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Abstract

As lithium-ion batteries play an important role for the electrification of mobility due to their high power

and energy density, battery lifetime prediction is a fundamental aspect for successful market introduction.

This work shows the development of a lifetime prediction model based on accelerated aging tests. To

investigate the impact of different voltages and temperatures on capacity loss and resistance increase,

calendar life tests were performed. Additionally, several cycle aging tests were performed using different

cycle depths and mean SOC. Both the calendar and the cycle test data were analyzed to find mathematical

equations that describe the aging dependence on the varied parameters. Using these functions an aging

model coupled to an impedance-based electrical-thermal model was built. The lifetime prognosis model

allows analyzing and optimizing different drive cycles and battery management strategies. The cells

modeled in this work were thoroughly tested taking into account a wide range of influence factors. As

validation tests on realistic driving profiles show, a robust foundation for simulation results is granted.

Together with the option of using temperature profiles changing over the seasons, this tool is able to

simulate battery aging in various applications.
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1 Introduction

Lithium-ion batteries are a key technology for
current and future energy storage, whether they
are used for mobile or stationary application. As
the batteries’ portion of cost is quite high for
many applications, battery lifetime is a critical

point for profitability. However, performing real
life aging tests for every single application is
an expensive and time consuming process which
cannot be done in every case. Aging models
based on accelerated aging tests can overcome
this challenge as they have to be done only once
per cell type. Using mathematical functions to
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reproduce the factors influencing aging, such as
temperature or storage voltage, allows an extrap-
olation from a fixed set of accelerated tests to a
wide range of applications.
To give an aging prediction a lot of different ag-
ing factors need to be accounted for, including
temperature, storage voltage, charge throughput
and cycle depth [1, 2]. Some studies have al-
ready published simulations dealing with a few
of these factors, either calendar life [3, 4, 5, 6] or
cycle life [7]. Completely parameterized mod-
els including all of these factors and considering
both calendar and cycle life are still missing.
This paper shows an accelerated aging test set
including more than sixty cells of a high-energy
18650 system with NMC cathode material. Both
capacity loss as well as resistance increase are
addressed. Calendar and cycle aging are consid-
ered separately. A holistic aging model is pre-
sented with an impedance based electric-thermal
model. Finally the comparison between simula-
tion results and verification measurements at nine
different conditions will be shown.

2 Experimental

The tested battery was the Sanyo UR18650E, an
18650 round cell which is manufacturer rated
with 2.05 Ah minimum and 2.15 Ah typically.
The cathode active material is Li(NiMnCo)O2

(NMC) and the anode consists of graphite. It
is a high energy cell with a maximum discharge
rate of 3C and 165 Wh/kg energy density. Volt-
age limits are 2.5 V for discharging and 4.2 V for
charging with a proposed end of discharge volt-
age of 3.0 V and end of charge voltage of 4.1 V.
An OCV curve of the cell is shown in figure 1.

0 20 40 60 80 100

3.4

3.6

3.8

4

4.2

SOC /%

v
o
lt

ag
e 

/V

Figure 1: OCV curve for the cell used.

2.1 Calendar aging matrix

A list of all tested calendar aging test conditions
can be found in figure 2. As the temperature de-
pendency with an Arrhenius equation is already
described by some authors ([1, 8]), only three dif-
ferent temperatures are tested to verify this de-
pendency. More attention was given to the volt-
age dependency, which is highly resolved with
10 different conditions. Each combination of
temperature and voltage in the calendar aging test
consists of three cells to get some statistics. All
cells were held at a constant voltage (float con-
ditions) during the tests. Every seven weeks a
measurement of the cells capacity and inner re-
sistance was performed.
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Figure 2: Test matrix of calendar aging tests.

2.2 Cycle aging matrix

The main focus of the cycle aging tests was the
cycle depth and the mean SOC. A diagram with
all cycle aging test conditions can be found in fig-
ure 3. All cycling tests were done at a current rate
of 1C and a cell temperature of 35 ◦C. Temper-
ature was logged using a sensor mounted on the
surface of the cell. The mean SOC was set by a
constant voltage charge using the OCV curve of
the cell. Cycling was done Ah based around this
point, with a reset of the mean SOC every 100 cy-
cles. If a test had 0 or 100 % SOC as limit, these
points were used to set the cycle range. Checkups
measuring the capacity and the inner resistance
of the cell were made every 3 weeks.

