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Abstract

The paper presents a new approach for state estimation of batteries that is able to overcome most of
the obstacles for the classical Kalman filter approach. The so called particle filter is able to use any
probability density function by applying monte carlo sampling methods for approximating the density
functions for state of charge and state of health defined by the remaining capacity. Thereby the restriction
of the Kalman filter to zero mean Gaussian distributions for all states and errors is overcome. The paper
proves the validity of the approach by testing lithium metal oxide / graphite batteries with different
states of health by applying different current and temperature profiles. A special focus of the testing
is on electric vehicles and photovoltaic applications. For electric vehicles state of health determination
achieves a correctness of 1 % or better and is a bit worse for photovoltaic applications with 3.75 % or
better for ageing state between 100 % and 80 % of initial capacity. During long term testing the algorithm
is validated with a decreasing state of health over time due to accelerated ageing. The state of charge
estimation is always better than 1 % in long term testing and the state of health is correctly tracked over

time.

lithium-ion, stochastic filter, state-of-charge, state-of-health, monte carlo, particle filter

1 Introduction

Renewable energies, which have a fluctuating
power production, and electric vehicles spur in-
terest in electrical storage, especially lithium-ion
batteries, today. For being able to use battery
cells in a senseful manner battery systems need
electrical connections between cells, mechanical
design, cooling, safety devices, electronics and
software. Software and electronics are the ele-
ments which allow a sophisticated usage of the
battery since they provide the possibilities to ac-
tively manage the battery by switches, cooling
and heating or cell balancing to name a few and
by providing the necessary information about er-
rors, voltages, currents, temperatures and the bat-
tery’s state, mainly state of charge and state of
health.

Today sophisticated systems typically estimate
state of health and state of charge by using
Kalman filters. Since Kalman filters use some
particular assumptions about the probability den-

sity functions correctness and applicability are
limited. The approach presented here is applica-
ble for all kinc%)s of batteries and is demonstrated
for batteries with lithium-metal oxide as cathode
and graphite as anode material. The results show
that this approach is able to provide very accurate
information about the batteries’ states in the va-
riety of applications which are tested within the
presented work.

2 Description of the parallel par-
ticle filter

Like the commonly used Kalman filter [1, 2, 3,
4,5, 6, 7, 8], the particle filter also belongs to
the family of recursive Bayesian filtering. While
the Kalman filter for the sake of analytical cal-
culations employs only Gaussian distributions,
the different variants of particle filtering offer the
possibility to deal with any possible distribution
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Figure 1: Bayesian network under the assumption of
a Markov chain.
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by employing monte carlo sampling methods.

2.1 Recursive Bayesian filtering

A recursive Bayesian filter is an algorithm for
estimating the state of dynamic systems online.
The filter takes the noise during the measure-
ments into account for estimating the state. All
quantities are interpreted as random variables.
For each point in time there exist three quanti-
ties:

Quantity X;
This is the state of the system at time t. The
state cannot directly be observed or mea-
sured. The state is therefore the quantity
which the filter shall estimate.

Quantity U,
The quantity U; has an influence on the
state of the system and may be observed and
measured.

Quantity 7,
The quantity Z; is a measurable quantity of
the system and may be interpreted as an out-

put. One is able to infer conclusions about
X; from Z;.

Under the assumption of a Markov chain [9] the
Bayesian network can be displayed as in figure 1.
The Markov chain property assumes that a sys-
tem is completely described by its state at time t
and therefore independent from all states, inputs
and outputs of the past. Inputs are independent
from the inputs of the past and outputs are only
dependent on the current state.

Often those conditions are not strictly kept. But
as for the Kalman filter nevertheless, the interde-
pendences can partly be substracted and are then
insignificant enough for gaining practically use-
ful results.

What one aims at is estimating P(x¢|z1.¢, u1.¢—1)
which is a probability density function for be-
ing in a certain state x; under the precondition
of given values for the inputs up to time t-1 and
for the outputs up to time t.

