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Abstract

This work analyses potential energy purchase strategies for an ICT-enabled and active charge manage-
ment of a large fleet of electric vehicles in order to minimize applicable costs for the purchase of energy
at Day-Ahead or Intraday spot markets. The optimization potential for energy purchase is leveraged
through a Markovian electric vehicle charging model and on the basis of empirical data for mobility
patterns of vehicles as well as actual spot market data. Two scenarios with different charging character-
istics of the EV fleet are investigated. In a commuter scenario, where the fleet of EVs charges during
daytime (7:00AM-3:30PM), we found that volatility in spot market prices from Q4/2011 - Q3/2012 may
have allowed for cost optimization of up to 13% compared to entirely unmanaged charging. In a parcel
delivery service scenario, the fleet of EVs charges during nighttime (6:00PM-6:00AM), which allows for
cost optimization of up to 34% based on the same period for spot market data.
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1 Introduction
In this work it is evaluated what value could be
gained from an ICT-enabled, active charge man-
agement for a fleet of EVs considering the energy
purchase at Day-Ahead and Intraday spot mar-
kets. We assume a large fleet of EVs being un-
der contract of one Fleet Manager, who is at the
same time the E-Mobility Provider (EMP) autho-
rizing the charging processes of the EVs within
the fleet. Depending on the fleet’s underlying
mobility patterns, it is in the interest of the EMP
to:

1. Satisfy his customers by providing a good
Quality of Service (QoS),

2. Control charging processes respecting ac-
tual grid constraints in order to ensure long-
time system robustness,

3. Optimize his energy purchase strategy
minimizing applicable energy consumption
costs.

The underlying system model for this work is in-
troduced in section 2. In order to derive realistic
demand profiles for a whole fleet of EVs, it is
necessary to study their mobility patterns in de-
tail. Hence in section 3 we introduce two sce-
narios based on empirical and statistically rel-
evant data, which are the basis for our evalua-
tion. In section 4 we introduce our discrete non-
homogeneous Markovian EV charging model,
which allows us to calculate EV demand pro-
files over time considering the impact of variable
charging policies, e.g. through Service Level
Agreements (SLAs), as well as respecting local
grid constraints. In section 5 we discuss our
evaluation results focusing on the Spot Market,
which consists of the Intraday and Day-Ahead
markets. In addition, requirements for participa-
tion at the control reserve market including Pri-
mary and Secondary Control Reserve Energy and
the Minute Reserve are considered. We summa-
rize our findings and provide an outlook on fur-
ther research in the conclusions in section 6.
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2 System Model Overview

The system model for this work embodies three
main entities: An EV Fleet Manager, a Broker
and the Energy Market Platforms. From a market
perspective, the Fleet Manager is a large energy
consumer who tries to optimize his energy pur-
chase through a broker who directly participates
at the market. An overview of this system model
is shown in Figure 1.
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Figure 1: System Overview

For optimization of his purchase strategy the
Fleet Manager needs detailed knowledge about
the underlying fleet characteristics including its
mobility patterns, EV charging parameters as
well as grid limitations due to constrained ca-
pacity of Grid Connection Points (GCP). Tech-
nically this is implemented by extending already
existing telemetry interfaces to the EV for the
purpose of monitoring and controlling a charge
process. Based upon this input data, the Fleet
Manager can derive forecasts of the amount of
energy needed at certain time intervals respect-
ing local grid restrictions. The demand forecasts
in this model heavily depend on average driven
distances by the fleet participants and the time
frame when EVs are connected to the grid (re-
ferred to as ”connection time”). In this work, this
data is based upon scenarios being defined in de-
tail in section 3. The grid restrictions are defined
by means of each GCP’s capacity, which in turn
is assumed as a constant constraint per GCP, sim-
ilar to typical contracts for GCPs.
Taking into account the grid restrictions and the
overall demand forecast for the fleet, the Fleet
Management derives charging schedules over the
connection time for the set of EVs. The degree of
freedom for the charging schedules is adjustable
through a QoS criteria which may be defined by
the probability at which the entire EV fleet is suc-
cessfully charged. The fleet’s overall demand
including an indication of its flexibility is for-
warded to the Broker, who in turn takes part in
the Energy Market (e.g. EPEX spot market) and
tries to purchase the needed amount of energy for
an optimal price.

