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Abstract

The prediction of the driving cycle (vehicle spgedfile versus time) and the road grade cycle (gadie
profile versus time) can improve a variety of véitinctions, especially the energy managemente$1
and PHEVs. The variability of the driving condit®r{environment) together with the nonlinear and
variable driver behaviour (driving style) makes thizZing cycle ‘on-board & real-time’ predictionhaghly
complex task. This paper proposes an intelligestirigjue for the real time prediction of the vehispeed
and road grade profiles for the (selected) timazioorwhilst the vehicle is in route. The proposeetimd
uses an Artificial Neural Network which processeshbthe vehicle speed measurement (current and
previous data samples) and some information rel@tdde driving conditions present in the routejclih
could be obtained in advance from the new generatiovehicle navigation systems. The driving cyael
road grade on-board predictions allow the energgagament system of HEV/PHEVs to achieve further

reductions of fuel consumptions.
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1 Introduction

During a trip, the instantaneous vehicle speed iS (™ orversemavior )
influenced by the vehicle characteristics, by the o e

driver's driving style (DDS), as well as by the
driving conditions (DCOs) present in the road. In
more detail, the vehicle speed profile versus time
- also known as driving cycle - is function of the
variables and factors shown in Fig. 1 [1]. These
factors cause variability in the driving cycles

recorded for the same vehicle making a route ———— —
under different DCOs and/or DDS, see Fig. 2. | e o iouer
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Figure2:A set of driving cycles obtained over the same
route/trip

In HEV/PHEVs the way both mechanical and
electrical power sources are combined lead to
different hybridization architectures. Hybrid
powertrains need a supervisory controller which
manages the power split between the different
power suppliers aiming to fulfil the vehicle and
driver instantaneous power demands while some
objectives such as the fuel consumption, energy
efficiency, the emissions, or a combination of
them are optimized [2].

Many strategies and methods have been proposed
in the scientific literature for addressing the
optimal power/energy management (O-EMS) in
HEV/PHEVs [3]. The calculation of the global
optimum in real time (whilst the vehicle is
making the trip) is not possible since the
objectives in the optimization problem are global
and depend, among others, on the driving cycle
and the road grade profiles, both unknown in
advance.

Aiming to obtain high quality sub-optimal
solutions for the O-EMS problem (power/energy
splits) in real time, mainly two approaches have
been proposed in the literature:

* Intelligent approaches based on the DCOs &
DDS ‘on-board & real time’' recognitions
followed by a fuzzy or expert energy
management strategy which processes a set
of rules containing the identified DCOs &
DDS. Some examples can be found in [4, 7,
9].

Optimization approaches based on the
driving cycle ‘on-board & real time’
prediction. Once the driving cycle (speed
profile) is predicted, different optimization
solvers and methods are used for solving in
real time the O-EMS optimization problem.
An example can be found in [5].

This paper proposes an innovative technique to
obtain - on-board, in real time and whilst the
vehicle is in route - the prediction of the vehicle
speed & road grade profiles for the (selected)

I I
200 400

next time horizon. At each selected sampling time
(time-driven) or when the energy management
system makes a request (event-driven) the
predictions are updated (recalculated) in real time
for the new time horizon (receding horizon). The
method is based on an Artificial Neural Network
(ANN) which processes the next information:

« The vehicle speed that is being recorded while
the vehicle is in route.
Some ‘in advance’ static information related to
the road traffic signals and road grade (road
information) that can be provided in real time
from modern navigation systems integrating
digital maps and Geographical Information
System-functionalities (GIS).
If available, some ‘in advance’ real time
dynamic traffic information (traffic events,
traffic state, weather state, etc.) obtained from
modern navigation systems capable of
integrating vehicle to vehicle (V2V) and/or bi-
directional vehicle to infrastructure (V2I)
advanced communication systems. Thus, the
traffic state and events could be exchanged
with the infrastructure or even with other
vehicles that are making the same route.
The paper is organized as follow. In section 2
some methods and techniques used for the driving
cycle modelling and prediction are reviewed. The
proposed method for the driving cycle & road
grade ‘on-board & real time’ predictions for the
(selected) time horizon is described in detail in
section 3. In section 4, some results are presented
and discussed. The paper is finally concluded in
section 5.