2.3 Checkups

All capacity and resistance measurements were
done at 35 ◦C. The capacity measurement starts
with a standard charge which is a 1C charge up
to 4.2 V followed by a CV charge until cur-
rent was below C/50. After that the capacity
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Figure 3: Test matrix of cycle life tests performed on
a 2.05 Ah cell.

was measured during the 1C discharge down to
2.5 V. The inner resistance was measured at SOC
steps of 10 %, starting from 90 % SOC down to
10 % SOC. Every step was reached Ah based
by discharging 1/10 of capacity starting from a
completely charged battery in the first step. At
each step a pulse power characterization profile
(PPCP) is applied to the battery. The PPCP con-
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Figure 4: Voltage reaction of a new cell to a PPCP.
The two voltages used for calculating the 10 s dis-
charge resistance are marked red.

sists of an 18 s 2C discharge followed by a 40 s
rest period. After that a 10 s 1C charge is ap-
plied, again followed by a 40 s rest period. A
voltage response to this PPCP is shown in figure
4. From this profile various inner resistances are
calculated, a 2, 10 and 17 s resistance for the dis-
charge and a 2 and 10 s resistance for the charge.
For the aging calculation the 10 s discharge re-
sistance at 50 % SOC is used. This resistance
is calculated as the difference between the volt-
age before the discharge pulse and 10 s after the
beginning of the discharge pulse divided by the

current. All other resistances are calculated in a
similar way.

3 Calendar aging

In the calendar aging tests, cells were stored at
different temperatures and voltages. Each test
condition was performed with 3 cells to demon-
strate the reproducibility of the experiment. The
results show a very similar aging for cells tested
under the same conditions, the measured capaci-
ties show an especially great uniformity.
Only the tests at 100 % had a difference of more
than 4 percentage points between the best and
worst cell. As these cells also had a very strong
aging, they are excluded from further analysis.
With a storage voltage of 4.162 V they were
above the recommended end of charge voltage.
This might lead to additional aging effect which
cannot be scaled down to lower voltages.
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Figure 5: a) Normalized capacity over time and b)
normalized resistance over time for calendar aging
tests at 50 ◦C. For each SOC the average on three cells
under tests is shown.

For all tests a mean capacity loss and resistance
increase has been calculated for every checkup.
An error bar plot of both capacity and resis-
tance in the 50 ◦C tests can be found in figure
5. The cells suffer increasing capacity loss and
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resistance increase with higher storage SOC and
thereby higher voltage. Also the tests not dis-
played here with different temperatures show the
expected increased aging with higher tempera-
tures.

3.1 Fit method

To obtain a lifetime model out of the accelerated
aging tests, a mathematical description of the ag-
ing processes is needed. The analysis was split
into calendar and cycle aging. In the calendar
aging tests, temperature and storage voltage were
varied; a function should include these factors.
From figure 5 it can be seen, that different test
conditions have unequal checkup numbers. This
is due to the removal of cells which went below
75 % of initial capacity or a later start after the
first tests were done. For an aging function be-
ing directly fitted to all checkups this would have
lead to variable impacts of different test condi-
tions on the result. The influence of tests with
moderate aging would have been overestimated
while new started tests or tests with higher aging
and therefore fewer checkups would have been
underestimated.
To avoid this a two step fitting was done. In the
first step, every single aging condition was fit-
ted using a different fitting function which ide-
ally had only one aging factor. Afterwards the
dependency of this aging factor on temperature
and voltage was analyzed.