3 Scenarios under Study
The evaluation scenarios in this work are
based on large commercial/company fleet setups,
where the charging of EVs is controlled by a
Fleet Manager. In order to evaluate the impact of
time at which charging takes place, two scenar-
ios are investigated with varying time windows
for charging:

• Commuter Daytime Scenario (7:00AM-
3:30PM on weekdays, excluding weekends
& holidays)

• Parcel Delivery Nighttime Scenario
(6:00PM-6:00AM on weekdays, 6:00PM
Friday-6:00AM Monday on weekends,
holidays are handled according for the state
North Rhine Westfalia in Germany)

Due to limited capacity of the Grid Connection
Point (GCP), only a limited number of concur-
rently charging EVs are allowed per GCP which
in turn results in the need for distributing the in-
dividual EV charging processes throughout the
available connection time. Furthermore the Fleet
Manager’s interest is to distribute all charging
processes in a way that results in minimum en-
ergy purchase costs. Hence, the following two
sections describe in more detail how the result-
ing energy demand of the fleet and its energy pur-
chase costs are derived in this work.

3.1 Estimation of Fleet Demand
A Fleet Manager may directly estimate and de-
rive the energy demand of an entire fleet based
upon the knowledge of nominal EV-specific con-
sumption data and the average trip lengths for all
participants of the fleet. In case of the commuter
daytime scenario the information on average trip
lengths were gathered from results of a repre-
sentative traffic study [1], which was conducted
in Germany during the year 2002. The evalua-
tion of the study was limited to EV-friendly com-
muter traveling distances resulting in the distri-
bution function according to Figure 2. In case of
the parcel delivery nighttime scenario the distri-
bution function was defined by the authors corre-
sponding to an estimated parcel service use case
also shown in Figure 2.
For simplicity reasons we assume a homoge-
neous fleet setup with the same type of EV for
the entire fleet. Its specification data on driving
range, battery capacity and driving consumption
are derived as average from an exemplary set of
available EVs shown in table 1. The average val-
ues are concluded as parametrization for the re-
mainder of this work. In order to estimate the
State of Charge (SoC) at arrival time the distri-
bution function on travel distances according to
Figure 2 is applied to all EVs within the fleet for
both scenarios. From these results and the EV
parametrization according to table 1 the expected
demand during connection time (commuter day-
time / parcel delivery nighttime scenario) can be
derived for the entire fleet.
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EV Model Nominal
Max.
Distance
[km]

Nominal
Battery
Capacity
[kWh]

Nominal
Consump.

[
kWh

100km
]

Renault Kan-
goo Z.E.

170 22 12.9

Fluence Z.E. 185 22 11.9
Zoe Z.E. 160 22 13.8
Smart Fortwo 145 17.6 12.1
Ion 150 16 10.7
C-Zero 150 16 10.7
Leaf 175 22 12.6
I-Miev 150 16 10.7

Average 160.6 19.2 11.9

Table 1: EV Specification Data and derived input for
EV Charging Model

Due to the assumption on rather homogeneous
fleet mobility characteristics in terms of arrival
and departure times, the connection time is de-
fined by contract and therefore set by the Fleet
Manager for the entire fleet. The connection time
indicates in which time frame price optimized
charging is supported by the underlying service
of the Fleet Manager and the Broker. Hence, it
defines the time frame where a large subset of
the fleet is connected with a certain probability.
It may be adapted from time to time by the Fleet
Manager, who continuously observes the fleet’s
mobility characteristics. According to this def-
inition the connection time does not necessarily
refer to the actual arrival and departure time for
each individual EV.
Other than varying traveling distance distribu-
tion functions for both scenarios, the commuter
daytime scenario also implements a scenario-
specific Service Level Agreement (SLA) defin-
ing that each EV with less than 50% SoC at plug-
in time will start charging immediately until at
least 50% SoC is reached. The Fleet Manager
has to schedule charging processes accordingly
and at the same time, while implementing this
SLA, has to ensure that the nominated grid limi-
tations are not violated. Continuation of charging
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Figure 2: Travel Distance Distribution for both Sce-
narios

Figure 3: EPEX Spot Mean Intraday and Day-Ahead
Prices (Q4/2011-Q3/2012) derived from [2]

to a higher SoC than 50% is scheduled according
the Fleet Manager’s strategy until departure time.
The idea behind this SLA is to provide a certain
amount of flexibility to fleet users in case of any
unplanned driving activity events even during the
contractually agreed connection time. Such an
SLA obviously increases the Quality of Service
(QoS) from the EV user’s perspective in situa-
tions where the EV is used spontaneously. On
the other side it reduces the flexibility of the Fleet
Manager for time-shifting the EV charging pro-
cesses, which in turn could lead to reduced ben-
efits of his energy purchase optimization.

