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Abstract 

The prediction of the driving cycle (vehicle speed profile versus time) and the road grade cycle (road grade 

profile versus time) can improve a variety of vehicle functions, especially the energy management of HEVs 

and PHEVs. The variability of the driving conditions (environment) together with the nonlinear and 

variable driver behaviour (driving style) makes the driving cycle ‘on-board & real-time’ prediction a highly 

complex task. This paper proposes an intelligent technique for the real time prediction of the vehicle speed 

and road grade profiles for the (selected) time horizon whilst the vehicle is in route. The proposed method 

uses an Artificial Neural Network which processes both the vehicle speed measurement (current and 

previous data samples) and some information related to the driving conditions present in the route, which 

could be obtained in advance from the new generation of vehicle navigation systems. The driving cycle and 

road grade on-board predictions allow the energy management system of HEV/PHEVs to achieve further 

reductions of fuel consumptions. 
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1 Introduction 
During a trip, the instantaneous vehicle speed is 
influenced by the vehicle characteristics, by the 
driver’s driving style (DDS), as well as by the 
driving conditions (DCOs) present in the road. In 
more detail, the vehicle speed profile versus time 
- also known as driving cycle - is function of the 
variables and factors shown in Fig. 1 [1]. These 
factors cause variability in the driving cycles 
recorded for the same vehicle making a route 
under different DCOs and/or DDS, see Fig. 2.  
The high variability of the DDS & DCOs makes 
the driving cycle (vehicle speed profile) on-board 
& real time prediction a highly complex task.  

 

Figure1: Factors affecting the driving cycle. 
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Figure2: A set of driving cycles obtained over the same 
route/trip 

In HEV/PHEVs the way both mechanical and 
electrical power sources are combined lead to 
different hybridization architectures. Hybrid 
powertrains need a supervisory controller which 
manages the power split between the different 
power suppliers aiming to fulfil the vehicle and 
driver instantaneous power demands while some 
objectives such as the fuel consumption, energy 
efficiency, the emissions, or a combination of 
them are optimized [2].  
Many strategies and methods have been proposed 
in the scientific literature for addressing the 
optimal power/energy management (O-EMS) in 
HEV/PHEVs [3]. The calculation of the global 
optimum in real time (whilst the vehicle is 
making the trip) is not possible since the 
objectives in the optimization problem are global 
and depend, among others, on the driving cycle 
and the road grade profiles, both unknown in 
advance.  
Aiming to obtain high quality sub-optimal 
solutions for the O-EMS problem (power/energy 
splits) in real time, mainly two approaches have 
been proposed in the literature: 

• Intelligent approaches based on the DCOs & 
DDS ‘on-board & real time’ recognitions 
followed by a fuzzy or expert energy 
management strategy which processes a set 
of rules containing the identified DCOs & 
DDS. Some examples can be found in [4, 7, 
9].  

• Optimization approaches based on the 
driving cycle ‘on-board & real time’ 
prediction. Once the driving cycle (speed 
profile) is predicted, different optimization 
solvers and methods are used for solving in 
real time the O-EMS optimization problem. 
An example can be found in [5]. 

This paper proposes an innovative technique to 
obtain - on-board, in real time and whilst the 
vehicle is in route - the prediction of the vehicle 
speed & road grade profiles for the (selected) 

next time horizon. At each selected sampling time 
(time-driven) or when the energy management 
system makes a request (event-driven) the 
predictions are updated (recalculated) in real time 
for the new time horizon (receding horizon). The 
method is based on an Artificial Neural Network 
(ANN) which processes the next information: 

• The vehicle speed that is being recorded while 
the vehicle is in route. 

• Some ‘in advance’ static information related to 
the road traffic signals and road grade (road 
information) that can be provided in real time 
from modern navigation systems integrating 
digital maps and Geographical Information 
System-functionalities (GIS).  