Applying Bayes’ theorem [9] one gets the fol-
lowing equation with the denominator written as

7.

ry) = P(x4| 214, u1:4-1)
= P(z|x¢, 21:0-1, u1:4-1)
P(w¢|z1:4-1,ur:e-1)
P(zt|z1:4-1, ur:e-1)
=n""P(z|2e, 214-1, w1i-1)

P(w¢|z1:4-1,ur:e-1) (D)

With marginalizing the equation over x;_; and
keeping in mind that only the influences of u;—
and z; and not the former values have an effect
on the current state, we receive:

P(xy) =0~ P(z|z)

'/P(xtﬂﬁt—l,ut—l) - P(xy—1)dxi—q
()

The probabilty density function P(x;—;) de-
scribes the state of the time step before and there-
fore also all the accumulated information until
the last time step. The function P(x¢|x¢—1, ui—1)
represents the influence of the inputs u;_; on the
progression of the system from state x;_1 to state
x¢. The function P(z;|z;) represents the proba-
bility for observing the measurement 2; given the
state xy.

2.2 Theory of the particle filter

The particle filter is a special filter introduced in
[9, 10], which employs a monte carlo method for
representing the probabilty density function. The
distribution is represented by a set of samples,
also called particles, therefore being able to use
any probabilty dens1ty function for approximat-
ing the state in question if only the number of
samples is high enou% If the probability of a
certain value state is high, there are many sam-
ples close to this value. If the probability is low
there are only a few or none. A possible imple-
mentation is shortly descibed below:

State transition
For estimating the set of samples rep-
resenting the probability density function
P(x¢|xg—1,us—1) for each sample the influ-
ence of the input u; 1 is calculated with
a process noise drawn from a distribu-
tion function representing the process noise.
Over time there will be an increase of the
variance, later on called diffusion, blurring
the result of the estimation. State transition
is equal to the integral in equation 2.

Weighting
For reacting on the diffusion, the mea-
surement z; resulting from the state x; is
taken into account. The probabilty function
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P(z¢|z¢) is used for assigning each sample

sgk) a specific weight w,gk). Afterwards the

generated samples are normalised, so one
has the following equation:

N
S =1 3)
k=1

Theoretically this would already be enough,
especially if very large sample lots were em-
{)loyed But since the sets are not infinitely
arge, there will be more and more samples
with very little weight or even without any
over time, making most samples not rep-
resenting the actual distribution in the end.
Therefore a resampling step is introduced.

Resampling

When employing sampling algorithms one
draws new samples from a probability dis-
tribution described by a probability den-
sity function or by a lot of samples. In
[9] several methods are introduced for sam-
pling from a distribution. By resampling
new samples are generated which all have
the same weight making all samples signifi-
cant and replace the old samples describing
the probability density function more accu-
rately.

For making the algorithm work the probability
density functions from which process noise and
weights are drawn must be reasonably tuned,
since too small noise may lead to sample impov-
erishment which might lead to a collapsing parti-
cle filter [11].

2.3 Parallel particle filter for estimating
state of charge and state of health

For a battery one needs at least two states for
describing the state of a battery cell in a sense-
ful manner: the state of charge and the state
of health, which is the remaining capacity di-
vided by the rated c Facity. Within the parti-
cle filter the number of particles Nggmpies €Xpo-
nentially increases with the number of states s:
N = n®. nrepresents the number of samples per
state. Therefore having two states does not dou-
ble the computational effort but increases it expo-
nentially. Having 100 samples per state does not
mean 100 but 10000 overall samples. Therefore
analogous to the Kalman filter approach intro-
duced by [2] not one single particle filter is pro-
posed, but two filters working in parallel bringing
down the computational cost significantly, since
the number of particles only increases linearly
for parallel filters: N = s - n. The whole con-
cept is illustrated in figure 2.

The particle filter for state of charge estima-
tion employs a process model which basically
performs ampere hour counting and a measure-
ment model which calculates the battery’s termi-
nal voltage Vj.4. Since self discharge and other
coulombic losses are very low for all lithium-ion

State of charge estimation State of health estimation

dr
80C=50C, + ¢ j o I SOH =SOH
SOH

Id:
Ve =Vo(SOC.T)+ R (SOC.T. ), ,, SO F i
¢, [ asocd:
]

Figure 2: Two parallel particle filters. The left parti-
cle filter determines the state of charge of the battery,
the right particle filter the state of health, which is the
remaining capacity divided by the nominal capacity.
The state of charge filter takes the other filter’s output
as a parameter to its process model, the state of health
filter takes the output of the state of charge filter as its
measurement value for the measurement process.