3.2 Market Data Analysis
In order to correlate the demand for charging the
EV fleet with Intraday and Day-Ahead spot mar-
ket prices, actual EPEX Spot Intraday and Day
Ahead market data for the time period between
Q4/2011 and Q3/2012 were considered based on
[2]. The corresponding results of this analysis are
shown in Figure 3. It details the statistic distribu-
tion function of daily average Intraday and Day-
Ahead prices including min. and max. values
and mean added symmetric standard deviation.
For the parcel delivery nighttime scenario Fig-
ure 3 clearly shows a decrease of mean Intraday
and Day-Ahead prices during connection time
(6:00PM-6:00AM), whereas for the commuter
daytime scenario (7:00AM-3:30PM) mean In-
traday prices remain on higher levels, however
also with higher standard deviations. In gen-
eral it is shown, that Intraday prices are more
volatile than Day-Ahead prices and Day-Ahead
prices especially at night are lower than Intraday
prices. Lowest energy mean prices can be found
between 3:00AM and 4:00AM with 31e/MWh
at the Intraday Market and 29e/MWh at the
Day-Ahead market. Highest prices are studied
at 6:00PM in the evening with 57e/MWh at
the Intraday Market and 58e/MWh at the Day-
Ahead market. This corresponds to a spread of
26e/MWh for the Intraday market prices and
29e/MWh for the Day-Ahead prices respec-
tively. Since the maximum spread is located
inside the connection time period of the par-
cel delivery nighttime scenario, we can immedi-
ately assume that a price optimization will have
a larger impact in this scenario.
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Xi: Pre-defined SoC Quantile (States)

n: Number of Quantiles

SoCEV: Actual SoC of EV

Connection Time defined as t = [t0 .. tleave]
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Figure 4: Discrete non-homogeneous Markovian EV Charging Model

4 Markovian Electric Vehicle
Charging Model

In the context of this work, the Fleet Manager
needs an analytical model of the EV charging
process, which allows him to benchmark differ-
ent charging scenarios. It is supposed to pro-
vide means for calculating optimized charging
schedules of individual EV fleet participants in
a way that their aggregate results in a price-
optimized fleet schedule according to the energy
market data defined in section 3.2. Hence, in-
spired by [3] an analytical charging model is pro-
posed, which defines a discrete model for an EV
charging process offering the following means of
parametrization:

• Definition of fleet size and connection time

• Configuration of SoC distribution function
for initial EV states at the beginning of con-
nection time

• EV specifications (charging rate / battery
capacity / average consumption, charging
efficiency)

• Consideration of a max. number of concur-
rently charging EVs for a GCP according to
grid limitations

• Charging decision criteria based on max.
price for energy purchase

• Configurable battery charging profiles

As a result the discrete non-homogenous Marko-
vian model shown in Figure 4 a) was defined.
Other than the linear model based approach de-
scribed in [4] it describes the charging process
as a discrete model with a unique set of SoC

quantiles (states) connected through correspond-
ing state transitions. Each state transition is as-
signed to a predefined amount of time (e.g. 15
minutes) which leads to the corresponding dis-
crete non-homogeneous Markovian process (see
Figure 4 b) defining all available state transitions
within a set of time slots during connection time.
This setup allows us to apply certain charging
strategies and SLAs by influencing the state tran-
sitions (either idling or charging) through
a charging decision criteria, e.g. by policy or
maximum price for energy purchase etc., and to
formally describe the resulting charging sched-
ule for the EV. Applying this model on a scalable
set of EVs allows to calculate the overall fleet’s
demand profile, composed by the aggregate of
all individual EV charging schedules during con-
nection time. The model furthermore provides a
measure on grid limitations by assigning a subset
of EVs to one GCP. With a given power capac-
ity of the GCP only a limited number of EVs are
allowed to charge concurrently. This situation is
modeled by limiting the amount of EVs in the
charging transition during one time slot.
In combination with the previously defined sce-
nario data from section 3, this model allows us to
determine potential benefits or drawbacks of any
given charging policy with regards to the result-
ing energy purchase costs.