• If available, some ‘in advance’ real time 
dynamic traffic information (traffic events, 
traffic state, weather state, etc.) obtained from 
modern navigation systems capable of 
integrating vehicle to vehicle (V2V) and/or bi-
directional vehicle to infrastructure (V2I) 
advanced communication systems. Thus, the 
traffic state and events could be exchanged 
with the infrastructure or even with other 
vehicles that are making the same route.  

The paper is organized as follow. In section 2 
some methods and techniques used for the driving 
cycle modelling and prediction are reviewed. The 
proposed method for the driving cycle & road 
grade ‘on-board & real time’ predictions for the 
(selected) time horizon is described in detail in 
section 3. In section 4, some results are presented 
and discussed. The paper is finally concluded in 
section 5. 

2 A review of methods 
It is important not to confuse the term DCOs with 
the term driving cycle. As was introduced before, 
the DCOs refer to the set of external factors which 
define or characterize the environment through 
which the vehicle is circulating. Consequently, the 
driving cycle is the result of the movement of a 
vehicle-driver (as a whole) that is subjected to 
some variable DCOs when they are making a trip. 
Thus, the driving cycle (vehicle speed profile) 
depends not only on the DCOs but also on the 
vehicle characteristics and the DDS, as was 
introduced in section 1, see Fig. 1.  
Although there is neither consensus nor 
standardization, the DCOs are usually composed 
by two variables when they are used for energy 
management purposes: the road type and the traffic 
congestion level. The values that these variables 
can take can differ depending of the authors and 
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applications, but it is very common to use the 
values ‘urban’, ‘extra-urban’, or ‘highway-
motorway’ for the road type and ‘low’, ‘medium’ 
or ‘high’ for the traffic congestion level. Often, 
the DCOs are also defined by only one variable 
which can take a value among 1 to 9 
corresponding to the DCOs characterizing nine 
of the eleven known driving cycles which were 
defined and proposed in [6].  
Different research works and studies have been 
conducted aiming to make the ‘online & real 
time’ (on-board) recognition and even prediction 
of the DCOs. Among others, one can stand out 
those using the processing of the vehicle speed 
profile that is being recorded while the vehicle is 
moving [4, 7, 8, 9]. In most of these works the 
authors obtain some - among those identified in 
[1] - statistical parameters from the speed profile 
and then infer the DCOs values using different 
classification techniques such as ANNs, Support 
Vector Machines (SVM), etc. Furthermore, the 
DDS are also recognized in [7] by using a fuzzy 
inference system in which the rules and 
membership functions are constructed from the 
statistical processing of the vehicle speed profile. 
Some possible values for the DDS can be: ‘quiet 
or calm’, normal’, ‘aggressive’, etc., and once 
recognized it could be considered in the energy 
management strategy, as it occurs in [7]. Another 
method can be found in [13] where the authors 
use the standard deviation of the vehicle speed’s 
second derivative (jerk analysis) to infer the 
DDS.     
However there are few studies in which a direct 
method for the vehicle speed profile ‘on-board & 
real time’ prediction is proposed. In [11] the 
authors propose a technique for the speed profile 
prediction in the trip domain (vehicle speed as 
function of the distance travelled) by gathering a 
simple data base constructed from historical data 
recorded over a determined commuting route. A 
clustering algorithm together with a state 
transition diagram is used for the driving pattern 
prediction.  
More recently in [5], the authors propose a 
method for modeling a trip's driving cycle by 
using a GIS and a data base containing historical 
information about the traffic's state for that route. 
Once the trip’s beginning and final destination 
are defined, some information received from the 
GIS such as road speed limits, traffic lights 
position, etc., are processed. Starting from this 
information, first a simple and segmented driving 
cycle is constructed in which the vehicle speed 
value matches the speed limit values and the 

accelerations/decelerations are considered as 
constant. The simple driving cycle is then modified 
by using the traffic’s state historical data base -if it 
is available for that trip- by using some traffic 
modeling techniques. 
It is important to notice that the vehicle 
characteristics (vehicle type) and the driver driving 
style is not taken into account in both methods, 
thus penalizing the accuracy in the speed profile 
(driving cycle) prediction and therefore the 
benefits obtained from the O-EMS. In fact, the 
driving style has a great impact on the vehicle fuel 
consumptions and emissions as it is shown in [10] 
and [12]. 