batteries the equation for ampere hour counting
is:

f Tpauedt
SOH - C,

The measurement model for calculating the bat-
tery’s terminal voltage V., may be any model
reproducing the electrical behaviour. Mostly the
algorithms run on small microcontrollers with
many more tasks which are also more critical
than estimating the battery’s state and therefore
will have a higher priority, too. Since the filter
is able to handle model errors statistically by as-
suming a suitable probability density function for
the calculated battery’s terminal voltage a qua-
sistationary battery model is chosen. It consists
of a voltage source representing the open circuit
voltage and an ohmic resistance representing the
ohmic losses during a quasistationary operation:

SOC = SOCy + 4

%att = ‘/O(SOC) + R’L(SOC7 Ta I) : Ibatt (5)

Dynamics are not captured by the model, but the
influence of temperature and state of charge are
taken into account which is very important for
calculating a terminal voltage close to the real
one in average. In real applications dynamics
only influence the battery’s behaviour in its short
term while temperature and state of charge have
a major impact for longer terms. Thus the influ-
ences of the dynamics are only regarded stochas-
tically by the particle filter.

After estimating the state of charge the quantity
is passed to the state of health filter and then it is
used as a measurement value. The state of health
filter assumes within the process model that the
state of health of the battery remains the same:

Cbatt
Cr

SOH(to) = SOH(t) = (6)
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Chatt 1s the actual battery capacity while C, is the
rated battery capacity.

For the measurement model the basic assumption
is that the state of charge estimation still works
correctly though the estimated capacity might be
wrong. The open circuit voltage of the battery
in respect to the state of charge shall not change
with the ageing process of the battery as is shown
in [2]. The measurement model then compares
the state of charge estimation between two points
in time with the amount of charge flowing in and
out of the battery in the same time interval:

to
TpopedT
SOH = ft; batt )
C, [2 dSOCdr

For being able to detect the right state of health
it is therefore necessary that the measurement
model of the state of charge filter has signifi-
cant influence on the state of charge determina-
tion. Otherwise ampere hour counting would be
compared resulting in no change of the estimated
capacity.

2.4 Implementation of the state of
charge filter

First, the state of charge filter is initialized. Since
the actual state of charge is generally unkown all
samples are equally distributed over the complete
state of charge range [0, 1] resulting in a medium
state of charge of about 0.5. Within the process
model for each sample the current flowing into

the battery is integrated over time and a noise € is
added:

k k
Sg )1 = Sg )
(lbatt ESOC)At

o =L N
(8)

The noise is sampled from a Gaussian distribu-
tion with the variance o2 and the mean s

exp{— o (x—)?} ()

1
V2ro?

The method for drawing noise from a gaus-
sian distribution was implemented by using the
Marsaglia-Polar method. But the particle filter
also enables using any other possible distribu-
tion.

After the prediction of the samples taking the in-
puts into account they are compared to the mea-
surement values via a model for the terminal volt-
age. Equation 5 determines the terminal voltage
and this value is compared to the measured volt-
age. A Cauchy-Lorentz distribution which is a
special case of the Student-t distribution gives a
value for the probability that the sample 1s cor-
rect.

s
> weights| k|=1
b

| weights[1] | weights[2] | weights[3] | weights[4] | weights[5] |
I T T T T 1

samples[1] samples[2] samples[3] samples[4]

samples[5] ‘

N R

i

Figure 3: Low variance filtering for resampling from
a sample lot of weighted samples.

A
p(.’E) - T 72 4 ($ _ xO)Q (10)

The distribution is parameterised by I, v and xg;
1 is the scaling factor for the height, ~ is the scal-
ing factor for the width and z 1s the position of
the distribution which is set equal to the measure-
ment value. With having now pairs consisting
of samples and their probabilities or weights re-
sampling methods need to be used. Due to the
easy implementability and the quick calculation
times low variance filtering is used for generat-
ing a new set of samples [12]. First of all the
probabilities or weights are normalised:

N
nggc — (11)
k=0

The probabilities are than added to a long line as
depicted in figure 3. Then a starting value within

the interval [0, 4] is drawn randomly. After-
wards one goes through the sample lot with steps
of size % and picks exactly the same amount of

samples. Samples with small weight are proba-
bly overgone and samples of bigger weight might
be drawn several times.