3.2 Time dependency

For a cell with a carbon based anode, like the
one used here, it is widely accepted in literature
[9, 10] that the dominant calendar aging effect
is the formation of a so called solid electrolyte
interphase (SEI). The SEI is built up of decom-
position products of the electrolyte, consuming
lithium during formation and increasing resis-
tance through the growing layer thickness [11].
Although there are different theories on SEI for-
mation [12, 13], both lead to a square root of time
dependency. For some already published aging
tests [8, 12] this seems to be approved. Nev-
ertheless the capacity decrease measured at this
cell started with lower aging and seemed to have
a share of linear aging which was also observed
in [14]. Therefore a pure linear and a pure square

root function are used together with a superposi-
tion of both and a function with t0.75 as a medium
function.
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Figure 6: Mean capacity for the cells stored at 50 ◦C
and 50 % SOC over time together with 4 different fit
functions.

C/R = n∓ α · t (1)

C/R = n∓ α ·
√
t (2)

C/R = n∓ α1 · t∓ α2 ·
√
t (3)

C/R = n∓ α · t0.75 (4)

For all fit functions the parameter n should be
equal to 1 as all data is normalized to initial val-
ues. Anyway this parameter is set free for the fit
to compensate deviations of the measured data.
For further analysis only the aging factors α are
used.
An example of the fit functions can be found in
figure 6. The mean capacity of cells stored at
50 ◦C and 50 % SOC is plotted together with the
fit functions, showing a bad congruence of single
linear (1) and square root functions (2). The su-
perposed linear and square root function (3) and
the function with t0.75 (4) are similar and match
the data well. The fit parameters for 50 ◦C and
50 % can be found in table 1 together with an av-
erage R2 for all tests. Best results on the single
tests were obtained using the superposed func-
tion (3), but the aging factors α1 and α2 do not
have a clear trend over voltage.This might be due
to scattering of the data which prohibits an exact
division into linear and square root functions.
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Table 1: Fit parameter for capacity and resistance from the 50 ◦C and 50 % SOC test. Four different fit functions
with three to four free parameters were used. ØR2 is the mean R2 value of all fitted tests.

n∓ α · t n∓ α ·
√
t n∓ α1 · t∓ α2 ·

√
t n∓ α · t0.75

Capacity Resistance Capacity Resistance Capacity Resistance Capacity Resistance

n 0,982 1,045 1,020 0,981 1,003 0,995 0,999 1,017
α 0,00035 0,00055 0,00862 0,01402 0,00173 0,00278
α1 0,00018 0,00015
α2 0,00427 0,01037
R2 0,978 0,949 0,975 0,988 0,997 0,994 0,998 0,986

ØR2 0,974 0,952 0,960 0,965 0,997 0,987 0,989 0,978

Therefore the function with t0.75 is used for fur-
ther analysis of the aging parameters. This func-
tion shows a similar shape in the required range
and has only one aging factor which needs to be
evaluated. The average R2 value is not as good as
the one from the superposed function, but better
than the single linear or square root functions.

3.3 Voltage depedency

A plot of the aging factors over voltage for all
tests performed at 50 ◦C both for resistance and
capacity can be found in figure 7. The aging fac-
tors show a linear trend considering the whole
voltage range. In contrast other papers found
an exponential dependency [2] that is clearly not
given here. Other work also done on these data
sets [15] proposed a correlation between aging
and phase changes in the anode material, divid-
ing the voltage dependency in single steps with
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Figure 7: Voltage dependency of the aging factor α
over voltage fromC = n−α·t0.75 for tests performed
at 50 ◦C together with a linear regression.

nearly equal aging.
For an aging model the small differences be-
tween a maybe stepwise function and a simple
linear dependency can be neglected. For most ap-
plications voltage and SOC are changing during
the simulated profile, sweeping over areas which
underestimate or overestimate the aging. In to-
tal these effects should compensate over the full
range. Therefore a linear regression was used
to describe the voltage dependency. This also
has the advantage that only a few data points are
used, a stepwise definition would need at least
two points per step and increase time and effort
significantly.