5 Findings and Results
The aim of the following evaluation is to estimate
what value could be gained by the Fleet Manager
and Broker through charge shifting according to
two different purchase strategies for both previ-
ously described scenarios (see section 3). The
first strategy, subsequently referred to as Man-
aged Intraday Purchase, only acts upon price
signals on the Intraday spot market, whereas the
second purchase strategy, subsequently referred
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(a) Gain of Managed Intraday Purchases
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(b) Gain of Managed Day-Ahead and Intraday Purchases
based on Phelix Day Index

Figure 5: Energy Purchase Strategy Evaluation for Parcel Delivery Nighttime Scenario

to as Managed Day-Ahead & Intraday Purchase,
acts upon price signals on the Day-Ahead and In-
traday spot market. In order to quantitatively de-
scribe the overall gained value, the Energy Pur-
chase Cost Indexes (EPCI) are introduced for our
evaluation:

• Intraday EPCI is defined as ”resulting pur-
chase costs in reference to an unmanaged
Intraday-price based purchase policy with
no use of charge shifting but consideration
of max. available GCP capacity”.

• Combined Day-Ahead & Intraday EPCI is
defined as ”resulting purchase costs in refer-
ence to a combined Day-Ahead and unman-
aged Intraday-price based purchase policy
with no use of charge shifting but consid-
eration of max. available GCP capacity”.

Both strategies are evaluated for a series of dif-
ferent fleet charging rates (indicated by the ratio
of allowed number of concurrently charging EVs
vs. overall number of EVs in the fleet which are
considered during connection time) and depend-
ing on the Intraday Buy Limit. The Intraday Buy
Limit is used as decision criteria whether to buy
a certain amount of energy for one time slot or
not. If the amount was not bought due to a higher
price signal than defined by the Intraday Buy
Limit it is delayed for a later slot. The Intraday
Buy Limits start at 0e/MWh and develop in steps
per 10e up to 270e, whereby 270e are higher
than the maximum price at the Intraday market
at the studied time period between Q4/2011 and
Q3/2012.
In case of the Managed Day-Ahead & Intraday
Purchase strategy which also acts upon price sig-
nals on the Day-Ahead spot market, the Day-
Ahead Buy Limits are determined by either the
Phelix Day Base or the Phelix Month Base. The
missing share of energy that is not bought on the
Day-Ahead spot market must be bought Intraday
according to the approach described above. The
Phelix Day Base is the average price for all 24

one hour time slots of traded energy at the Day-
Ahead energy market and published by the Eu-
ropean Energy Exchange (EEX) the day before.
The Phelix Month Base on the other side is calcu-
lated as average price of last month’s Phelix Day
Base. Subsequently they are referred to as Phelix
Day Index and Phelix Month Index, respectively.
The applicable amount of energy for purchase is
determined by the EV charging model based on
the SoC distribution at t=0 and is recalculated for
each time slot. The previously introduced EV
model (see section 4) assures that all EVs are
charged until the end of connection time (even
if that means that a set of EVs is forced to be
charged towards the end of the connection time
at suboptimal prices, see Figure 4b). It further-
more always considers the constraints defined by
the fleet charging rate.
To find the optimum parameter set for each pur-
chase strategy and estimate its gain for the par-
cel delivery nighttime and the commuter daytime
scenario both purchase strategies are studied re-
ferring to their own reference values (see defini-
tion of Energy Purchase Cost Index). Further-
more in section 5.3 both purchase strategies are
compared with each other, so that the optimum
purchase policy can be derived.