2.5 Implementation of the state of health
filter

The state of health filter works accordingly, the
only difference being that the process model as-
sumes a constant capacity and the measurement
model compares state of charge differences with
the charge flowing in and out of the battery.

The process model therefore simply adds a cer-
tain € to each sample:

Ciampie(t +1)[k] =
Csample t)[k] + eson Vk=1,..,N (12)

The noise € is drawn from a Gaussian distribution
with a low variance.

Between two points in time, ¢; and t2, the mea-
surement model first integrates the current flow-
ing in and out of the battery, calculating an
amount of charge () by which the battery has
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been charged or discharged. For each of the sam-
ples representing the capacity of the battery an
expected change in state of charge is calculated
as a next step:

A‘SvOC(e:):pected [k] -

Q

. Vk=1,..,.N (13)
Csample[k] (

This value is compared to the change in value de-
termined by the state of charge filter in the time
between t; and ¢5. The difference is used as the
parameter xg of the Cauchy-Lorentz distribution
1n equation 10.

With this distribution a probability/weight is as-
signed to each sample for the resampling step,
which generates the new sample lot describing
the capacity. For determining the state of health
the average of all capacity samples is calculated
and normalized by the rated capacity.

2.6 Comparison with Kalman filter and
computational effort

By using the particle filter approach, one solves
the problem of a fixed distrigution posed by the
Kalman filter but one must take into account that
the solution is non optimal due to the limited
set of samples. The run-time of the particle fil-
ter increases linearly with the amount of sam-
ples. With a reasonable choice for the amount
of states and samples and low computing meth-
ods for sampling and resampling the need for re-
sources is reasonable. Therefore the algorithm
runs very well on a microcontroller like it is used
on many common battery management systems.

2.7 Notes on validation

For validating the method for state determina-
tion several sets of measurement data were gen-
erated. These data sets came from validation pro-
files which represent different applications.

On the one hand there is a profile which describes
the current behaviour of an electric vehicle (see
upper diagramme in figure 4). This validation
profile is a combination of four official driving
profiles. A European profile (NEDC), the Urban
Dynometer Driving Schedule (UDDS), the Fed-
eral Test Procedure (FTP) and the Speed Correc-
tion Driving Schedule (SCDS). All of them show
strong dynamics and high currents.

On the other hand there is a profile which de-
scribes the current behaviour of a photovoltaic
system (see lower diagramme in figure 4). This
validation profile was developed by Fraunhofer
ISE and shows lower dynamics and lower cur-
rents. Nevertheless, the validation profile passes
through a wide range of state of charge.

Based on these two profiles more validation pro-
files were created. For investigating the per-
formance of the method with various tempera-
tures the electric vehicle profile (EV profile) was
combined with a temperature profile (for results

Gurrent curve of EV-profile

Current as a functign pf time ——

Ll| i

t[A]
=
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£ & K A&
——
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Time [h]

Current curve of PV-profile

T T T T
Current as a function of time ——

ent[A]

Curr

L L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Time [h]

Figure 4: Electric vehicle profile (top) and photo-
voltaic profile (bottom) are depicted; the EV profile
shows strong dynamics and high currents but with
often and long zero current phases, a typical profile
for battery systems in photovoltaic applications shows
lower dynamics and lower currents but passes through
a wide range of state of charge and has only short zero
current phases.

see figure 6). For studying the long term be-
haviour of the method with decreasing state of
health parts of the electric vehicle profile were
performed periodically (for results see figure 7).

2.8 Parameterisation of filters

During implementation both filters were param-
eterized. The following parameters had to be de-
termined.