3.4 Temperature dependency

For temperature dependency only three different
temperatures were tested. A lot of literature al-
ready described the Arrhenius equation

aging factor α ∝ exp

(
−EA

RT

)
(5)

as a good matching function for temperature de-
pendency. EA is thereby the activation energy
of a reaction happening at a temperature T , R is
the gas constant. To test this equation with our
data, a plot of ln(α) over inverse temperature is
shown in figure 8. The three temperatures were
35 ◦C, 40 ◦C and 50 ◦C. For both capacity and re-
sistance the logarithm of aging factors give a lin-
ear dependency, confirming the applicability of
the Arrhenius equation for these cells. Results of
the linear interpolation are activation energies of
58,0 kJ

mol K for the capacity and 49,8 kJ
mol K for the

resistance.
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Figure 8: Arrhenius plot of aging factors α for both
capacity and resistance over inverse temperature. The
shown temperatures are 35 ◦C, 40 ◦C and 50 ◦C. Also
the linear regression for temperature dependency is
shown.

3.5 Fit function calendar aging

For a mathematical model of calendar aging the
dependencies on voltage and temperature need to
be combined. Here an aging factor α is used to
describe the aging rate during a test of time t.

C = 1− αcap · t0.75 (6)

R = 1 + αres · t0.75 (7)

The test at 50 ◦C and 50 % is included both in
voltage and temperature fit and therefore chosen
as an intersection for both functions. The com-
bined aging factors for capacity and resistance
are

αcap = (7.543 · V − 23.75) · 106 · e−
6976
T (8)

αres = (5.270 · V − 16.32) · 105 · e−
5986
T (9)

for tests done at a voltage V and an absolute tem-
perature T . These equations allow one to calcu-
late the calendar aging for arbitrary conditions of
voltage and temperature. They are the basis for
the cycle aging analysis in the next chapter.

4 Cycle aging

Cycling a battery leads to additional aging due
to processes which do not occur during calendar
aging. During intercalation and de-intercalation
the material experiences a volume change which
is a stress factor for the battery system. Results

can be a crack-and-repair of the SEI which con-
sumes lithium and increase the inner resistance
or a contact loss of active material particles.
A lot of cycle aging tests varying cycle depth and
average SOC were performed. All cycle aging
tests were done at a temperature of 35 ◦C and a
current of 1C. This would result in 12 equivalent
full cycles per day, but real values are lower due
to time for checkups and other unplanned rest pe-
riods.
During the time of cycling calendar aging also
occurs. To get an analysis of the ’pure’ cycle ag-
ing, all test data had to be adjusted by the cal-
endar aging. The calendar capacity loss and re-
sistance increase were calculated using the func-
tions obtained from the tests discussed before
and then added/subtracted from the measured ca-
pacities and resistances. All discussion of cycle
aging in this chapter refers to these adjusted val-
ues. A selection of typical ’pure’ cycle aging
curves can be found in figure 9.
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Figure 9: a) Normalized capacity and b) normalized
resistance over equivalent full cycles. Values are ad-
justed to the ’pure’ cycle aging by subtracting the cal-
culated calendar aging. The shown tests were done
with 1C at 35 ◦C and a cycle depth of 10 %.

Within literature sometimes a linear aging over
charge throughput Q is found [16], but also work
about square root aging was presented [7, 17].
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In our tests we found two different dependencies
for capacity and resistance. For capacity loss a
clear square root function can be found while the
resistance increase is linear. This indicates that
during cycling two different aging processes oc-
cur in the battery, one that has a strong impact on
capacity and another that influences resistance.

Ccyc = 1− βcap ·
√
Q (10)

Rcyc = 1 + βres ·Q (11)

Analysis was done with a two step fitting like be-
fore. In the first step, all single tests were fitted
using equation (10) and (11).

4.1 Dependency on cycle depth

Cycle depth is an important point to battery ag-
ing. For a lot of battery types and chemistries,
deep cycles cause disproportional or exponential
stronger aging compared to small cycle depths
[18]. In these cases oversizing of battery capac-
ity is a effective but also expensive option. With a
good knowledge of cycle depth dependency, the
oversizing can be reduced to a minimum.
The used cells show a non-exponential depen-
dency, instead a more linear trend can be found.
For capacity loss this linear dependency seems to
be true for the full range while the resistance in-
crease shows a constant minimal aging for low
cycle depths.