5.1 Parcel Delivery Nighttime Scenario
The results of the parcel delivery nighttime sce-
nario evaluation are shown in Figure 5. On the
left the resulting Intraday EPCI is shown for the
Managed Intraday Purchase strategy whereas on
the right the Combined Day-Ahead & Intraday
EPCI for the Managed Day-Ahead & Intraday
Purchase strategy is shown. In case of the Man-
aged Day-Ahead & Intraday Purchase strategy
only the Phelix Day Index based result is shown,
since differences compared to the Phelix Month
Index-based approach were marginal. In case en-
ergy is ordered already on the Day-Ahead mar-
ket (price is beneath the Buy Limit Order set by
the Phelix Day Index), resulting energy purchase
costs are not as volatile as in case of Managed
Intraday Purchase strategy. Since missing en-
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(a) Gain of Managed Intraday Purchases
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(b) Gain of Managed Day-Ahead and Intraday Purchases
based on Phelix Day Index

Figure 6: Energy Purchase Strategy Evaluation for Commuter Daytime Scenario

ergy must be ordered in this strategy on the In-
traday market as well, resulting energy consump-
tion costs vary referring to increasing Intraday
Buy Limit Orders. In contrast to the Managed
Intraday Purchase strategy, costs do not decrease
from 0e/MWh up to 30e/MWh. Such limits
at the Intraday market often lead to no purchase
success because average prices are higher, so that
energy is forced to be purchased at the end of
the connection time. In case energy is ordered
Day-Ahead, such forced purchases are reduced,
so that costs in case of additional Day-Ahead
purchase do not decrease from 0e/MWh up to
30e/MWh as in the Managed Intraday Purchase
strategy. Starting at 30e with increasing Intra-
day Buy Limit Orders the resulting energy pur-
chase costs increase as well, since now energy is
purchased at the Intraday market at no optimum
prices, because price reduction during the course
of connection time cannot be used best.
What can be seen for the Managed Intraday Pur-
chase strategy at the parcel delivery nighttime
scenario is that an Intraday Buy Limit Order of
around 30e/MWh to 40e/MWh would have re-
sulted in the best purchase strategy based on the
EPEX spot market data for time frame Q4/11 –
Q3/12. The optimum costs are at about 66% of
the reference for more than approximately 40%
concurrently charging EVs. Almost no further
cost optimization is feasible by providing higher
fleet charging rates. In the less volatile Managed
Day-Ahead & Intraday Purchase strategy with a
maximum charging rate of 40%, costs can be de-
creased up to about 73.5%, so that maximum sav-
ings of 26.5% are possible. Starting at this point
savings start to saturate for higher fleet charging
rates.

5.2 Commuter Daytime Scenario
Unlike in the parcel delivery nighttime scenario,
almost no differences between Managed Intra-
day and Managed Day-Ahead & Intraday Pur-
chase strategies are recognized in the commuter
daytime scenario. Again, no noteworthy differ-

ences between both Buy Limit Order approaches
for the Managed Day-Ahead & Intraday Pur-
chase strategy can be observed, so that only a
Phelix Day Index based approach is shown on the
right in Figure 6 next to the Managed Intraday
Purchase strategy on the left. For all evaluated
policies costs are nearly steadily increasing con-
sidering increasing Buy Limit Orders. Referring
to Figure 3, this is caused by the fact, that en-
ergy prices at daytime are in average higher than
at nighttime, so that energy during daytime is not
as often purchased Day-Ahead as during night-
time. Minimum resulting energy consumption
costs are reached at an Intraday Buy Limit order
of about 30e/MWh with savings up to 13%.

5.3 Comparison of Scenarios
In the previous two sections best parameters for
the fleet charging rate as well as for the Buy
Limit Order for each purchase strategy in both
scenarios were derived for the given set of in-
put parameters. In this section the performance
of the Managed Intraday Purchase strategy and
the Managed Day Ahead & Intraday Purchase
strategy are directly compared. In this compari-
son the Intraday EPCI is used as reference mea-
sure. Hence, an unmanaged Intraday purchase
policy without charge shifting is set as reference
as 100% in Figure 7. The comparison of both
scenarios is furthermore based on using mini-
mum installed capacity of the GCP, to minimize
installation costs as well. In general the resulting
EPCI plots show the same overall characteristics
as the corresponding curves in previous sections
(Figures 5 and 6) with minimum fleet charging
rates.
The direct comparison shows, that in the parcel
delivery nighttime scenario the Managed Intra-
day Purchase strategy with Intraday Buy Limit
Orders between 10e/MWh and 40e/MWh is
even better than the Managed Day-Ahead & In-
traday Purchase strategy, although in average
prices at the Day-Ahead market are typically
slightly lower than at the Intraday market. The
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(b) Gain of Energy Purchase Strategies for
Commuter Daytime Scenario at minimum GCP Capacity