2 A review of methods

It is important not to confuse the term DCQOs with
the term driving cycle. As was introduced before,
the DCOs refer to the set of external factors which
define or characterize the environment through
which the vehicle is circulating. Consequently, the
driving cycle is the result of the movement of a
vehicle-driver (as a whole) that is subjected to
some variable DCOs when they are making a trip.
Thus, the driving cycle (vehicle speed profile)
depends not only on the DCOs but also on the
vehicle characteristics and the DDS, as was
introduced in section 1, see Fig. 1.

Although there is neither consensus nor
standardization, the DCOs are usually composed
by two variables when they are used for energy
management purposes: the road type and the traffic
congestion level. The values that these variables
can take can differ depending of the authors and
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applications, but it is very common to use the
values ‘urban’, ‘extra-urban’, or ‘highway-
motorway’ for the road type and ‘low’, ‘medium’
or ‘high’ for the traffic congestion level. Often,
the DCOs are also defined by only one variable
which can take a value among 1 to 9
corresponding to the DCOs characterizing nine
of the eleven known driving cycles which were
defined and proposed in [6].

Different research works and studies have been
conducted aiming to make the ‘online & real
time’ (on-board) recognition and even prediction
of the DCOs. Among others, one can stand out
those using the processing of the vehicle speed
profile that is being recorded while the vehicle is
moving [4, 7, 8, 9]. In most of these works the
authors obtain some - among those identified in
[1] - statistical parameters from the speed profile
and then infer the DCOs values using different
classification techniques such as ANNs, Support
Vector Machines (SVM), etc. Furthermore, the
DDS are also recognized in [7] by using a fuzzy
inference system in which the rules and
membership functions are constructed from the
statistical processing of the vehicle speed profile
Some possible values for the DDS can be: ‘quiet
or calm’, normal’, ‘aggressive’, etc., and once
recognized it could be considered in the energy
management strategy, as it occurs in [7]. Another
method can be found in [13] where the authors
use the standard deviation of the vehicle speed’s
second derivative (jerk analysis) to infer the
DDS.

However there are few studies in which a direct
method for the vehicle speed profile ‘on-board &
real time’ prediction is proposed. In [11] the
authors propose a technique for the speed profile
prediction in the trip domain (vehicle speed as
function of the distance travelled) by gathering a
simple data base constructed from historical data
recorded over a determined commuting route. A
clustering algorithm together with a state
transition diagram is used for the driving pattern
prediction.

More recently in [5], the authors propose a
method for modeling a trip's driving cycle by
using a GIS and a data base containing historical
information about the traffic's state for that eut
Once the trip’'s beginning and final destination
are defined, some information received from the
GIS such as road speed limits, traffic lights
position, etc., are processed. Starting from this
information, first a simple and segmented driving
cycle is constructed in which the vehicle speed
value matches the speed limit values and the

accelerations/decelerations are considered as
constant. The simple driving cycle is then modified
by using the traffic's state historical data baéé -

is available for that trip- by using some traffic
modeling techniques.

It is important to notice that the vehicle
characteristics (vehicle type) and the driver drgyvi
style is not taken into account in both methods,
thus penalizing the accuracy in the speed profile
(driving cycle) prediction and therefore the
benefits obtained from the O-EMS. In fact, the
driving style has a great impact on the vehicld fue
consumptions and emissions as it is shown in [10]
and [12].

3 Driving cycle and road grade
predictions.

As it was introduced before, the factors affecting
the driving cycle are: the type & characteristi€s o
the vehicle, the driver's driving style and the
DCOs present in the route. The basic concept
behind the proposed method is derived from the
general concept of control system theory in which
the controller response and some measurable or
un-measurable disturbances can cause a deviation
between the system output (controlled variable)
and its desired response (reference).