4.2 Dependency on average voltage

Figure 9 already indicates that cycling around a
middle voltage leads to the lowest aging. Both
for capacity loss as well as for resistance in-
crease, the cycling between 45 and 55 % SOC
has the smallest effects. Cycling around lower or
higher voltages increases the cycle aging rate.
For all cycle depth a U-shaped function can be
found with a minimum around 3.7 V average
voltage. The dependency on average voltage is
much higher for capacity loss than for resistance
increase.
For lifetime optimized charging strategies the de-
pendency on average voltage has to be taken into
account. From calendar aging aspects the lower
SOC has advantages, but with cycling the opti-
mum might shift to an average SOC level.

4.3 Total fit function

With the aforementioned linear cycle depth
(∆DOD) and quadratic average voltage (ØV ) de-
pendency a fit was made to all aging factors β
from the cycle aging tests. The resulting func-
tions for cycling capacity loss and resistance in-
crease are

βcap = 8.175 · 10−3 · (ØV − 3.683)2 . . . (12)

+ 7.057 · 10−4 + 4.198 · 10−5 ·∆DOD

and

βres = 2.673 · 10−4 · (ØV − 3.741)2 . . . (13)

− 1.900 · 10−5 + 2.837 · 10−6 ·∆DOD.

The total aging function is then the superposition
of calendar and cycle aging as shown in equation
(14) and (15). With this function a calculation
of battery aging and lifetime is possible for all
conditions.

C = 1− αcap · t0.75 − βcap ·
√
Q (14)

R = 1 + αres · t0.75 + βres ·Q (15)

5 Model

To calculate lifetime and battery aging, the volt-
age and temperature of the battery are needed.
Most applications only provide a current or
power profile. Therefore a holistic model was
built which consists of three parts:

• Impedance based electric model

• Thermal model

• Aging model.

These three model parts are called in a loop. A
schematic of this integrated model is shown in
figure 10. As the model is impedance based it
does a fast computation and can easily be pa-
rameterized through electrochemical impedance
spectroscopy (EIS) measurements.
The aging model is based on the equations de-
veloped from the accelerated aging tests. Every
aging parameter was analyzed separately and put
into a mathematical equation, therefore the ef-
fects can be extrapolated to ranges that have not
been tested (e.g. lower temperatures).
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Figure 10: Graphical representation of the holistic
model. Calculation is done in a loop with load pro-
file, impedance parameters and aging factors as input.
Output is the remaining capacity and resistance to-
gether with a lifetime estimation.

The model takes a load profile (can be power or
current) as input. Furthermore a profile for am-
bient air temperature can be included, else a con-
stant temperature is chosen.

The impedance based electrical model uses an
equivalent electric network that consists of a se-
ries resistance, two ZARC elements and an OCV
source.

A thermal model is coupled to the electric model.
Heat production is based on ohmic losses calcu-
lated by the electric model. Heat transfer to the
ambient air is modeled as heat conductivity with
variable factor to match different mounting sce-
narios.
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Figure 11: Schematic of the calculation process
within the aging model. Input values are given for
every single time step, calendar and cycle life aging
are integrated on these single aging steps.

Voltage, temperature, SOC and current are taken
from the combined electric-thermal model as in-
puts for the aging model. From this data cycle
depth and average SOC are calculated. The av-
erage voltage for cycle aging is only calculated
during current flow, rest periods do not influence
it. Calendar and cycle life aging is calculated for
every single time step using the aging functions
gained from the accelerated aging tests. Calendar
and cycle aging are added to get the total aging.
A schematic of the aging calculation is given in
figure 11.

6 Verification

Along with the accelerated aging tests a verifi-
cation profile has been applied to the batteries.
For this verification profile a driving cycle was
used together with charge and rest periods. The
driving profile was taken from real car measure-
ments done in Aachen, including city and high-
way driving. The power was scaled down to meet
the specification of the battery.
Three different test profiles were built with this
load profile. Plots are displayed in figure 12.
The first and second profile consist of two driving

−20

−10

0

10

po
w

er
 /W

a)

−20

−10

0

10

po
w

er
 /W

b)

0 6 12 18 24
−20

−10

0

10

time /h

po
w

er
 /W

c)

Figure 12: Three power profiles over time for model
evaluation. a) Charge after driving, b) charge before
driving and c) no rest periods.

parts a day separated with long rest periods. The
first profile has the charge periods just after the
driving part while the second one charges before
driving. The third profile is an alternation of driv-
ing and charging without long rest periods. The
charging in all three profiles is performed with
1C.
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Figure 13: Temperatures used for model verification.
For each month an ambient temperature is given to
the simulation. Values are average temperatures for
Germany from 2001 - 2010.