Figure 7: Comparison of Commuter and Parcel Delivery Scenarios at minimum GCP Capacities

commuter daytime scenario on the other hand
shows the expected characteristics, where the
Managed Intraday Purchase strategy is more ex-
pensive than the Managed Day-Ahead & Intra-
day Purchase strategy. The results in Figure 7
also show the comparison of Phelix Day Index
and Phelix Month Index based Buy Limit Or-
ders for Day-Ahead purchase in case of the Man-
aged Day-Ahead & Intraday Purchase strategy.
In both scenarios overall costs are lower when
the Phelix Day Index is used as purchase decision
barrier. Savings of almost 7% in the parcel deliv-
ery nighttime and only 2% in the commuter day-
time scenario are caused by the fact, that during
the parcel delivery nighttime scenario a higher
charge shift potential is available due to longer
connection times (see section 3) and higher en-
ergy demands in accordance with the travel dis-
tribution (see section 3.1).
In the end the results show that the proposed
model in combination with existing market data
provides a meaningful toolbox for Fleet Man-
agers or EMPs to determine their Intraday Buy
Limits per time slot if they are planning to par-
ticipate at the spot market. The same applies for
brokering bodies who participate at the market
representing Fleet Managers or EMPs.

5.4 Application to Control Reserve
Energy Markets

Next to the quantitative study of spot market par-
ticipation the qualitative access to control reserve
markets through fleets of EVs is considered in
this work. Therefore, underlying requirements of
the German market are taken into account, to ex-
amine what type of participation may be feasible
based on actual market conditions. Three kinds
of control reserve energy are used: Primary Con-
trol Reserve, Secondary Control Reserve, as well
as Minute Reserve. An overview on all require-
ments for participation as well as the underlying
processes were gathered and are summarized in
table 2.
From our findings participation at the Primary
Control Reserve market is quite ambitious be-

cause 1MW positive and negative power has to
be offered at the same time by the fleet of EVs for
weekly time slices. Positive control reserve may
be provided either by reducing the fleet’s demand
or by discharging support for EVs. But ensuring
the capability of provisioning at least 1MW of
positive or negative control reserve at any time
during a full week is considered a very ambitious
requirement. For the Secondary Control Reserve,
negative or positive power of 5 MW is needed,
that has to be offered for a whole week in two
possible time slices. To guarantee the availability
of such an amount of power at all times defined
by the offer’s time slices during a whole week
with an exclusive EV fleet, may also cause prob-
lems. For example in case of a commuter fleet
scenario the requirements of Secondary Control
Reserve energy would not be satisfied, because
EVs are charged at company grounds only dur-
ing working hours on weekdays. The third kind
of reserve control energy is the Minute Reserve,
which can be offered daily for time slices of 4
hours. The minute reserve fits best, but with
a minimum amount of power of 5MW guaran-
teed over 4 hour time slices. Nevertheless a huge
number of EVs and charge spots is needed and
a certain reserve of EVs needs to be considered
since connection times may not be fulfilled by
each fleet participant. From this first qualitative
review our recommendation would be to use EVs
only as an optional portfolio advancement for an
already established source for control reserve en-
ergy, e.g. based on a Virtual Power Plant (VPP)
concept utilizing a set of heterogeneous types of
Distributed Energy Resources (DER).

6 Conclusions and Outlook
This work proposes a toolbox for Fleet Managers
and EMPs based on a Markovian EV Charging
Model to calculate and optimize their energy de-
mand costs for charging a fleet of EVs based
on past EPEX market data. Two independent
scenarios were investigated with different energy
consumption profiles (parcel delivery nighttime
vs. commuter daytime scenario). For these cases
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Evaluation Criteria Primary Control Secondary Control Minute Reserve
Offer Invitation Cycle weekly weekly daily
Offer deadline Tuesday 15:00 for next week

starting on Monday 0:00
Wednesday 15:00 for next
week starting on Monday 0:00

10:00 day before delivery
(Auctions, which would be
on a Saturday, Sunday or a
holiday have to be established
on the last working day before
one of these days.)

Auction result
publishing

Tuesday 16:00 for next week
starting on Monday 0:00

Wednesday 16:00 for next
week starting on Monday 0:00

11:00 day before delivery
(Opens oportunity to take part
in EPEX Day-Ahead market.)