By analogy, in the problem at hand the controlled
system is the vehicle, the controller is the driver
the controlled variable is the vehicle speed where
the system response is therefore the speed
profile/driving cycle (speed versus time), and the
desired system response is the desired/expected
vehicle speed profile - reference driving cycle -
from a point of view of the traffic
control/management system (who regulates the
road speed limits, static and dynamic traffic
signals, traffic lights, etc.), see Fig. 3.
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Figure3: Basic concept. Control system diagram.
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Some disturbances such as the traffic state,draffi
jams, road works, the weather state, or the road

state among others, can change the DCOs thus

changing the real road speed limits and even the
driver driving style, so the system response
(vehicle speed profile) will be affected.
The proposed method is based on the hypothesis
of considering that a reference driving cycle
(reference speed profile) is constructed and
adapted in ‘real time’ and ‘in advance’ by using
some information about the route’s DCOs. This
information could be provided from a new
generation navigation system installed on the
vehicle thus incorporating:

 Digital maps and geographical information
functionalities in order to provide ‘in
advance’ some information related to the
speed limits and traffic signals which are
present in the next time-horizon (electronic
horizon) according to the route that is being
made [14].
A communication system for receiving data
from a Central Data Server for providing ‘in
advance’ real time traffic information related
to the traffic state (density, congestion level,
etc.), traffic events, speed limits due to road
works, traffic jams, weather state, etc., for
the next time-horizon according to the route
that is being made [15].
The deviation between the real vehicle speed and
the speed reference of the reference driving cycle
(obtained as explained before) is assumed to be
caused for the own driver’s driving style as well
as for the type & characteristics of the vehicle.
Therefore, the problem presents two challenges
which are treated separately in this work. The
first treats to obtain -in advance and in real time
a reference driving cycle according to the
information that is being received about the
DCOs. The second treat to model the influence
of the driver & vehicle and then obtain the final
driving cycle or speed profile prediction for the
next time horizon. For that, a nonlinear
processing (through an ANN) of the vehicle
speed deviation profile (with respect to the speed
of the reference driving vehicle) that is being
obtaining whilst the vehicle is running, is
proposed. The technical details for both
challenges are respectively described in next
subsections.

3.1 Obtaining
cycle

The Reference Driving Cycle (RDC) profile is
constructed in real time by using the information
received from the GIS based navigation system. It
has a staggered form with speed constant sections
or intervals and infinite acceleration/deceleration
joining the speed sections. It is important to note
that the RDC is a speed profile defined on the trip
domain, i.e., it is a vehicle speed profile verthes
distance travelled. In fact, the GIS navigation
system only could know in which kilometer point
there are changes on speed limits (speed limits
traffic signals). The speed value for each trip
section or interval is the speed limit imposed by
the traffic regulator for that section. A Base
Reference Driving Cycle (BRDC) is first
constructed according with the road traffic speed
limits existing in the road on which the vehicle is
travelling (positions on the trip domain & speed
limit values). Thus, the BRDC would be the
driving cycle imposed and/or recommended by the
traffic management system (traffic regulator), and
would be also ideal or optimal in the sense that it
would permit to make the trip employing the
minimum time but fulfilling the speed limits
restrictions present in the road (legal driving
cycle). Obviously it is not possible and improbable
to satisfy this BRDC because, among others, the
vehicle-driver as a whole cannot impose infinite
acceleration/ deceleration on the vehicle speed as
well as the driver can bypass the traffic regutagio
(these effects are treated in subsection 3.2). An
example of a constructed BRDC for a trip is shown
in Fig. 4, where the route's information was
extracted from a digital map.

the reference driving
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Figure4: Example of a Reference Driving Cycle.

The BRDC could be then updated according to real
time traffic information if it is available (traffi
state, events, dynamic traffic signals, weather
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conditions, road states, etc.). This information
could be received via communications from the
Traffic Management Data Center or even from
others vehicles making the same route. For
example, the Traffic Data Center could inform
the vehicle about the real speed in a road/trip
interval in which there is a high traffic
congestion level sending the next information:
[initial position, final position, current speed
value], or the vehicle could be also alerted about
the position (on the trip domain) in which the
traffic is stopped due to a hard traffic jam.
Therefore, the final RDC is constructed from the
staggered BRDC by updating its speed values
according to the real time traffic information
received (traffic state and events) if this
functionality is available.