Variance o and mean p of Gaussian noise
’ginction in process model of state of charge
ter:
The noise egoc should represent the mea-
surement error of the current measurement.
An error with zero mean (¢ = 0) was as-
sumed. Due to a highly accurate current
measurement the variance o might be very
low. A small process noise, however, leads
to “sample impoverishment” [11] which
must be avoided. Because of that, the
variance o2 was overestimated intention-
ally which is called “jittering” [13]. There-
fore, the Gaussian noise function parame-

ters were set to ;u = 0 and 0% = 0.25 A,

Variance o2 and mean p of Gaussian noise
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function in process model of state of health
filter:

The noise esopy should represent the er-
ror of the assumption SOH; Ay = SOH;.
Again, an error with zero mean (u = 0)

was assumed. The variance o? was diffi-
cult to quantify because no measureable er-
rors could be taken into account. Finally,

the variance o2 was chosen such that ”sam-
ple impoverishment” is avoided. The Gaus-
sian noise parameters were set to i = 0 and

02=25-10"9.

Scaling parameter v of Cauchy-Lorentz distri-

bution in measurement model of state of
charge filter:
The scaling parameter -~ should define
an optimal Cauchy-Lorentz distribution for
computing the weight of each sample.
Therefore, a parameter search was per-
formed. Various parameters of the inter-
val [0, 1] were tested in an automated man-
ner. Finally, the mean squared error of state
of charge estimation and reference state of
charge was analysed when ¢ > 2h (ap-
proximate transient time). Again, to pre-
vent “overfitting” four different data pro-
files were used and other data sets were
used for validation. To minimize stochas-
tic influences every parameter was tested
eight times. The results are shown in fig-
ure 5. At last, the scaling parameter s of
the Cauchy-Lorentz distribution in the mea-
surement model of state of charge filter was
set to 0.125 V. The scaling parameter [ is
set to 1V as the height of the distribution is
not relevant.

Scaling parameter v of Cauchy-Lorentz distri-

bution in measurement model of state of
health filter:
Again, the scaling parameter «y should de-
fine an optimal Cauchy-Lorentz distribution
for computing the weight of each sample.
Therefore, a parameter search tested vari-
ous parameters in the interval [0, 0.5]. The
mean squared error of state of health estima-
tion and reference state of health was anal-
ysed when ¢t > 20h due to the fact that
the state of health filter needs more transient
time than the state of charge filter. To pre-
vent ~overfitting” four different data profiles
were used, too. The scaling parameter s of
the Cauchy-Lorentz distribution in the mea-
surement model of the state of health filter
was set to 0.01. The scaling parameter [ ist
set to 1 as it is not relevant.

Time interval between two resampling steps in
the state of charge filter:
The resampling step was introduced to
avoid “particle degeneracy”, which means
that many particles have a probabilty of
close to zero in the end. The resampling
step is performed periodically. In the state
of charge filter the resampling step is per-
formed every six minutes.

Parameter search for optimal weighting function

T T
Mean and standard deviation ~———

Tt
o
MNIHL
V&HEH i

%%wﬁﬁm&

Mean and standard deviation

. . . .
0 02 0.4 06 08 1
Scale Parameter of Cauchy distribution (HWHM)

Figure 5: Results of the parameter search for scal-
ing parameter s of Cauchy-Lorentz distribution; mean
and standard deviation of mean squared error be-
tween state of charge estimation and reference state
of charge as a function of scaling parameter s.

Time interval between two resampling steps in
the state of health filter.
Again, the resampling step is performed
periodically. This time, the resam-
pling step is performed every 21 minutes,
tresampling = 0.35 h. In the state of health

filter the resampling step is crucial for esti-
mating the state of health. This results from
the fact that the process model does not take
measurements into account. Because of that
only the measurement model is responsi-
ble to estimate the state of health. Two
additional conditions were implemented to
guarantee that the resampling step is only
performed when the input data is reliable.
Because of that it must apply: 0.002 <

[frdsocdr <o.1.

t2

3 Validation

In section 2.7 several validation profiles are in-
troduced. For validation purposes the method es-
timated the state of charge and state of health for
these reference data sets.

For state of charge estimation an average and a
maximum error was calculated for the several
validation profiles:

FSOC,average =
1 M
o D ISOCeu(i) — SOCuer (i) (14)
=0
FSOC’,ma:cimum =
max(|SOCes(i) = SOCrer (1)) (15)

For pulse testing only the time between 15h and
50h was analysed because of the lack for pos-
sible recalibration of the reference. For the other
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data sets recalibrated reference data was used and
the error was determined for any data points after
two hours when the algorithm had enough time
to find the correct state of charge value. For state
of health estimation the average and maximum
error after 40 h was determined, since the algo-
rithm needs more time to adjust correctly:

FSOH,average =
1 M
i > " |SOHcq(i) — SOH, | (16)
1=0

FSOH,mazimum =
max(|SOHeg (i) — SOH,cf|) (17)

For the long term validation only the specific
moments in time, when a capacity test was per-
formed, were analysed.