3 Driving cycle and road grade 
predictions. 

As it was introduced before, the factors affecting 
the driving cycle are: the type & characteristics of 
the vehicle, the driver’s driving style and the 
DCOs present in the route.  The basic concept 
behind the proposed method is derived from the 
general concept of control system theory in which 
the controller response and some measurable or 
un-measurable disturbances can cause a deviation 
between the system output (controlled variable) 
and its desired response (reference).   
By analogy, in the problem at hand the controlled 
system is the vehicle, the controller is the driver, 
the controlled variable is the vehicle speed where 
the system response is therefore the speed 
profile/driving cycle (speed versus time), and the 
desired system response is the desired/expected 
vehicle speed profile - reference driving cycle - 
from a point of view of the traffic 
control/management system (who regulates the 
road speed limits, static and dynamic traffic 
signals, traffic lights, etc.), see Fig. 3.  
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 Figure3: Basic concept. Control system diagram. 
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Some disturbances such as the traffic state, traffic 
jams, road works, the weather state, or the road 
state among others, can change the DCOs thus 
changing the real road speed limits and even the 
driver driving style, so the system response 
(vehicle speed profile) will be affected. 
The proposed method is based on the hypothesis 
of considering that a reference driving cycle 
(reference speed profile) is constructed and 
adapted in ‘real time’ and ‘in advance’ by using 
some information about the route’s DCOs. This 
information could be provided from a new 
generation navigation system installed on the 
vehicle thus incorporating:  

• Digital maps and geographical information 
functionalities in order to provide ‘in 
advance’ some information related to the 
speed limits and traffic signals which are 
present in the next time-horizon (electronic 
horizon) according to the route that is being 
made [14]. 

• A communication system for receiving data 
from a Central Data Server for providing ‘in 
advance’ real time traffic information related 
to the traffic state (density, congestion level, 
etc.), traffic events, speed limits due to road 
works, traffic jams, weather state, etc., for 
the next time-horizon according to the route 
that is being made [15].  

The deviation between the real vehicle speed and 
the speed reference of the reference driving cycle 
(obtained as explained before) is assumed to be 
caused for the own driver’s driving style as well 
as for the type & characteristics of the vehicle. 
Therefore, the problem presents two challenges 
which are treated separately in this work. The 
first treats to obtain -in advance and in real time- 
a reference driving cycle according to the 
information that is being received about the 
DCOs. The second treat to model the influence 
of the driver & vehicle and then obtain the final 
driving cycle or speed profile prediction for the 
next time horizon. For that, a nonlinear 
processing (through an ANN) of the vehicle 
speed deviation profile (with respect to the speed 
of the reference driving vehicle) that is being 
obtaining whilst the vehicle is running, is 
proposed. The technical details for both 
challenges are respectively described in next 
subsections. 

3.1 Obtaining the reference driving 
cycle 

The Reference Driving Cycle (RDC) profile is 
constructed in real time by using the information 
received from the GIS based navigation system. It 
has a staggered form with speed constant sections 
or intervals and infinite acceleration/deceleration 
joining the speed sections. It is important to note 
that the RDC is a speed profile defined on the trip 
domain, i.e., it is a vehicle speed profile versus the 
distance travelled. In fact, the GIS navigation 
system only could know in which kilometer point 
there are changes on speed limits (speed limits 
traffic signals). The speed value for each trip 
section or interval is the speed limit imposed by 
the traffic regulator for that section. A Base 
Reference Driving Cycle (BRDC) is first 
constructed according with the road traffic speed 
limits existing in the road on which the vehicle is 
travelling (positions on the trip domain & speed 
limit values). Thus, the BRDC would be the 
driving cycle imposed and/or recommended by the 
traffic management system (traffic regulator), and 
would be also ideal or optimal in the sense that it 
would permit to make the trip employing the 
minimum time but fulfilling the speed limits 
restrictions present in the road (legal driving 
cycle). Obviously it is not possible and improbable 
to satisfy this BRDC because, among others, the 
vehicle-driver as a whole cannot impose infinite 
acceleration/ deceleration on the vehicle speed as 
well as the driver can bypass the traffic regulations 
(these effects are treated in subsection 3.2). An 
example of a constructed BRDC for a trip is shown 
in Fig. 4, where the route's information was 
extracted from a digital map. 
 