Tradeable Time Slices no slices 2 slices; Prime time: 8:00 -
20:00; Secondary Time: 0:00
- 8:00 & 20:00 - 24:00 (Whole
Saturdays, Sundays and Holi-
days belong to secondary time)

6 equal slices, starting at 0:00
with a duration of 4 hours
(0:00 - 4:00, 4:00 - 8:00, 8:00
- 12:00, 12:00 - 16:00, 16:00 -
20:00, 20:00 - 24:00)

Auction decision
criterion

capacity charge / demand
charge (Ger. ”Leistungspreis”)
[e/MW] (in case of equal
prices first bid wins)

capacity charge / demand
charge (Ger. ”Leistungspreis”)
[e/MW]

capacity charge / demand
charge (Ger. ”Leistungspreis”)
[e/MW]

Call order automatic activation by plant
controller (basic prices / en-
ergy price (Ger. ”Arbeit-
spreise”) [e/MWh] are in-
cluded in capacity / demand
charges and are not paid on
top)

Merit order by basic prices /
energy prices (Ger. ”Arbeit-
spreise”) [e/MWh]

Merit order by basic prices /
energy prices (Ger. ”Arbeit-
spreise”) [e/MWh]

Minimum amount 1 MW (positive AND nega-
tive)

5 MW (positive OR negative
not XOR)

5 MW (positive OR negative
not XOR)

Pooling
(Aggregation)

Units in a pool may be changed
every time. Units shall be
mapped to the pool before the
beginning of every 15 minute
slot.

Units in a pool may be changed
every time. Units shall be
mapped to the pool before the
beginning of every 15 minute
slot.

Units in a pool may be changed
every time. Units shall be
mapped to the pool before the
beginning of every 15 minute
slot.

Pre-Qualification Primary control has to be acti-
vated automatically in a ’con-
stant’ way in case of frequency
deviations of +/- 200 mHz in
30 seconds and must be able to
be active for at least 15 min.
[Transmission Code 2003 An-
hang D1]

Test run, which shows that
unit can be activated and shut
down within 5 minutes with a
maximum overshoots of 10%.
[Transmission Code 2007 An-
hang D2]

Test run, which shows that unit
can be activated and shut down
within 15 minutes. [Transmis-
sion Code 2007 Anhang D3]

Pre-Qualification
Simplification

Third party’s pre-qualification
can be used, if units are not of-
fered in control reserve market.

Third party’s pre qualification
can be used, if units are not of-
fered in control reserve market.

Third party’s pre qualification
can be used, if units are not of-
fered in control reserve market.

Availability Factor 100% [Transmission Code
2003 Anhang D1]

>95% [Transmission Code
2007 Anhang D2]

100% [Transmission Code
2007 Anhang D3]

Sources Bundesnetzagentur Beschluss
Az: BK6-10-097

Bundesnetzagentur Beschluss
Az: BK6-10-098

Bundesnetzagentur Beschluss
Az: BK6-10-099

Pros / Cons for EV
Fleet Participation

(-) 1 week allocation not very
suitable
(-) bound to capability of of-
fering positive AND negative
control reserve
(-) timing requirements are
hard to meet for highly dis-
tributed scalable systems

(-) 1 week allocation not very
suitable

(+) 4 hours time slices more
suitable
(-) 5 MW minimum amount

Table 2: Requirements for different Types of Control Reserve in Germany
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our results show, that it cannot be claimed, that
early Day-Ahead energy purchase strategies are
always economically better than exclusive In-
traday purchase strategies. It is shown, that in
the parcel delivery nighttime scenario purchase
costs with exclusive participation at the Intra-
day market (Managed Intraday Purchase strat-
egy) can be lower than those with additional Day-
Ahead purchases. Since the Intraday market is
more volatile compared to the Day-Ahead mar-
ket, such purchase strategies come along with ad-
ditional risks, but may offer better absolute opti-
mums for reducing energy consumption costs of
a fleet of EVs. The study of application to the
control reserve market shows, that in future work
the minute reserve could be considered as well,
so that additional savings may be possible. In
addition to the extension to control reserve en-
ergy, direct trading between balancing areas will
be studied, as well as flexible arrivals and depar-
ture times of EVs. Another future aspect is the
economical assessment of providing V2G sup-
port based on market data using benefits at high
price time periods.
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