3.1 Electric vehicle profile

Table 1 shows results for batteries with states of
health of 0.94, 0.89 and 0.80 at 20 °C. Mean er-
ror is highest for the newest battery with 1.25 %
while 1% or less for the other two batteries.
Maximum error is highest for the battery at 0.89
of state of health. Overall errors are really low
for the state of charge and the algorithm works
reliably.

For state of health errors are even better in
this applications, with the highest mean error of
1.02 % for the 0.8 state of health battery and the
highest maximum error of 2.9 % for the 0.89 state
of health battery.

3.2 Photovoltaic profile

Table 1 shows results for batteries with states of
health of 1.00, 0.94, 0.89 and 0.80. The state of
charge estimation is more difficult than for the
electric vehicle. Highest mean and maximum
error occur for the newest battery with 3.9 %
and 8.9 % of error, being best for the 0.89 state
of health battery with 2.88 % and 4.5 % respec-
tively.

For state of health estimation results are by far
worst for the newest battery with 3.75 % of mean
error and 5.9 % of maximum error, too. It is the
lowest for the 0.89 state of health battery result-
ing in 0.79 % mean error and 1.3 % of maximum
error.

3.3 Temperature dependency

The results of state of charge estimation when us-
ing a data set based on the electric vehicle pro-
file with various temperature are shown in figure
6. Mean error of state of charge estimation is
about 1.5 %. The maximum error is about 6.2 %.
The errors are slightly higher than for the fixed
temperature, but reliable. The profile put special
stress on the battery due to steep ambient temper-
ature gradients which in most applications do not

Temperature [C]

. . . . .
0 10 20 30 40 50 60
Time [h]

Estimation of State of Charge

SOC esimated by paricle fler
Reference based on Ampere hour countin
Reference based on Ampere hour counting with open circit voltage correction

State of Charge

. . . . .
0 10 20 30 40 50 60
Timelh]

Figure 6: Temperature as a function of time is on top,
state of charge estimation and references at the bot-
tom; mean error of state of charge estimation is be-
low 2 %. Since the profile goes for more than 140 h,
the accumulated error of the current measurement of
the BaSyTec measurement device is already rather
high. Therefore the reference is recalibrated after long
rest phases by the the open circuit voltage of the bat-
tery. The sudden changes in the recalibrated reference
state of charge come from the recalibration after three
hours of rest.

occur. With a thermal model accuracy could be
enhanced.

In real applications accuracy will probably be
higher in most cases.

3.4 Long term validation

The results of state estimation when using a long
term data set based on parts of the electric vehicle

rofile with decreasing state of health are shown
in figure 7. Mean error of state of charge estima-
tion is about 0.8 %. Maximum error of state of
charge estimation is about 3.5 %. State of health
errors are below 1.9 % during the long term tests.

3.5 Pulse profile

For very small changes in the state of charge
detecting these changes is more difficult which
makes it more difficult for the state of health fil-
ter to rely on its measurement model. On the
other hand errors in the current measurement es-
pecially offset errors have a bigger impact on the
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Figure 7: State of health estimation and reference for
long term testing at 40 °C ambient temperature. The
blue crosses show the capacity determined in regular
intervals by a regular capacity test.

accuracy of the state of health determination.

To clarity if the effects one expects from theory
also occur in practical operation pulse testing of
batteries was used. The results are displayed in
table 1 under the section pulse profile. The re-
sults show that the state o? charge range for this
kind of battery does not have a significant im-
pact due to the steep and over a wide range quite
linear open circuit voltage characteristics. What
has a significant impact 1s the state of charge dif-
ference applied in the pulsed current profiles. In
principal the algorithm can cope very well with
small ranges since the state of charge estimation
works accurately, but with smaller state of charge
difference the offset of the current measurement
gains more influence and increases the error. For
ASoC = 0.005 the filter has got an error in state
of health estimation at least two times as high as
for the tests with bigger ASoC.