 
Figure4: Example of a Reference Driving Cycle.  

 
The BRDC could be then updated according to real 
time traffic information if it is available (traffic 
state, events, dynamic traffic signals, weather 
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conditions, road states, etc.). This information 
could be received via communications from the 
Traffic Management Data Center or even from 
others vehicles making the same route. For 
example, the Traffic Data Center could inform 
the vehicle about the real speed in a road/trip 
interval in which there is a high traffic 
congestion level sending the next information: 
[initial position, final position, current speed 
value], or the vehicle could be also alerted about 
the position (on the trip domain) in which the 
traffic is stopped due to a hard traffic jam. 
Therefore, the final RDC is constructed from the 
staggered BRDC by updating its speed values 
according to the real time traffic information 
received (traffic state and events) if this 
functionality is available. 
The RDC could be entirely constructed at the 
beginning of the trip if all the information of the 
route is a priori known and the traffic state is 
normal and fluid. However the RDC is normally 
constructed and updated in real time by using the 
information received from the GIS navigation 
system while the vehicle is in route.   

3.2 Modelling the behaviour of the 
driver & vehicle. 

As it was appointed before, the RDC profile is 
defined on the trip domain i.e. vehicle speed as 
function of the distance travelled or the kilometer 
point. The variability of the driver-vehicle (as a 
whole) causes that the RDC cannot be fulfilled 
due to the reasons explained bellow: 

• The vehicle-driver as a whole cannot get 
infinite speed accelerations/decelerations. 
The vehicle, in function of its characteristics, 
will have different acceleration/deceleration 
power. 

• The driver reacts differently (as a function of 
its actual driving style) to a change in the 
speed of the RDC profile. For example, a 
driver with an aggressive or sportive driving 
style accelerates quite before of reaching the 
kilometer point where an increment of the 
RDC speed occurs. This is possible due to 
the driver’s visual range. However a quiet 
driver (calm driving style) accelerates softly 
just before (or even after) the kilometer point 
where the speed increment occurs. 

• The driver usually does not maintain the 
speed constant in the RDC’s constant speed 
sections. A driver with an aggressive driving 
style will usually exceed the speed of the 
RDC and the vehicle speed will have also 

more oscillations than a driver with a calm 
driving style.  

Consequently there is a speed deviation between 
the vehicle speed (final driving cycle) and the 
RDC in the distance/trip domain, in which the 
speed deviation profile (trending) is quite different 
in function of the vehicle behavior and the driver’s 
driving style during the trip (which can even 
change along the trip). 
The proposed model for approaching the RDC 
vehicle speed deviation with respect to the RDC - 
from now on (RDCSD) - which is caused from the 
driver-vehicle behavior as a whole, is given in (1), 
where RDCSDdk is the speed deviation for the k 
(actual or present) sampling step (in the 
distance/trip domain), DSN is the number of 
previous data samples of the own RDCSD that are 
considered in the model, VRDC

k is the RDC speed 
for the k (actual) sampling step  in the distance/trip 
domain, FSN is the number of k-step ahead of the 
VRDC that are considered in the model, and fNL is a 
nonlinear function. It is important to note that all 
variables in this case must be referenced in the 
distance/trip domain, so if the vehicle speed is 
measured by using a time-driven procedure an 
easy domain transformation must be done (from 
time domain to distance domain) to obtain the 
vehicle speed as function of the distance travelled.   
  

