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Abstract

The complete drivetrain for a single person ultra light electric vehicle (EV) is optimized towards a mini-
mal total weight and a maximal average efficiency for different driving cycles. The EV is named ELBEV,
which is an acronym for Ecologic Low Budget Electric Vehicle. The single person ultra light EV is a
tricycle, with two driven and steering front wheels and one rear wheel. The drivetrain of each front wheel
consists of an outer rotor permanent magnet synchronous motor (PMSM), a single-stage gearbox and the
power electronics with converter and controller print. The drivetrain is optimized for the New European
Driving Cycle, the New York City Cycle and the Federal Test Procedure. For the optimization of the
drivetrain analytical models are used to calculate the losses and the efficiency. The optimized parameters
of the motor are: the number of pole pairs, the number of stator slots and the outer rotor radius of the
motor. Furthermore, an analytical model for the single-stage gearbox is implemented for different gear
ratios (GRs). The optimized parameters for the gearbox are: the number of teeth and the module of each
gear combination and the total mass of the gearbox for each GR. The analytical models are fast, and
useful for designing a good PMSM in combination with a single-stage gearbox. The optimization of the
complete drivetrain is always a compromise between total average efficiency over the drive cycle and the
total mass of the drivetrain.
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1 Introduction
The main reasons why people choose for an elec-
tric vehicle (EV) is because they want to reduce
the dependence on foreign oil and they want to
mitigate the climate change. The major problem
of commercial EVs today is the high cost of the
vehicle. This is due to the large amount of bat-
teries and because of that the high weight of the
vehicle, but also because of the high cost of the
battery technology. Therefore, we want to design
an ultra light electric vehicle named the ELBEV,
acronym for Ecologic Low Budget Electric Vehi-
cle. The goal is to have a transportation method
with less energy consumption than a commercial
EV but yet much faster, more comfortable and
safer than a bike.

1.1 Ecologic Low Budget Electric Vehi-
cle

The ELBEV (Fig.1) is a one person EV with bat-
teries, mainly for commuting purposes in the city
and in the suburbs. The vehicle is controlled by
the driver via two contactless handles [1]: a gas
and a brake handle. The low cost car has three
wheels, two driven and steering front wheels and
one rear wheel. The maximum speed of the car is
80 km/h and the range is about 100 km. The to-
tal curb weight (batteries included) is about 100
kg. The battery pack consists of Lithium Poly-
mer batteries with a high energy to weight ratio:
20 Ah, 96 V and 11 kg. The dimensions of the
car are: a total length of 2200 mm, a total width
of 1200 mm and a total height of 1300 mm.
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Figure 1: Ecologic Low Budget Electric Vehicle.

1.2 Drivetrain of each front wheel of the
ELBEV

Each front wheel of the ELBEV is driven by a
motor with gearbox and power electronics. The
block diagram of the drivetrain for ELBEV is
shown in Fig. 2.

The battery (1) provides the power stage of each
brushless DC (BLDC) motor with current. The
power stage (2) is connected to the three stator
coils of the BLDC motor (3). Each of the sta-
tor coils is powered by a half bridge, two of them
contain a current sensor (4) to measure two phase
currents (Ia and Ib) flowing through the motor.
The two phase currents are measured by the con-
trol print (5). The third phase current is equal
to the negative sum of Ia and Ib, this is done by
electronics on the control print [2]. The control
print is fed by a flyback converter on the power
stage. With the hall sensors (6), mounted on the
BLDC motor, the exact rotor position is known.
This signal is also coupled with the control print.
The signal is then fed to the power stage to switch
on the correct transistors to drive the motor. The
drive signal (7) and the brake signal (8) from the
handles are fed to the control print. An enable
button (9) is also mounted, to switch on the elec-
tronics. With the torque direction button (10) the
driving direction of the vehicle can be reversed.
The BLDC motor is coupled with a single stage
gearbox (11) in order to reduce the speed and in-
crease the torque of the motor on the front wheel
(12).
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Figure 2: Drivetrain for each front wheel of the EL-
BEV.

2 Integrated design

In the past, the power electronics and controller
have been developed and tested. A gearbox has
been designed, built and tested together with
a commercial outer rotor permanent magnet
synchronous motor (PMSM). A new optimized
design for this motor is currently implemented
in combination with an improved single-stage
gearbox. The objective function in the optimiza-
tion process is shown in Fig. 3.
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Figure 3: Objective function that is executed for gear
ratios = 1

2 – 1
7 , Np = 3 – 8, Ns = 9 – 18 and rrotor =

0.04 – 0.1 m.

The optimized parameters for the new outer
rotor PMSM are the number of pole pairs (Np),
the number of stator slots (Ns) and the outer
rotor radius of the motor (rrotor). Therefore we
use an analytical model to calculate the losses
and the efficiency of the PMSM. Moreover, the
total active mass of the motor is calculated.

For the single-stage gearbox an analytical model
is implemented for different gear ratios (GRs) in
order to have a minimal weight for each GR. The
GRs that were investigated are 1

2 to 1
7 . Each of

the motor and wheel gear combinations are able
to transfer the required peak torque on the wheel.
Fig. 4 shows the mass for several possible gears
(motor and wheel gear combinations for the
single-stage gearbox) for a GR of 1

2 . Each of
the markers defines a combination of motor
and wheel gears with a different module and/or
different teeth numbers. From the figure, it is
clear that the combination of 40 teeth at motor
side and 80 teeth at wheel side with module
1, gives the lowest total mass for the different
gear combinations. This approach was used for
each GR. It is a sub optimization shown in the
objective function of Fig. 3.

