Nevertheless,
major drawbacks for the batteries appear since
the energy requested or provided by the DC-Link
is only supported by the battery pack. This fact
leads to high levels of stress during batteries op-
eration.

DC-Link

. J
E= ]
ats I_

DC-DC
Converter CDC-Link

Figure 1: Battery topology

Relatively to the considered HESS topologies,
this paper mainly focuses on the topologies pre-
sented in Fig.2 and Fig.3. Fig.2 presents an
HESS with passive hybrid topology. This uses
battery and SCs packs as ESS, linked directly
in parallel to one bidirectional DC-DC converter.
This topology forces the battery and SCs packs to
have the same voltage level. This configuration
allows a smoother current variation at the batter-
ies for charge and discharge situations. Never-
theless, as its SoC depends on the voltage which
cannot vary significantly due to the batteries, as
there is no active power management involved,
the energy contribution of each energy source for
the load demand is defined by the internal resis-
tance of the ESS involved. Consequently, this
topology leads to a limited utilization of SCs.
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Figure 2: Passive hybrid topology

The third studied HESS topology, presented in
Fig.3, is a parallel active hybrid topology. This
has one bidirectional DC-DC converter devoted
to each source, which means that the battery and
the SCs packs are managed independently, al-
lowing this way to decouple the power supply
paths. This configuration allows more flexibil-
ity, stability, overall efficiency and performance.
The ESS voltage variation issue is solved and
allows a smoothed current flow, being attained
the best performance and a good cost-simplicity
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trade-off. Some of the disadvantages are related
to the use of a more complex control scheme and
an increment on the semiconductors number for

added source.
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Figure 3: Active hybrid topology

2.2 Control Implementation

The bidirectional DC-DC converter controller for
each considered topology was designed to en-
sure a constant voltage on the DC-Link. The
control block diagram presented in Fig.4 per-
forms the requirements to control the two topolo-
gies presented in Fig.1 and Fig.2. Two cascade
proportional-integral (PI) controllers were used,
one to control the DC-Link voltage and another
to control the ESS current.
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Figure 4: Battery and passive hybrid topologies con-
trol diagram

The applied control was already studied and
tested in previous works [11, 12].

For the topology presented in Fig.3, there will
be one bidirectional DC-DC converter for each
source, being the current I} divided in other two
references. Fig.5 shows the control block dia-
gram used in the topology presented in Fig. 3.
One part of that current will be the contribution
from the batteries and the other part will be the
contribution from the SCs. The sum of the two

current contributions must be equal to the re-
quired ;" in order to maintain a stable DC-Link
voltage.
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Figure 5: Parallel active hybrid topology control dia-
gram

It is always possible to perform some adjust-
ments in terms of cut-off frequency of the low-
pass filter, in order to attribute a more or less ac-
tive role for the batteries mainly in the transient
response for the applied Ppc_ rink. As next pre-
sented in section 3, it is possible to notice that the
considered controllers were properly designed,
being this verified by the correct matching of the
reference and measured currents. Therefore, the
overall system performance is the expected.

2.3 Applied
Strategies

Energy = Management

The energy management is a very important topic
to be considered when HESS topologies are dis-
cussed. In the simplest considered case, pre-
sented in Fig.1, it is only used one ESS (batter-
ies), being all the energy that flows to and from
the DC-Link in the battery pack referential. In
the other two HESS topologies, the energy man-
agement plays a very important role. For the
Fig.2 case, the energy management is done by
the inner-resistance of each source, meaning that,
the energy management depends on the type of
sources used for the hybridization and on its dy-
namic response. This response is defined at the
design stage. For the Fig.3 topology and for the
proposed study, in order to achieve better com-
parison facing the passive topology, a frequency-
based power allocation strategy is used [11]. Ob-
serving Fig.5, there are two different current set-
points ruled by the time constant of a low-pass
filter. For this topology, slightly changes can be
made to go beyond the filtering process and reach
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a more complex energy management, including
intelligent energy management strategies.

3 Simulation Results and Discus-
sion

In order to compare future laboratory tests, the
simulation model was set with the real character-
istics of the ESS, which are presented in Table 1.
To match future workbench tests, lead-acid was
the batteries technology chosen and 100F/2,7V
for the supercapacitors (see Tablel).

Table 1: Considered batteries and SCs specifications

Batteries Super-Capacitors
Nominal voltage [V] 12 48,6
Capacity/Capacitance TAh 55F
# Packs 3 (in series) 2 (in parallel)
Internal resistance [m(2] 120 45
Storage energy [Wh] 84 0.101
Specific Power [Wh/kg] 0,181 6,23
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Figure 6: DC-Link voltage and power in battery topo-