The RDC could be entirely constructed at the
beginning of the trip if all the information of the
route is a priori known and the traffic state is
normal and fluid. However the RDC is normally
constructed and updated in real time by using the
information received from the GIS navigation
system while the vehicle is in route.

3.2 Modelling the behaviour of the
driver & vehicle.

As it was appointed before, the RDC profile is

defined on the trip domain i.e. vehicle speed as
function of the distance travelled or the kilometer
point. The variability of the driver-vehicle (as a

whole) causes that the RDC cannot be fulfilled
due to the reasons explained bellow:

» The vehicle-driver as a whole cannot get
infinite speed accelerations/decelerations.
The vehicle, in function of its characteristics,
will have different acceleration/deceleration
power.

» The driver reacts differently (as a function of
its actual driving style) to a change in the
speed of the RDC profile. For example, a
driver with an aggressive or sportive driving
style accelerates quite before of reaching the
kilometer point where an increment of the
RDC speed occurs. This is possible due to
the driver’s visual range. However a quiet
driver (calm driving style) accelerates softly
just before (or even after) the kilometer point
where the speed increment occurs.

» The driver usually does not maintain the
speed constant in the RDC’s constant speed
sections. A driver with an aggressive driving
style will usually exceed the speed of the
RDC and the vehicle speed will have also

more oscillations than a driver with a calm

driving style.
Consequently there is a speed deviation between
the vehicle speed (final driving cycle) and the
RDC in the distance/trip domain, in which the
speed deviation profile (trending) is quite diffetre
in function of the vehicle behavior and the driger’
driving style during the trip (which can even
change along the trip).
The proposed model for approaching the RDC
vehicle speed deviation with respect to the RDC -
from now on (RDCSD) - which is caused from the
driver-vehicle behavior as a whole, is given in (1)
where RDCSIy is the speed deviation for the k
(actual or present) sampling step (in the
distance/trip domain), DSN is the number of
previous data samples of the own RDCSD that are
considered in the model,R9<, is the RDC speed
for the k (actual) sampling step in the distamge/t
domain, FSN is the number of k-step ahead of the
VRPC that are considered in the model, agdié a
nonlinear function. It is important to note that al
variables in this case must be referenced in the
distance/trip domain, so if the vehicle speed is
measured by using a time-driven procedure an
easy domain transformation must be done (from
time domain to distance domain) to obtain the
vehicle speed as function of the distance travelled

RDCSDy, ,, = fnL (RDCSDy, ,RDCSDy,  ,-.-

RDC

RDC
RDCSDy | oV VR

k+FSN’
Vv RDC )
k-DSN

Vv RDC’ VRDC
k k-1

According to the model presented in (1), the
RDCSD is function of its own ‘DSN’ previous
data samples (from RDC&Bo RDCSDy.psy) and

of the ‘DSN’ previous data samples & ‘FSN’ data
samfles ahead of the RDC speed®™¥.psn to
VRPC ksn). The fact of using the ‘FSN’ k-step
ahead of the RDC is due to the need to consider
the driver's visual range distance (the driver
perceives in advance the traffic and can react
differently depending of his driving style). The
‘DSN’ previous data samples for both the RDC
and the RDCSD give us a picture of the driver-
vehicle behavior in the recent past of the tripigou
that is being done. Therefore observing and
processing the speed deviation with respect his
corresponding RDC in the recent past, it could be
possible to estimate the evolution of the speed
deviation in the distance/trip domain for a near
future - in which its RDC is a priori known - by
assuming that the driver-vehicle behavior will not
change significantly with respect to which it had i
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the recent past. However it is practically
impossible to obtain a mathematical expression
for the nonlinear functionyf in (1) mainly due

to the high nonlinearities and high variability
present on the driver behavior.