 
 
(1) 
 
 

According to the model presented in (1), the 
RDCSD is function of its own ‘DSN’ previous 
data samples (from RDCSDk to RDCSD k-DSN) and 
of the ‘DSN’ previous data samples & ‘FSN’ data 
samples ahead of the RDC speed (VRDC

k-DSN to 
VRDC

k+FSN). The fact of using the ‘FSN’ k-step 
ahead of the RDC is due to the need to consider 
the driver’s visual range distance (the driver 
perceives in advance the traffic and can react 
differently depending of his driving style). The 
‘DSN’ previous data samples for both the RDC 
and the RDCSD give us a picture of the driver-
vehicle behavior in the recent past of the trip/route 
that is being done. Therefore observing and 
processing the speed deviation with respect his 
corresponding RDC in the recent past, it could be 
possible to estimate the evolution of the speed 
deviation in the distance/trip domain for a near 
future - in which its RDC is a priori known - by 
assuming that the driver-vehicle behavior will not 
change significantly with respect to which it had in 
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the recent past. However it is practically 
impossible to obtain a mathematical expression 
for the nonlinear function fNL in (1) mainly due 
to the high nonlinearities and high variability 
present on the driver behavior.  
In this work, a nonlinear autoregressive neural 
network with exogenous inputs (NARX) [16] is 
proposed as nonlinear function fNL for 
approaching the RDCSD. The NARX is 
previously trained by using real examples 
(driving cycle, reference driving cycle) recorded 
from the vehicle-driver for different trips or 
routes. As the NARX models the influence of the 
vehicle-driver, it is not very dependent of the 
trip/route, data logged on different trips can be 
used for training the NARX. 
The NARX will work recursively along the 
prediction horizon (defined now in the 
distance/trip domain) obtaining the prediction of 
RDCSD* for the next trip-domain horizon (Hd).      

3.3 Obtaining the driving cycle and 
road grade predictions. 

Once the RDCSD* prediction has been obtained 
by using the NARX model, the prediction of the 
driving cycle for the same (trip-domain) horizon 
is directly obtained by adding the RDC profile 
speed values (that must be known in advance by 
using the GIS information) to the RDCSD* 
speed deviation values along the horizon (Hd), 
see (2), where DCDD* is the prediction of the 
driving cycle in the distance domain, and ∆d the 
resolution selected for the distance domain 
discretization (distance between two samples) . 

 
(2)  
 
 

The driving cycle prediction on the time domain 
(DCTD*) can be obtained from the DCDD* by 
making a domain transformation (from distance 
to time) using the own DCDD* speed values (3). 
Thus, the vehicle speed profile prediction as 
function of the time is finally obtained.   

 
 
 

(3) 
 
 
 
 

A block diagram describing all the steps for 
obtaining the driving cycle prediction is shown in 
Fig. 5. 

 
 

Figure5: Driving cycle prediction block diagram. 

 
The road grade profile prediction in the 
distance/trip domain can be known directly in 
advance because could be received from the GIS 
navigation system for the next trip-based horizon. 
Thus, for obtaining the road grade profile 
prediction but in the time domain is necessary to 
make a domain transformation (from the trip 
domain to the time domain). It is not difficult to 
implement this transformation since the vehicle 
speed profile prediction has been just before 
obtained.  
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4 Results 
Aiming to check the performance and accuracy 
of the proposed method, a data acquisition and 
logging system (DA&LS) was installed in a 
vehicle SEAT Ibiza. The DA&LS was able to 
record in real time: the speed and position of the 
vehicle while the vehicle was in route. The 
selected DA&LS also incorporated for obtaining 
a video-film (synchronized with the speed and 
position measurements) of the trip/route driving 
environment, as can be seen in Fig. 6. Once the 
trips were concluded, the final driving cycle was 
obtained by post-processing the recorded vehicle 
speed & position. In addition, the RDC was 
constructed by the post-processing of the video-
film (traffic signals, speed limits, traffic state, 
etc.). The trips were done between the towns of 
Martorell and San Joant Despí in Barcelona.  
 