The profiles tests were performed with monthly
changing ambient air temperature. The tempera-
tures are average values for Germany from 2001
to 2010 [19]. A diagram of the temperatures is
shown in figure 13. The initial month for the ver-
ification was September. Temperatures inside a
battery pack build in a car might be higher than
the ambient air temperature. Therefore higher
temperatures have also been tested. Tests with all
three profiles have also been performed at the av-
erage temperatures plus 10 ◦C and at plus 20 ◦C.

Checkups on these cells have been done every
month with the same method like the other cycle
life tests described in chapter 2.3.

The measured data for both capacity loss and re-
sistance increase for the verification profiles can
be found in figure 14 together with the simula-
tion results. The figure shows that the aging pre-
dicted by the model matches the measurements
well for capacity loss although the model was
only parameterized at temperatures much higher
than the temperatures applied in the verification
profile. The extrapolation using the Arrhenius
equation (5) seems to be valid down to temper-
atures at 0 ◦C.

The simulated resistances for most verification
profiles are lower than the measured ones. The
biggest relative deviation is found in cases where
the simulated resistance increase is very small,
for higher aging rates measurement and simula-
tion match better.

As this cell shows only a small resistance in-
crease in comparison with the capacity loss, the
last one will limit the lifetime for nearly all appli-
cation. Therefore the correct capacity prediction
is more valuable than the resistance simulation.

7 Conclusion

In this work an aging model for an 18650 cell
with NMC cathode chemistry was established.
An extensive set of both calendar and cycle aging
tests has been performed including more than 60
cells. Varied parameters were voltage/SOC and
temperature for the calendar tests. In the cycle
aging tests cycle depths and average voltage were
studied. During all tests checkups with actual ca-
pacity and inner resistance were determined.
Using these values for capacity fade and resis-
tance increase mathematical functions were fit-
ted. For both calendar and cycle aging tests a two
step fitting was done. The resulting fitting func-
tions include the dependency of capacity and re-
sistance on time respectively charge throughput
and the other varied parameters.
For the tested cell the calendar aging could not
be modeled using a square root function of time.
The data indicated the occurrence of a second
main aging effect besides normal SEI growth
which has a linear time dependency. As both ef-
fects could not be separated by the fit a t0.75 de-
pendency was used. For temperature dependency
the Arrhenius equation was used. On this cell the
aging speed increased linearly with voltage for a
calendar aging test.
The cycle aging data was adjusted by the calen-
dar aging prediction. Fits were done with two
different functions for capacity loss and resis-
tance increase. The capacity was implemented
using a square root function of charge through-
put while the resistance had a linear dependency.
Both capacity and resistance had the lowest aging
while cycling around 3.7 V (50 % SOC), lower or
higher cycle ranges increased aging. The effect
of cycle depth on aging was linear.
The fit functions were implemented in an aging
model which was coupled to an impedance based
electric-thermal model. Three different verifica-
tion profiles were also tested on the cells, each at
three temperature levels. In all nine cases the pre-
dicted capacity loss matched the measured data.
For low resistance increase the model underes-
timated the aging, for higher resistance increase
the congruence is quite good.
This holistic model is able to predict the aging
for different drive cycles and management strate-
gies. It can be used with current and power pro-
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Figure 14: Comparison between measured data (circles) and simulation results (lines). Three profiles were tested
at three temperature levels. Both capacity and resistance are shown for each test.

files as input, also ambient air temperature pro-
files changing over the seasons can be included.
The model is a powerful tool to optimize BMS
strategies and lifetime for all applications using
this cell.
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