The PMSM and gearbox are optimized for the
New European Driving Cycle (NEDC), the New
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Figure 4: Weight of several gears for a single-stage
gearbox with gear ratio 1

2 . All shown combinations
are able to transfer the required peak torque on the
wheel, so that the figure makes it possible to select the
gear with the lowest mass. Note that, as even numbers
of teeth and integer multiples of teeth are not com-
mon practice in gears, the optimal combination 40-80
could be slightly modified to e.g. 41-81.

York City Cycle (NYCC) and the Federal Test
Procedure (FTP) [4], [5]. The NEDC is shown
in Fig. 5, but due to the maximum speed of 20
m/s of the ELBEV, the NEDC is cut off at that
specific speed. Fig. 6 shows the NYCC and Fig.
7 the FTP (dashed line is the maximum speed of
the ELBEV).

The goals are a minimization of total weight and
a maximization of the total average efficiency
of the drivetrain for the different driving cycles,
consisting of the power electronics, the PMSM
and the gearbox.
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Figure 5: New European Driving Cycle, the dashed
line is the maximum speed of the ultra light electric
vehicle. Important parameters of the NEDC: average
speed: 33.6 km/h, maximum speed: 120 km/h, total
distance: 11.017 km and duration: 1180 s [3].

Fig. 8 shows the calculated efficiency map of a
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Figure 6: New York City Cycle. Important param-
eters of the NYCC: average speed: 11.5 km/h, maxi-
mum speed: 44.45 km/h, total distance: 1.903 km and
duration: 598 s.

PMSM with Np = 7, Ns = 12 and rrotor = 0.04
m. The average efficiency is 93.63 % in a speed
range of 0.5 Nnom – Nnom and in a torque range
of 0.5 Tnom – Tnom. The maximum efficiency is
94.34 %. Note that the crosses in the figure show
the working points over the NEDC. In Fig. 9 and
Fig. 10 the same calculated efficiency map of the
motor as in Fig. 8 is shown, but now with the
working points over the NYCC and the FTP (see
Fig. 9 and Fig. 10).

3 Results
The objective function of Fig. 3 is executed for
several GRs and for a range of the motor param-
eters Ns, Np and rrotor. For each combination
of input parameters, the total mass and average
efficiency of the drivetrain are computed for the
different driving cycles. The total mass of the
drivetrain (motor + single-stage gearbox) is the
same for each driving cycle, and is shown in Fig.
11. For each driving cycle (NEDC, NYCC and
FTP) the average efficiency is shown in Fig 12,
Fig 13 and Fig. 14.

Table 1: Results total drivetrain with single-stage
gearbox for three driving cycles for gear ratio 1

3

GR: 1/3, rrotor: 0.055 m, Np: 7, Ns: 12

Property NEDC NYCC FTP
Av. total eff. 85.72 % 71.15 % 85.37 %
Driving range 112.98 km 325.77 km 125.61 km
Total mass 8.9912 kg

From all these solutions, the following trends
are observed: For a drivetrain (motor + power
electronics + gearbox) with Np = 7, Ns = 12,
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Figure 7: Federal Test Procedure, the dashed line is
the maximum speed of the ultra light electric vehicle.
Important parameters of the FTP: average speed: 34.2
km/h, maximum speed: 91.09 km/h, total distance:
17.787 km and duration: 1874 s.
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Figure 8: Calculated efficiency map of the motor
(GR = 1

7 , Np = 7, Ns = 12 and rrotor = 0.04 m).
The crosses show the working points over the NEDC.

Table 2: Results total drivetrain with single-stage
gearbox for three driving cycles for gear ratio 1

7

GR: 1/7, rrotor: 0.04 m, Np: 7, Ns: 12

Property NEDC NYCC FTP
Av. total eff. 85.56 % 76.18 % 85.57 %
Driving range 112.77 km 348.80 km 125.91 km
Total mass 12.5820 kg

rrotor = 0.055 m and a GR of 1
3 the total mass of

the drivetrain is 8.99 kg (mass 1 gearbox = 2.33
kg, mass 1 motor = 2.16 kg), but the average
efficiency and thus the driving range depend on
the drive cycle, see Table 1. When comparing
this result (Table 1) with Table 2, the conclusion
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Figure 9: Calculated efficiency map of the motor
(GR = 1

7 , Np = 7, Ns = 12 and rrotor = 0.04 m).
The crosses show the working points over the NYCC.
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Figure 10: Calculated efficiency map of the motor
(GR = 1

7 , Np = 7, Ns = 12 and rrotor = 0.04 m). The
crosses show the working points over the FTP.

is that for almost the same average efficiency
over the NEDC (85 %) the total mass of the
complete drivetrain is 3.59 kg higher when using
a drivetrain with Np = 7, Ns = 12, rrotor = 0.04
m and a GR of 1

7 . The total mass of the drivetrain
in Table 2 is 12.58 kg (mass 1 gearbox = 5.31 kg,
mass 1 motor = 0.98 kg), and again the average
efficiency and thus the driving range depend on
the drive cycle.

4 Conclusions
By optimization of the complete drivetrain
over the different driving cycles it is possible
to choose a good combination of motor and
single-stage gearbox in order to have high
average efficiency and a minimal weight.
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Figure 11: Total mass of drivetrain with single-stage
gearbox for each drive cycle.
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Figure 12: Average efficiency over the NEDC. The
ridge (85.44 %) shows the combinations of GR and
outer motor radius that yield the highest average effi-
ciency. For a low GR of 1

2 , the highest average effi-
ciency is obtained with a motor of double radius com-
pared to a high GR of 1

7 .

Optimization for different driving cycles will re-
sult in an optimal combination of motor and gear-
box for that driving cycle.
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