In this work, a nonlinear autoregressive neural
network with exogenous inputs (NARX) [16] is
proposed as nonlinear functiony f for
approaching the RDCSD. The NARX is
previously trained by using real examples
(driving cycle, reference driving cycle) recorded
from the vehicle-driver for different trips or
routes. As the NARX models the influence of the
vehicle-driver, it is not very dependent of the
trip/route, data logged on different trips can be
used for training the NARX.

The NARX will work recursively along the
prediction horizon (defined now in the
distance/trip domain) obtaining the prediction of
RDCSD* for the next trip-domain horizon (Hd).

=f(d)
=f ()

Transformation

£
®©
IS
S
o
[}
E
'_

DCDD*
DCTD*

POST-PROCESSING

]

D%
VRDC

BD} |IRDCS

PREDICTION
NEURAL
NETWORK
NARX

-DSN|RDCSD
VRDC

to

K
-DSN
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+FSN

3.3 Obtaining the driving cycle and
road grade predictions.

Once the RDCSD* prediction has been obtained
by using the NARX model, the prediction of the
driving cycle for the same (trip-domain) horizon
is directly obtained by adding the RDC profile
speed values (that must be known in advance by c
using the GIS information) to the RDCSD* E2
speed deviation values along the horizon (Hd), —
see (2), where DCDD* is the prediction of the
driving cycle in the distance domain, and the
resolution selected for the distance domain
discretization (distance between two samples) .
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calculation

v
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PRE-PROCESSING

Trip domain
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RDC, ”
calculation
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Dynamic adaptation

of the Reference
driving cycle

/

HSL, HSS
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53
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DCDD” (k) =VFPC(k) + RDCSD (K)  (2)
Ok =k, (k +1),(k + 2),...,(k + Hd/Ad)

The driving cycle prediction on the time domain Figure5: Driving cycle prediction block diagram.
(DCTD*) can be obtained from the DCDD* by
making a domain transformation (from distance
to time) using the own DCDD* speed values (3).
Thus, the vehicle speed profile prediction as
function of the time is finally obtained.

The road grade profile prediction in the
distance/trip domain can be known directly in
advance because could be received from the GIS
navigation system for the next trip-based horizon.

DCDD’ (k) = DCTD" (1) Thus_, _for ob_taining. the roaq _grade profile
prediction but in the time domain is necessary to
At*(k—>k+l)=A7d* 3) make a domain transformation (from the trip
DCDD (k) domain to the time domain). It is not difficult to
P k+1) =t (K) + At (k= >k +1 implement this transformation since the vehicle
( ) () ( ) speed profile prediction has been just before
Ok =1,2,3,...,Hd/Ad obtained.

A block diagram describing all the steps for
obtaining the driving cycle prediction is shown in
Fig. 5.
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4 Results

Aiming to check the performance and accuracy
of the proposed method, a data acquisition and
logging system (DA&LS) was installed in a
vehicle SEAT Ibiza. The DA&LS was able to
record in real time: the speed and position of the
vehicle while the vehicle was in route. The
selected DA&LS also incorporated for obtaining
a video-film (synchronized with the speed and
position measurements) of the trip/route driving
environment, as can be seen in Fig. 6. Once the
trips were concluded, the final driving cycle was
obtained by post-processing the recorded vehicle
speed & position. In addition, the RDC was
constructed by the post-processing of the video-
film (traffic signals, speed limits, traffic state,
etc.). The trips were done between the towns of
Martorell and San Joant Despi in Barcelona.

» The method used for training was the Bayesian
Regularization in order to exploit its
generalization capabilities [6].

Once the NARX was trained a testing with the

examples that were not used for training was
carried out. Results are displayed in Fig. 7, in
which the driving cycle prediction was obtained at
the kilometer point 2.5Km and the prediction

horizon (on the trip domain) was set to 13Km. The
route was known so the prediction horizon was
large.

The precision or mean error in the driving cycle

prediction was less than 4 Km/H for both cases,
and was calculated from the sum of the absolute
errors in the considered horizon window divided

by the number of samples in the given horizon.