4 Conclusions

This paper introduces a new method for state of
charge and state of health estimation, the par-
ticle filter. For different applications, changing
temperatures, in long term testing and synthetic
pulse profiles the method is validated with very
good results for electric vehicle applications and
good results for photovoltaic applications. First
hand this is a surprise due to the higher dy-
namics of the electric vehicle profile. But the
rest phases are longer and there are full charges,
which makes it easier for the filter to make good
estimations. Overall state of health estimation is
more robust than state of charge estimation, for
which higher deviations occur.

Even for low state of charge swings the particle
filter is able to determine the state of health cor-
rectly making it a suitable method even for micro
cycling applications.

Overall the framework delivers a new basis for
overcoming restrictions of the Kalman filter re-
garding the assumptions about probability distri-
butions. On the other hand, the computational ef-

fort is still low enough to be embedded in small
and low cost microcontrollers.

The method is currently being adapted for use
with lithium iron phosphate based batteries and
first results provide good results for both state of
charge and state of health estimation.

The work was funded by the German Ministry of
Education and Research (BMBF).

5 Abbreviations

X State of the system at time ¢

U; Influence on the state of the system at time ¢
Z; Measurable quantity of the system at time ¢
P(a) Probability of a

SOC/SoC State of Charge

SOH/SoH State of Health

C. Rated capacity of the battery

N/Ngsamples Number of particles

s Number of states

n Number of particles per state

Fraunhofer ISE Fraunhofer Institute for Solar
Energy Systems

EV profile Electric vehicle profile
PV profile Photovoltaic profile
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Table 1: Results for the state of charge and state of health estimation for all validation profiles in this paper. For
each battery its state of health SoH is indicated in the first column, for the long term tests it is the state of health
at the beginning of the testing. For pulse testing two additional columns are introduced: the maximum state of
charge SoC during pulse testing and the ASoC which indicates the depth of discharge. The results with the mean
and maximum errors are indicated in the four columns on the right side. State of Charge: (1) Recalibrated ampere
hour counting as a reference; mean error and maximum error after two hours. (2) Ampere hour counting as a
reference; mean error and maximum error between 15 and 50 hours. State of Health: Capacity test as a reference;

mean error and maximum error after 40 hours.

State of Charge State of Health
mean | maximum | mean | maximum

Profile SoH | SoC | ASoC Error Error Error Error
EV-profile (1) 0.94 - - 1.25% 4.2% 0.71% 1.4%
EV-profile (1) 0.89 - - 1.00% 4.8% 0.85% 2.9%
EV-profile (1) 0.80 - - 0.82% 3.9% 1.02% 2.7%
PV-profile (1) 1.00 - - 3.90% 8.9% 3.75% 5.9%
PV-profile (1) 0.94 - - 2.88% 5.8% 1.72% 2.9%
PV-profile (1) 0.89 - - 2.88% 4.5% 0.79% 1.3%
PV-profile (1) 0.80 - - 3.15% 6.7% 0.93% 4.4%
Pulse profile (2) 0.96 | 0.80 0.01 0.93% 2.0% 2.06% 4.8%
Pulse profile (2) 0.96 | 0.50 0.01 0.39% 1.0% 5.83% 6.9%
Pulse profile (2) 0.96 | 0.20 0.01 0.56% 1.4% 6.19% 7.1%
Pulse profile (2) 091 | 0.80 0.01 1.41% 2.2% 2.75% 4.0%
Pulse profile (2) 091 | 0.50 0.02 1.36% 1.8% 0.99% 1.9%
Pulse profile (2) 0.91 | 0.50 0.01 0.44% 1.2% 3.06% 3.8%
Pulse profile (2) 091 | 0.50 | 0.005 0.61% 1.4% 6.27% 7.0%
Pulse profile (2) 091 | 0.20 0.01 0.68% 1.5% 1.34% 2.0%
Long-term profile (1) 0.91 - - 0.58% 7.4% 1.88% 4.2%
Long-term profile (1) 0.96 - - 0.77% 3.5% 1.27% 3.5%
Temp. dep. profile (1) || 1.00 1.59% 6.2% 2.53% 3.2%
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