 
 
Figure6: Picture of the video-film captured in one of 

the trips. Courtesy of SEAT-Technical Center. 
 
Ten pairs of final driving cycles (in the time 
domain) and RDCs (in the trip domain) were 
recorded. Eight of them were used to train the 
NARX and the rest were used for testing 
purposes. The NARX configuration was: 

• Multilayer network with one hidden layer 
composed by 15 neurons of ‘tang-sigmoide’ 
function type. The output layer was 
composed for a neuron of ‘pure-lin’ function 
type. 

• The trip distance discretization steps, ∆d, 
was set to 0.05 Km. 

• The DSN was set  to 40, so the past recent 
size was 40 x 0.05 = 2 Km 

• The FSN was set to 3, so the near future 
(equivalent to the driver’s visual range) was 
3 x 0.5 = 150 m. 

• The method used for training was the Bayesian 
Regularization in order to exploit its 
generalization capabilities [6]. 
 

Once the NARX was trained a testing with the 
examples that were not used for training was 
carried out. Results are displayed in Fig. 7, in 
which the driving cycle prediction was obtained at 
the kilometer point 2.5Km and the prediction 
horizon (on the trip domain) was set to 13Km. The 
route was known so the prediction horizon was 
large. 
The precision or mean error in the driving cycle 
prediction was less than 4 Km/H for both cases, 
and was calculated from the sum of the absolute 
errors in the considered horizon window divided 
by the number of samples in the given horizon.  
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Figure7: Prediction results. 

 
In order to test the proposed driving cycle 
prediction system in real time while the vehicle is 
in route, the algorithm and the NARX were 
implemented on a Real Time Embedded System 
(RTES). The RTES was installed on-board the 
SEAT Ibiza and was connected to the Vehicle 
Control Unit (VCU) via the CAN bus. The VCU 
vehicle speed measurement was sent to the RTES 
via the CAN bus communication. Results are 
displayed on Fig. 8.  
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Figure8: Prediction results on-board and in real time. 
 
The prediction horizon was set to 3 Km, and the 
predictions were triggered in real time each 0.05 
Km while the vehicle was in route, so many 
predictions speed profiles of size 3Km Km were 
obtained (green color in the first graph of Fig. 8). 
The RDC is displayed in red color and the real 
vehicle speed in blue color. The mean error for 
each predicted speed profile is shown in the 
second graph of Fig. 8, usually lower than 4 
Km/H. The testing for that trip was successful.    

5 Conclussions 
An innovative technique to obtain - on-board, in 
real time and whilst the vehicle is in route - the 
prediction of the vehicle speed & road grade 
profiles for the (selected) next time horizon is 
presented in this paper. At each selected 
sampling time (time-driven) or when the energy 
management system makes a request (event-
driven) the predictions are updated (recalculated) 
in real time for the new time horizon (receding 
horizon). The method is based on an Artificial 
Neural Network of type NARX which processes: 
the vehicle speed that is being recorded while the 
vehicle is in route; some ‘in advance’ 
information related to the road speed limits and 
road grade (road information) that can be 
provided in real time from modern navigation 
systems incorporating digital maps and 
geographic information functionalities; and if 
available some ‘in advance’ real time dynamic 
traffic information (traffic events, traffic state), 
 
 

 
 
obtained from modern navigation systems capable 
of integrating in addition vehicle to vehicle and/or 
bi-directional vehicle to infrastructure advanced 
communication systems. 
The driving cycle prediction system has been 
tested on-board in a vehicle (courtesy of SEAT) 
while travelling for a route around the Martorell 
area with satisfactory results.  
The energy management strategies of Plug-in HEV 
with parallel or series powertrain structure (Range 
Extender) reach the lowest fuel consumption by 
using a Charge depleting strategy (CD). This CD 
strategy is most efficient when the future trip is 
known a priori. But also the prediction data of 
shorter predictions horizons (and therefore higher 
exactness of the predicted data) can attribute to 
lower fuel consumption [17]. 
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