Trip: Martorell — San Joant Despi
160 T T T T T T
—_— | | | | | |
I
e PV R P PN oI
< 120~~~ - - [ e It
T wob-——y oo R SO S S
8- | |
L | *| ——DCDD  real e
% 6ok —_J-L ___1_|---DCDD" predicted | 1 _ __|
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20 ] | ] ] ] |
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Trip travelled distance (Km)
140 Trip: San Joant Despi - Martorell
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Figure6: Picture of the video-film captured in afe X o120p---bo—-Lo Ay == = =
the trips. Courtesy of SEAT-Technical Center. ° P 4 o
3 |
(%]
Ten pairs of final driving cycles (in the time N A R =
domain) and RDCs (in the trip domain) were £ oo —1 |- - -Dcop: predicted|_ 1 ___]
recorded. Eight of them were used to train the Z . '. '. ' : '.
4 3

NARX and the rest were used for testing

]
8 10

b
12

- . Tri I i K
purposes. The NARX configuration was: rip travelled distance (Km)

* Multilayer network with one hidden layer

. . Fi 7: Predicti Its.
composed by 15 neurons of ‘tang-sigmoide’ gure /- Frediction resuits

function dt¥pe. The OlthPUt :ayefr \;\(as In order to test the proposed driving cycle
tc;pn;pose or a neuron of ‘pure-lin-tunction prediction system in real time while the vehicle is

. . . o in route, the algorithm and the NARX were

* The trip distance discretization stepsd, implemented on a Real Time Embedded System
was set to 0.05 Km. (RTES). The RTES was installed on-board the

* The DSN was set to 40, so the past recent gEaAT ‘|biza and was connected to the Vehicle
size was 40 x 0.05 = 2 Km Control Unit (VCU) via the CAN bus. The VCU

* The FSN was set to 3, so the near future yepjcle speed measurement was sent to the RTES
(equivalent to the driver’s visual range) was yja the CAN bus communication. Results are
3x0.5=150 m. displayed on Fig. 8.
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Driving cycle predictor system in route Martorell-San Joant Despi
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Figure8: Prediction results on-board and in reakti

The prediction horizon was set to 3 Km, and the
predictions were triggered in real time each 0.05
Km while the vehicle was in route, so many

predictions speed profiles of size 3Km Km were
obtained (green color in the first graph of Fig. 8)

The RDC is displayed in red color and the real
vehicle speed in blue color. The mean error for
each predicted speed profile is shown in the
second graph of Fig. 8, usually lower than 4
Km/H. The testing for that trip was successful.

5 Conclussions

An innovative technigue to obtain - on-board, in
real time and whilst the vehicle is in route - the
prediction of the vehicle speed & road grade
profiles for the (selected) next time horizon is
presented in this paper. At each selected
sampling time (time-driven) or when the energy
management system makes a request (event-
driven) the predictions are updated (recalculated)
in real time for the new time horizon (receding
horizon). The method is based on an Artificial
Neural Network of type NARX which processes:
the vehicle speed that is being recorded while the
vehicle is in route; some ‘in advance’
information related to the road speed limits and
road grade (road information) that can be
provided in real time from modern navigation
systems incorporating digital maps and
geographic information functionalities; and if
available some ‘in advance’ real time dynamic
traffic information (traffic events, traffic state)

obtained from modern navigation systems capable
of integrating in addition vehicle to vehicle and/o
bi-directional vehicle to infrastructure advanced
communication systems.

The driving cycle prediction system has been
tested on-board in a vehicle (courtesy of SEAT)
while travelling for a route around the Martorell
area with satisfactory results.

The energy management strategies of Plug-in HEV
with parallel or series powertrain structure (Range
Extender) reach the lowest fuel consumption by
using a Charge depleting strategy (CD). This CD
strategy is most efficient when the future trip is
known a priori. But also the prediction data of
shorter predictions horizons (and therefore higher
exactness of the predicted data) can attribute to
lower fuel consumption [17].
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