All the further presented results were obtained
using a period from 220 sec to 630 sec of the
Artemis drive cycle. It was also established a
trade-off between the considered energy sources
and the maximum power for each topology. The
achieved results present increments of approxi-
mately 250 W for the Ppc_ 1ink, among the con-
sidered topologies. The maximum power lev-
els were defined taking into account the source
characteristics presented in table 1 and the em-
piric/theoretical knowledge about the three ap-
proached topologies. As it was expected the bat-
tery topology (Fig.1) presents a more stressful
behaviour for the batteries, when compared to the
remained considered topologies. Through Fig.6
and Fig.7 analysis it is possible to verify that the
Ppco_ rink is completely sustained by the battery
pack. Therefore the transient response entails
significant current peaks that are supported only
by the batteries. Negative current values regard
regenerative braking situations.
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Figure 7: Battery’s current, voltage and SoC in bat-
tery topology

However, the main goal is achieved, as power-
train energy demands are fulfilled with a stabi-
lized DC-Link voltage. The maximum required
power is 500 W.
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Figure 8: DC-Link voltage and power in passive to-
pology
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The passive hybrid results, Vpo_rine and
Ppc—rink, presented in Fig.8 demonstrates the
desired voltage stability in the DC-link, even for
the high power peak demand of 800 W. More-
over, through Fig.10 and 9 analysis is verified
that the batteries have a less stressful behavior,
which is a positive aspect for their life time.

Current [A]

220 270 320 370 420 470 520 570 620

Current [A]

- | | | | | | | |
820 270 320 370 420 470 520 570 620
Time [s]

Figure 9: Total current required and sources current
distribution
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Figure 10: DC-Link power profile, sources power dis-
tribution, voltage and SoC in passive topology

This is possible due to the SCs faster response,
being these responsible for sustain high fre-
quency energy demands as can be seen through
Pscs and Igcs behaviour in Fig.10 and 9 respec-
tively. As a result, the power and consequently
current profile for the batteries is smoother, be-
cause this source has a higher internal resistance
when compared to the SCs and, therefore, a
slower response time. Notice that, for the cur-
rent reference of this topology, only I; is repre-

sented because this topology uses just one DC-
DC converter for both sources, meaning that, the
I; is the sum of Ip,s and Igcs. The same hap-
pens with the sources voltage curve, Vp,;s and
Vscoss due to their direct parallel configuration.
The SCs SoC curve is proportional to the square
of voltage, thus, only the voltage is presented.
For the parallel active hybrid topology, it was
once more attained the desired behaviour with
the DC-link power demand fulfilled being the
DC-link voltage maintained stable (see Fig.11).
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Figure 11: DC-Link voltage and power in active to-
pology

In this topology there are two different current
references, one for the batteries and one for the
SCs respectively, which have a good match with
the measured ones, meaning that the PI con-
trollers were well designed. The total current,
1y, is also displayed in order to easily compare
the total needed current and its distribution be-
tween the sources. From the analysis of the con-
troller scheme of this topology and for the pre-
sented behaviour of each source, it is quite easy
to understand that the current references are be-
ing ruled by the low-pass filter. Fig.12 shows that
the SCs are responsible for satisfying the high
frequency current demands. As a consequence
the batteries have a smooth behaviour similar to
the one obtained in the passive hybrid topology,
as presented in Fig.13, but in this case this be-
haviour can be adjusted by changing the cut-off
frequency of the low-pass filter. Therefore, this
aspect represents an increment on the degrees of
freedom of the energy management with this to-

pology.
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Figure 12: Total current required and sources current
distribution in active topology
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Figure 13: DC-Link power profile, sources power dis-
tribution, voltage and SoC in active topology

In all previous presented situations it is possible
to notice that the Ppo_rinr demands are cor-
rectly fulfilled. This is verified by the sources
current evolution, where it is noticed a perfect
match between the measured and the reference
currents, being always achieved a stable DC-
Link voltage. Through Fig.13 analysis, the mea-
sured Pp,ts and Pgcs values sum matches the
Ppc_rink demand, where once more, the de-
sired effect of batteries smoothest behaviour is
achieved being the SCs responsible for satisfying
the transient power demands. Thus Fig.13 also
shows an higher Vg oscillation, mainly caused
by low-pass filter tuning and high Ppco_rink
power when compared to the previous presented
cases. It is also interesting to remark that the fi-
nal SoC'p4s value in these three topologies will

be lower in a decreasing presentation sequence.
However, this difference on the SoCpgys value
for each case is small when compared to the in-
crement of power done for each test. Moreover, it
is important to notice that in the topologies using
SCs, the amount of regenerative energy received
by the batteries is small, as is desired.

4 Conclusion

This paper presents a detailed analysis for three
different hybrid topologies for EV powertrain
purpose, namely battery, passive hybrid and par-
allel active hybrid topology. The required power
electronics, applied controllers and energy man-
agement philosophy for each one of them are also
mentioned in this paper. In order to understand
what is the most suitable topology, simulations
were preformed using a 410 seconds sample of
the Artemis drive cycle and Matlab/Simulink en-
vironment. Therefore, from the achieved re-
sults the parallel active hybrid topology is the
one who provides the best performance and cost-
simplicity trade-off, exploiting the energy in a
more effective way the battery pack (main ESS),
avoiding them to operate in a less advisable re-
gion, which leads to an increase of their life time.
This topology offers major degrees of freedom,
and it is the one that allows the integration of in-
telligent energy management strategies.
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